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Abstract: Line segment matching is essential for industrial applications such as scene reconstruction,
pattern recognition, and VSLAM. To achieve good performance under the scene with illumination
changes, we propose a line segment matching method fusing local gradient order and non-local
structure information. This method begins with intensity histogram multiple averaging being utilized
for adaptive partitioning. After that, the line support region is divided into several sub-regions,
and the whole image is divided into a few intervals. Then the sub-regions are encoded by local
gradient order, and the intervals are encoded by non-local structure information of the relationship
between the sampled points and the anchor points. Finally, two histograms of the encoded vectors
are, respectively, normalized and cascaded. The proposed method was tested on the public datasets
and compared with previous methods, which are the line-junction-line (LJL), the mean-standard
deviation line descriptor (MSLD) and the line-point invariant (LPI). Experiments show that our
approach has better performance than the representative methods in various scenes. Therefore, a
tentative conclusion can be drawn that this method is robust and suitable for various illumination
changes scenes.

Keywords: line segment matching; line feature; gradient order; non-local structure information

1. Introduction

Feature matching is important for many applications [1–5]. A typical matching method
usually includes three steps. To be more specific, extract salient and stable features from
the image first, then construct descriptors with the appearance of geometric features of
the encoding neighborhood, and finally evaluate the correspondence between features
by measuring the similarity between descriptors to achieve feature matching. At present,
researches on point feature are most common. Compared with point features, there are
more line features in industrial environments and indoor scenes. Moreover, line features
contain more scene and object structure information, which can better reflect environmental
information. Based on the information from line features, the structural details can be
described more comprehensively, and the line features of the image can be supplemented [6].
Therefore, it is essential to further explore the characteristics of line features.

More and more researchers have made extensive research on the effective and reliable
correspondence between lines in recent years. The latest matching algorithms fall into
two categories.

The first type of matching algorithm uses individual lines to match line pairs. They
use the local appearance, geometric features, etc. For instance, color is a typical appearance
feature. The color histogram is used for generating a set of a line segment correspon-
dence [7]. Gradient and intensity also are common local appearances. The mean-standard
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deviation line descriptor (MSLD) is constructed by counting the gradient vectors of each
sub-region in the four directions of the pixel neighborhood. The method enables the length
of descriptors fixed and improves the robustness of descriptors [8]. However, MSLD did
not deal with the image of scale changes, resulting in its failure in scale changes image pairs.
To overcome scale changes and segment fragmentation, the line band descriptor (LBD) uses
the line segments extracted in the image pyramid [9]. LBD is similar to MSLD. The gradient
mean and standard deviation of the four directions of the line band are calculated. Based
on LBD, an optical flow method is introduced to reduce candidate matching line pairs [10].
On one hand, this method improves real-time performance. On the other hand, it reduces
reliability under illumination change scenes. Recently, more and more attention has been
paid to the illumination robustness of the line segment matching methods. There are two
main methods: the methods based on intensity order [11,12] and the purely geometric
ones [13]. The former introduces the local feature descriptor based on intensity order by
constructing several concentric ring structures. The intensity order-based method has been
proved to be effective. The latter is regularized using geometric constraints. This method
improves the real-time performance and illumination robustness at the cost of reducing
the matching line pairs. Another type of method that matches lines in individual incorpo-
rate point matching into line matching. Among them line-point invariant (LPI) is widely
used to encode the information between the line and the neighboring point [14,15]. LPI
is robust to the mismatched line, and it is extended to line matching across wide-baseline
views [16]. However, those approaches fail when there is a lack of points in the scenes,
such as low-textured scenes.

Another type of line segment matching method is matching in the group, which deter-
mines the corresponding line pairs by using the topological relationship and radiometric
information [17–21]. Li et al. [17] propose a new dual-line matching method, which intro-
duce the ray-point-ray (RPR) structure to describe line segment groups. To improve the
matching accuracy of low-texture images under uncontrolled illumination, Lopez et al. [18]
study a two-view line matching algorithm by combining geometric characteristics of lines.
Hyunwoo Kim et al. [19] use the intersection context of a common plane line pair to match
the line. Kim and Lee [20] determine the corresponding line pairs by using geometric
attributes. The line-junction-line (LJL) gradient descriptor of the local region with the
junction point as the center can be constructed by using the intersecting point and local
texture information. Li et al. [21] implement line matching under the multi-layer Gaussian
image pyramid based on the LJL gradient descriptor. For those unmatched line segments,
Li et al. utilize the local homology estimated by its neighboring matched LJLs to match
them. Compared with matching methods based on individual line segments, the group-
based method can obtain a better correspondence relationship. Based on the studies of
LJL, Chen et al. propose a method to match hierarchical line segments in huge viewpoint
change cases [22]. However, the calculation process is still complex and requires a large
number of computing resources.

