The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review
Abstract
:1. Introduction
2. Types and Properties of Calcium Carbonate Particles
3. Different Sources of Calcium Carbonate Particles (CCPs)
3.1. Domestic Waste
3.2. Incense Sticks Ash
4. Extraction of Calcium Oxide Particles from Eggshell Waste
5. Biogenic Waste of Marine Organisms
5.1. Shells of Shellfish
5.2. Cockle Shells
5.3. From Oyster and Mussel Shells
6. Recovery from Industrial Waste
6.1. Recovery of Calcium Oxide/Carbonate from Sludge
6.2. Recovery of Calcium Carbonate/Oxide from Dolomite
6.3. Synthesis of Calcium Oxide/Carbonate Particles from Gypsum Waste
6.4. Recovery of Calcium Oxide/Carbonate Particles from Finger Citron Residue
6.5. Recovery of Calcium Oxide/Carbonate from Waste Calcium Sulfide
6.6. Synthesis of Calcium Carbonate from Yellow Phosphorus Slag
7. Characterization of Calcium Carbonate and Oxide Particles
8. Applications of Calcium Carbonate Nanoparticles
8.1. Applications of Calcium Carbonate Particles for Environmental Cleanup
8.2. Heavy Metals Removal
- (i)
- Equilibrium was attained within an hour for Cr (III) ions at pH-6.0 and Ni (II) ions at a pH-8.0.
- (ii)
- The adsorption process followed a pseudo-second-order reaction kinetics, along with Langmuir and Freundlich adsorption isotherms.
- (iii)
- Adsorption of metallic ions on calcite microcrystals was spontaneous and endothermic.
- (iv)
- Almost equal removal efficiency (Cr-94% and Ni-84%) was observed with both magnetic calcite and calcite crystals but it was higher than magnetosomes and activated carbon.
- (v)
- Removal of both the metal ions was facilitated by applying an external magnetic field.
- (vi)
- It is concluded that the magnetic calcite could act as a potential and alternative adsorbent for the elimination of heavy metals from tannery effluents [98].
8.3. As a Biosensor
8.4. Phenolic Compounds Removal
8.5. Dye Removal
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagh, R.; Dongre, A. Agricultural Sector: Status, Challenges and it’s Role in Indian Economy. J. Commer. Manag. Thought 2016, 7, 9. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Hasan, M.A.; Yadav, K.K.; Pinto, M.M.C.; Malik, N.; Yadav, V.K.; Khan, A.H.; Islam, S.; Sharma, G.K. Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Appl. Sci. 2021, 11, 2282. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products-A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
- Chand Malav, L.; Yadav, K.K.; Gupta, N.; Kumar, S.; Sharma, G.K.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.B.; Yadav, S.; et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J. Clean. Prod. 2020, 277. [Google Scholar] [CrossRef]
- Quina, M.J.; Pinheiro, C.T. Inorganic Waste Generated in Kraft Pulp Mills: The Transition from Landfill to Industrial Applications. Appl. Sci. 2020, 10, 2317. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Chen, W.; Xuan, D.; Cheng, H.; Poon, C.S.; Tsang, D.C.W. Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. J. Hazard. Mater. 2020, 393, 122386. [Google Scholar] [CrossRef]
- Sheets, J.L.; Wee, A.G.; Simetich, B.; Beatty, M.W. Effect of Water Dilution on Full-Arch Gypsum Implant Master Casts. Prosthesis 2020, 2, 266–276. [Google Scholar] [CrossRef]
- Erdogan, N.; Eken, H.A. Precipitated calcium carbonate production, synthesis and properties. Phys. Probl. Min. Process. 2017, 53, 57–68. [Google Scholar] [CrossRef]
- Bicchieri, M.; Valentini, F.; Calcaterra, A.; Talamo, M. Newly Developed Nano-Calcium Carbonate and Nano-Calcium Propanoate for the Deacidification of Library and Archival Materials. J. Anal. Methods Chem. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ye, J.; Zhou, D.; Su, L. Research progress on applications of calcium derived from marine organisms. Sci. Rep. 2020, 10, 18425. [Google Scholar] [CrossRef]
- Al Omari, M.M.H.; Rashid, I.S.; Qinna, N.A.; Jaber, A.M.; Badwan, A.A. Chapter Two—Calcium Carbonate. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 41, pp. 31–132. [Google Scholar]
- Hussein, A.I.; Ab-Ghani, Z.; Che Mat, A.N.; Ab Ghani, N.A.; Husein, A.; Ab Rahman, I. Synthesis and Characterization of Spherical Calcium Carbonate Nanoparticles Derived from Cockle Shells. Appl. Sci. 2020, 10, 7170. [Google Scholar] [CrossRef]
- Mydin, R.B.S.; Zahidi, I.N.M.; Ishak, N.N.; Shaida, N.; Ghazali, S.N.; Moshawih, S.; Siddiquee, S. Potential of Calcium Carbonate Nanoparticles for Therapeutic Applications. Malays. J. Med. Health Sci. 2018, 14, 2636–9346. [Google Scholar]
- Bewernitz, M.A.; Lovett, A.C.; Gower, L.B. Liquid–Solid Core-Shell Microcapsules of Calcium Carbonate Coated Emulsions and Liposomes. Appl. Sci. 2020, 10, 8551. [Google Scholar] [CrossRef]
- Palacios, S.; Ramirez, M.; Lilue, M. Clinical study of the tolerability of calcium carbonate-casein microcapsules as a dietary supplement in a group of postmenopausal women. Drugs Context 2020, 9, 2020-1-4. [Google Scholar] [CrossRef]
- Rötzer, N.; Schmidt, M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources 2020, 9, 44. [Google Scholar] [CrossRef]
- Jannah, Z.; Mubarok, H.; Syamsiyah, F.; H Putri, A.A.; Rohmawati, L. Preparation of Calcium Carbonate (from Shellfish)/Magnesium Oxide Composites as an Antibacterial Agent. Iop Conf. Ser. Mater. Sci. Eng. 2018, 367, 012005. [Google Scholar] [CrossRef]
- Islam, K.N.; Bakar, M.Z.B.A.; Ali, M.E.; Hussein, M.Z.B.; Noordin, M.M.; Loqman, M.Y.; Miah, G.; Wahid, H.; Hashim, U. A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technol. 2013, 235, 70–75. [Google Scholar] [CrossRef]
- Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A. Preparation and properties of calcium oxide from eggshells via calcination. Mater. Sci. Pol. 2012, 30, 313–322. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, S.V.; Waghmare, S.; Sabale, P.D. Aragonite-vaterite-calcite: Polymorphs of CaCO3 in 7th century, C.E lime plasters of Alampur group of Temples, India. Constr. Build. Mater. 2016, 112, 386–387. [Google Scholar] [CrossRef]
- Habte, L.; Khan, M.D.; Shiferaw, N.; Farooq, A.; Lee, M.-h.; Jung, S.-h.; Ahn, J.W. Synthesis, Characterization and Mechanism Study of Green Aragonite Crystals from Waste Biomaterials as Calcium Supplement. Sustainability 2020, 12, 5062. [Google Scholar] [CrossRef]
- Trushina, D.B.; Bukreeva, T.V.; Kovalchuk, M.V.; Antipina, M.N. CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C 2014, 45, 644–658. [Google Scholar] [CrossRef]
- Nurul Islam, K.; Abu Bakar, M.Z.; Ali, M.; Hussein, M.; Noordin, M.M.; Yusof, L.; Haron, A.W.; Hakim, M.; Bee Abd Hamid, S. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells. J. Nanomater. 2012, 2012, 5. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Neiva, A.M.R. Geochemistry of U-bearing minerals from the Vale de Abrutiga uranium mine area, Central Portugal. Neues Jahrb. Für Mineral. Abh. 2008, 185, 183–198. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Neiva, A.M.R.; Guimarães, F.; Silva, P.B. Release, Migration, Sorption, and (Re)Precipitation of U during Peraluminous Granite Alteration under Oxidizing Conditions in Central Portugal. Geosciences 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Cabral Pinto, M.; Silva, M.; Neiva, A.; Guimarães, F.; Silva, P. Uranium minerals from a Portuguese Variscan Peraluminous granite, its alteration and related uranium-quartz veins. In Uranium: Compounds, Isotopes and Applications; Wolfe, G., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 287–318. [Google Scholar]
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S.U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials 2020, 10, 1970. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Song, X.; Cao, Y.; Song, L.; Bu, X. Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. Rsc Adv. 2020, 10, 7976–7986. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Narnaware, S.D.; Patil, N.V. A Novel Technique for Synthesis of Calcium Carbonate Nanoparticles. Natl. Acad. Sci. Lett. 2018, 41, 403–406. [Google Scholar] [CrossRef]
- El-sherbiny, S.; El-Sheikh, S.; Barhoum, A. Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol. 2015, 279, 290–300. [Google Scholar] [CrossRef]
- de Beer, M.; Maree, J.P.; Liebenberg, L.; Doucet, F. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste. Waste Manag. 2014, 34, 2373–2381. [Google Scholar] [CrossRef] [Green Version]
- Yoada, R.M.; Chirawurah, D.; Adongo, P.B. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra. Bmc Public Health 2014, 14, 697. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Yadav, K.K.; Gnanamoorthy, G.; Choudhary, N.; Khan, S.H.; Gupta, N.; Kamyab, H.; Bach, Q.-V. A novel synthesis and characterization of polyhedral shaped amorphous iron oxide nanoparticles from incense sticks ash waste. Environ. Technol. Innov. 2020, 20, 101089. [Google Scholar] [CrossRef]
- Yadav, V.K.; Choudhary, N.; Heena Khan, S.; Khayal, A.; Ravi, R.K.; Kumar, P.; Modi, S.; Gnanamoorthy, G. Incense and Incense Sticks: Types, Components, Origin and Their Religious Beliefs and Importance among Different Religions. J. Bio Innov. 2020, 9, 1420–1439. [Google Scholar] [CrossRef]
- Lin, T.-C.; Krishnaswamy, G.; S Chi, D. Incense smoke: Clinical, structural and molecular effects on airway disease. Clin. Mol. Allergy Cma 2008, 6. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Singh, B.; Choudhary, N. Characterization of Indian Incense Stick Powders for their Physical, Chemical and Mineralogical Properties. World J. Environ. Biosci. 2020, 9, 39–43. [Google Scholar]
- Abdel-Shafy, H.; Mohamed-Mansour, M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.S.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Oral, Ç.M.; Ercan, B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 2018, 339, 781–788. [Google Scholar] [CrossRef]
- Brandelli, A.; Sala, L.; Kalil, S.J. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 2015, 73, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Faridi, H.; Arabhosseini, A. Application of eggshell wastes as valuable and utilizable products: A review. Res. Agric. Eng. 2018, 64, 104–114. [Google Scholar] [CrossRef] [Green Version]
- M King’ori, A. A Review of the Uses of Poultry Eggshells and Shell Membranes. Int. J. Poult. Sci. 2011, 10, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, K. An Updated Review on Chicken Eggs: Production, Consumption, Management Aspects and Nutritional Benefits to Human Health. Food Nutr. Sci. 2015, 06, 1208–1220. [Google Scholar] [CrossRef] [Green Version]
- Nagamalli, H.; Sitaraman, M.; Kandalai, K.K.; Mudhole, G.R. Chicken egg shell as a potential substrate for production of alkaline protease by Bacillus altitudinis GVC11 and its applications. 3 Biotech 2017, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Toro, P.; Abarca, R.; Yazdani-Pedram, M.; Luis Arias, J. Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 2007, 61, 4347–4350. [Google Scholar] [CrossRef]
- Padhi, M.K. Importance of Indigenous Breeds of Chicken for Rural Economy and Their Improvements for Higher Production Performance. Scientifica 2016, 2016, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glatz, P.; Zhihong, M.; Belinda, R. Handling and Treatment of Poultry Hatchery Waste: A Review. Sustainability 2011, 3, 216–237. [Google Scholar] [CrossRef] [Green Version]
- Hassan, T.; Rangari, V.; Rana, R.; Jeelani, S. Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason. Sonochemistry 2013, 20, 1308–1315. [Google Scholar] [CrossRef]
- Hassan, T.; Rangari, V.; Jeelani, S. Value-Added Biopolymer Nanocomposites from Waste Eggshell-Based CaCO3 Nanoparticles as Fillers. Acs Sustain. Chem. Eng. 2014, 2, 706–717. [Google Scholar] [CrossRef]
- Hariharan, M.; Varghese, N.; Cherian, A.B.; Paul, J.; Antony, K.A. Synthesis and Characterisation of CaCO3 (Calcite) Nano particles from cockle shells Using Chitosan as Precursor. Int. J. Sci. Res. Publ. 2014, 4, 5. [Google Scholar]
- Muhammad Mailafiya, M.; Abubakar, K.; Danmaigoro, A.; Musa Chiroma, S.; Bin Abdul Rahim, E.; Aris Mohd Moklas, M.; Abu Bakar Zakaria, Z. Cockle Shell-Derived Calcium Carbonate (Aragonite) Nanoparticles: A Dynamite to Nanomedicine. Appl. Sci. 2019, 9, 2897. [Google Scholar] [CrossRef] [Green Version]
- Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R.J.; Rangari, V. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. J. Nanomater. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandita, P.; Fulekar, M.H. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. J. Environ. Manag. 2017, 198, 319–329. [Google Scholar] [CrossRef]
- Ahmad, S.; Chaudhary, S.; Pathak, V.V.; Kothari, R.; Tyagi, V.V. Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano—CaO catalyst. Renew. Energy 2020, 160, 86–97. [Google Scholar] [CrossRef]
- Menon, V.; Gopakumar, K. Shellfish: Nutritive Value, Health Benefits, and Consumer Safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of Mussel (Mytilus Galloprovincialis) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Hamester, M.R.R.; Balzer, P.S.; Becker, D. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res. 2012, 15, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Cabral Pinto, M.M.S.; Ferreira da Silva, E.A. Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral-Pinto, M.M.S.; Inácio, M.; Neves, O.; Almeida, A.A.; Pinto, E.; Oliveiros, B.; Ferreira da Silva, E.A. Human Health Risk Assessment Due to Agricultural Activities and Crop Consumption in the Surroundings of an Industrial Area. Expo. Health 2020, 12, 629–640. [Google Scholar] [CrossRef]
- Gurbuz, A.; Sari, Y.; Yuksekdag, Z.; Cinar, B. Cementation in a matrix of loose sandy soil using biological treatment method. Afr. J. Biotechnol. 2011, 10, 7432–7440. [Google Scholar]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [Green Version]
- Cabral Pinto, M.M.S.; Marinho-Reis, P.; Almeida, A.; Pinto, E.; Neves, O.; Inácio, M.; Gerardo, B.; Freitas, S.; Simões, M.R.; Dinis, P.A.; et al. Links between Cognitive Status and Trace Element Levels in Hair for an Environmentally Exposed Population: A Case Study in the Surroundings of the Estarreja Industrial Area. Int. J. Environ. Res. Public Health 2019, 16, 4560. [Google Scholar] [CrossRef] [Green Version]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [Green Version]
- Maree, J.P.; Zvinowanda, C.M.; Mujuru, M.; Matsapola, R.M.; Delport, D.J.; Louw, a.W.J. Recovery of Calcium Carbonate from Wastewater Treatment Sludge Using a Flotation Technique. Chem. Eng. Process Technol. 2012, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yan, C.; Zhang, F.; Konishi, H.; Xu, H.; Teng, H.H. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad. Sci. USA 2013, 110, 17750–17755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wonyen, D.; Kromah, V.; Gibson, B.; Nah, S.; Chelgani, S. A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite). Minerals 2018, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, M.; Akarsu, H. Preparation of magnesium oxide (MgO) from dolomite by leach-precipitation-pyrohydrolysis process. Phys. Probl. Min. Process. 2009, 44, 15. [Google Scholar]
- Somarathne, Y.R.; Mantilaka, P.; Karunaratne, D.G.G.P.; Rajapakse, R.; Pitawala, H.M.T.G.; Wijayantha, K. Synthesis of high purity calcium carbonate micro- and nano-structures on polyethylene glycol templates using dolomite. Cryst. Res. Technol. 2016, 51, 207–214. [Google Scholar] [CrossRef]
- Mulopo, L.; Radebe, V. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines. Water Sci. Technol. 2012, 66, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Sultan, Z.; Sheikh, Z.; Zafar, M.S.; Sauro, S. Dental Materials (Principles and Applications); Paramount Book Publishers: Karachi, Pakistan, 2018. [Google Scholar]
- Ko, J.H.; Xu, Q.; Jang, Y.-C. Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2043–2083. [Google Scholar] [CrossRef]
- Xu, Q.; Townsend, T.; Bitton, G. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors. J. Hazard. Mater. 2011, 191, 204–211. [Google Scholar] [CrossRef]
- Sufang, W.; Lan, P. Method for Preparing a Nano-Calcium Carbonate Slurry from Waste Gypsum as Calcium Source, the Product and Use thereof. US8846562B2, 31 October 2013. [Google Scholar]
- Huber, M.; Stark, W.; Loher, S.; Maciejewski, M.; Krumeich, F.; Baiker, A. Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 2005, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Oyetunji, A.; Umunakwe, R.; Omotayo Adewuyi, B.; Samuel Nwigwe, U.; Janefrances Umunakwe, I. Evaluating the properties of nanoparticles of calcium carbonate obtained from the shells of african giant land snails (Achatina achatina) via in situ deposition technique. Upb Sci. Bull. Ser. B: Chem. Mater. Sci. 2019, 81, 86–94. [Google Scholar]
- Chilakala, R.; Thenepalli, T.; Huh, J.-H.; Ahn, J.-W. Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite. J. Korean Ceram. Soc. 2016, 53, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Chilakala, R.; Thenepalli, T.; Huh, J.-H.; Ahn, J.-W. Preparation of Needle like Aragonite Precipitated Calcium Carbonate (PCC) from Dolomite by Carbonation Method. J. Korean Ceram. Soc. 2016, 53, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Ahmad, R.; Asad, S.; Muhammad, S. Citrus flavonoids: Their biosynthesis, functions and genetic improvement. In Citrus Molecular Phylogeny, Antioxidant Properties and Medicinal Uses, 1st ed.; Hayat, K., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 31–51. [Google Scholar]
- Kasana, R.C.; Panwar, N.R.; Kaul, R.K.; Kumar, P. Biosynthesis and effects of copper nanoparticles on plants. Environ. Chem. Lett. 2017, 15, 233–240. [Google Scholar] [CrossRef]
- Gong, R.; Ye, J.; Dai, W.; Yan, X.; Hu, J.; Hu, X.; Li, S.; Huang, H. Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with Finger-Citron-Residue-Based Activated Carbon. Ind. Eng. Chem. Res. 2013, 52, 14297–14303. [Google Scholar] [CrossRef]
- Mihara, N.; Soya, K.; Kuchar, D.; Fukuta, T.; Matsuda, H. Utilization of calcium sulfide derived from waste gypsum board for metal-containing wastewater treatment. Glob. Nest J. 2008, 10, 101–107. [Google Scholar]
- Brooks, M.W.; Lynn, S. Recovery of Calcium Carbonate and Hydrogen Sulfide from Waste Calcium Sulfide. Ind. Eng. Chem. Res. Ind Eng Chem Res 1997, 36, 4236–4242. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, W.; Peng, T.; Sun, H. Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag. Open Chem. 2020, 18, 347–356. [Google Scholar] [CrossRef]
- Abdolmohammadi, S.; Siyamak, S.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Rahman, M.Z.A.; Azizi, S.; Fatehi, A. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles. Int. J. Mol. Sci. 2012, 13, 4508–4522. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Wang, L.-T.; Sha, J.-Y.; Ge, H.-H. Effect of Carbon Nanoparticles on the Crystallization of Calcium Carbonate in Aqueous Solution. Nanomaterials 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Choudhary, N.; Khan, S.H.; Malik, P.; Inwati, G.K.; Suriyaprabha, R.; Ravi, R.K. Synthesis and Characterisation of Nano-Biosorbents and Their Applications for Waste Water Treatment. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; Gheorghe Duca, A.V., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 252–290. [Google Scholar] [CrossRef]
- Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H. Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent. Energy Fuels 2011, 25, 3825–3834. [Google Scholar] [CrossRef]
- Hong, K.-S.; Myoung Lee, H.; Seong Bae, J.; Gyu Ha, M.; Sung Jin, J.; Hong, T.E.; Pil Kim, J.; Jeong, E. Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase. J. Anal. Sci. Technol. 2011, 2, 75–82. [Google Scholar] [CrossRef]
- Park, H.; Wook Jeong, S.; Yang, J.-K.; Gil Kim, B.; Lee, S.-M. Removal of Heavy Metals Using Waste Eggshell. J. Environ. Sci. (China) 2007, 19, 1436–1441. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Hu, M.; Li, S.; Zhai, Q.-G. Removal of triphenylmethane dyes by calcium carbonate–lentinan hierarchical mesoporous hybrid materials. Chem. Eng. J. 2015, 273, 371–380. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Mater. Today Proc. 2018, 5, 20704–20710. [Google Scholar] [CrossRef]
- Sales da Silva, I.G.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora Sarubbo, L. Soil Bioremediation: Overview of Technologies and Trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Singh, R.; Behera, M.; Kumar, S. Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites. In Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R., Ed.; Springer: Singapore, 2020; pp. 165–182. [Google Scholar] [CrossRef]
- Mohammadifard, H.; Amiri, M.C. On tailored synthesis of nano CaCO3 particles in a colloidal gas aphron system and evaluating their performance with response surface methodology for heavy metals removal from aqueous solutions. J. Water Environ. Nanotechnol. 2018, 3, 141–149. [Google Scholar] [CrossRef]
- Jacob, J.; Varalakshmi, R.; Gargi, S.A.; Jayasri, M.; Suthindhiran, K. Removal of Cr (III) and Ni (II) from tannery effluent using calcium carbonate coated bacterial magnetosomes. Npj Clean Water 2018, 1. [Google Scholar] [CrossRef]
- Abeykoon, K.G.M.D.; Dunuweera, S.P.; Rajapakse, R.M.G. Synthesis of porous cakcium carbonate nanoparticles and isotherm studies for the removal of flouride in different water sources as a solution for CKD. In Proceedings of the 4th International Conference on Nanoscience and Nanotechnology 2017(ICNSNT 2017), Colombo, Sri Lanka, 14–15 December 2017; p. 1. [Google Scholar]
- Shan, D.; Wang, Y.; Xue, H.; Cosnier, S. Sensitive and selective xanthin amperometric sensors based on calcium carbonate nanoparticles. Sens. Actuators B Chem. 2009, 136, 510–515. [Google Scholar] [CrossRef]
- Gul, I.; Ahmad, M.S.; Naqvi, S.S.; Hussain, A.; Wali, R.; Farooqi, A.A.; Ahmed, I. Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A Review. J. Appl. Biol. Biotechnol. 2017, 5, 13. [Google Scholar] [CrossRef]
- Mosleh, M. Application of new method for the synthesis of cobalt tungstate nanostructures and cobalt tungstate/calcium carbonate nanocomposites and removal of organic pollutants. J. Mater. Sci. Mater. Electron. 2018, 29, 4855–4861. [Google Scholar] [CrossRef]
S. No. | Ground Calcium Carbonate | Precipitated Calcium Carbonate | References |
---|---|---|---|
1. Source | Extracted from earth | Present as crystals in calcite (rhombohedral), aragonite (orthorhombic), and vaterite (hexagonal) forms | [28] |
2. Examples | Examples: chalks, marble | - | |
3. Processing | Grinding is required either in wet or dry conditions. | - | |
4. Available in market | - | Commercial PCC was produced in 1841. | |
5. Methods for synthesis | Thermolysis | Three common processes for the production of synthetic PCC(1) lime soda process(2) calcium chloride process(3) the carbonation process | [29] |
S. No. | Calcite | Aragonite | Vaterite | References |
---|---|---|---|---|
1. ThermalStability | Thermodynamically most stable | Moderately stable | Least stable polymorph | [21] |
2. Solubility | - | More soluble and denser than calcite | - | |
3. Structure | Exists as a trigonal crystalline form in nature | Forms needle-like orthorhombic crystals and formed at higher temperature and pressure | Hexagonal structure and rarely seen in the natural mineral | |
4. Stability | - | Metastable and slowly gets converted to calcite | [23] | |
5. Interaction with water and reorganization | - | - | Vaterite when exposed to H2O, slowly dissolves and recrystallizes to a stable form | |
6. Porosity, surface area | - | - | Large porosity and large surface area | |
7. Disintegrity | - | - | Rapid disintegration under relatively mild conditions | |
8. Biocompatibility | - | Biocompatible properties | [21] |
S. No. | Chemical Elements | Weight (%) |
---|---|---|
1. | CaO | 50–55 |
2. | MgO | 4–5 |
3. | SiO2 | 15–20 |
4. | Al2O3 | 4–5 |
5. | Fe2O3/Fe3O4 | 4–5 |
6. | TiO2 | 2–3 |
7. | Others (CuO + Na2O + K2O) | 5–10 |
S. No. | Chemical Elements | Concentration (mg/L) |
---|---|---|
1. | Ca | 2296–2304 |
2. | Mg | 849–852 |
3. | Na | 33–35 |
4. | K | 16–19 |
5. | Fe | 1.01–1.43 |
6. | Zn | 0.95–1.03 |
7. | Cu | 0.062–0.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Appl. Sci. 2021, 11, 4212. https://doi.org/10.3390/app11094212
Yadav VK, Yadav KK, Cabral-Pinto MMS, Choudhary N, Gnanamoorthy G, Tirth V, Prasad S, Khan AH, Islam S, Khan NA. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Applied Sciences. 2021; 11(9):4212. https://doi.org/10.3390/app11094212
Chicago/Turabian StyleYadav, Virendra Kumar, Krishna Kumar Yadav, Marina M. S. Cabral-Pinto, Nisha Choudhary, Govindhan Gnanamoorthy, Vineet Tirth, Shiv Prasad, Afzal Husain Khan, Saiful Islam, and Nadeem A. Khan. 2021. "The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review" Applied Sciences 11, no. 9: 4212. https://doi.org/10.3390/app11094212
APA StyleYadav, V. K., Yadav, K. K., Cabral-Pinto, M. M. S., Choudhary, N., Gnanamoorthy, G., Tirth, V., Prasad, S., Khan, A. H., Islam, S., & Khan, N. A. (2021). The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Applied Sciences, 11(9), 4212. https://doi.org/10.3390/app11094212