Inspired by MSLD, LBD and previous studies [10–12], we design an alternative
method, matching the individual lines by using the descriptor. Most of the previous
approaches are focused on the regular line support region (LSR) and local appearance.
Those methods are unable to describe the order of the line neighborhood pixel and the in-
teractions between long-range pixel and a local neighborhood. Therefore, the line segment
matching method is proposed. The approach is fusing the local and non-local struc-
ture information by exploring local gradient order, local intensity sequence information,
global intensity sequence information, and non-local structure information. There are our
main contributions:

(1) We use the line support region intensity histogram to perform adaptive intensity
partitioning. The sub-regions are determined by intensity order, which increases
the distance between descriptors of different line segments and will not affect the
real-time performance;
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(2) We use the local gradient order to describe the line segment. The local gradient order
changes very little when the illumination changes and rotates. This means that the
local gradient order of the same line segment has a high similarity in the images of
different scenes;

(3) We fuse local gradient order information and non-local structural information of
the line segment. Non-local structural information is not easily affected by image
transformation. In addition, the sampling center information neglected in the local
sampling process is supplemented. We fuse that information in an attempt to improve
the matching performance in various scenes.

These improvements ensure certain real-time performance and excellent matching
performance of the line segments matching method.

2. Approach Overview

Figure 1 is the flowchart of the approach. Feature lines in the image pyramid are
extracted by the EDLines [23]. For the same line in different octave images, a vector is
used to represent them. Based on this, the line support regions are determined. Using the
intensity histogram of the line support region, the sub-regions are obtained by adaptive
partitioning. The pixels in each sub-region are grouped and sampled in a way that the
corresponding index of the sampling points could be obtained through their local gradient
order. Then, corresponding index position of the histogram is voted, and the histograms of
different partitions and groups are cascaded together to get the local gradient order his-
togram. As for anchor points, they are calculated by utilizing the global image. Thereafter,
the histogram of non-local structural information is obtained by encoding the structural
information between the sampled points and the anchor points. Next, these two histograms
are normalized separately and then cascaded to obtain the final line descriptor. The nearest
neighbor distance ratio (NNDR) algorithm is implemented to get the candidate matching
line pairs. Finally, the adjacency matrix [9,24] is constructed by making use of the geometric
properties and descriptor of the line segment. Then the greedy algorithm is used [25] and
final match results will be available.

Reference image Search image

Multi-scale line segment detection

Building line support region

Using histogram for adaptive intensity division

Encoding gradient order Encoding non-local information

Normalized histogram

Get final results by NNDR and greedy algorithm

Figure 1. The proposed approach flowchart.
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3. Methodologies
3.1. Line Support Region

For the line segments extracted from octave images by EDLines, building a line support
region for them is necessary. Similar to MSLD [8] and LBD [9], the line support region
is designed as a rectangle. The average gradient direction defines the local coordinate
system (defined as d0) and the counter-clockwise orthogonal direction (defined as dL) of the
pixels on the line segment. The length of the LSR is defined as L. The midpoint is selected
as the origin of the coordinate system. In addition, the width of the LSR is defined as h
(subsequent experiments will determine this parameter). The gradient in the line support
region is converted to the gradient in the local region. The line support region generation
demonstration is shown in Figure 2.

{h
d

{ L

d

o

L

Figure 2. Line support region generation demonstration.

3.2. Adaptive Intensity Partition

Many popular and advanced line segment description methods adopt a geometric
division strategy to divide the supported region into several fixed and regular sub-regions,
such as the division based on line band—LBD [9]. However, this strategy underutilized
intensity information. Xing et al. [11,12] used intensity order to partition and obtained
certain robustness. However, their method suffers from two major problems:

(1) Using sequential partitioning requires a lot of sorting operations;
(2) When the intensity value is excessively concentrated in a specific value, it will lead to

uneven partition and significant partition change when the illumination changes.

The present study adopts the intensity histogram for adaptive intensity partition to
address these two problems.

Ideally, if one wants to divide N pixels into B parts, each part will have N/B pixels.
However, in natural images, pixel intensity is often stacked at a specific value, making it
challenging to achieve uniform partitions. Therefore, multiple homogenization is adopted
to get relatively uniform partitions adaptively.

Assume that there are N pixels in the line support region, which is expressed as
Ω = {x1, x2, x3, · · ·, xN}. Their intensity is expressed as I = {Ix1 , Ix2 , Ix2 , · · ·, IxN}. The
pixel intensity in the support region is traversed to get its intensity histogram as

HI = {H0, H1, H2, · · ·, H255} (1)

where H0, H1, H2, · · ·, H255 represent the value is the number of occurrences of each inten-
sity, and HI meet H0 + H1 + H2 + · · ·+ H255 = N. If there are B sub-regions divided by
the LSR, it is necessary to select B− 1 intensity values as thresholds, and set these B− 1
intensity thresholds as Tk, k ∈ [1, B− 1]. First, for the first threshold T1, the cumulative
pixel number of intensity histograms H0 to HT1 is close to N

B . For the second threshold T2,

the cumulative pixel number of intensity histograms HT1+1 to HT2 is close to (N−∑
T1
0 HI)

(B−1) .
For the kth threshold Tk, the cumulative pixel number of intensity histograms HTk−1+1 to



Appl. Sci. 2022, 12, 127 5 of 21

HTk is close to (N−∑
Tk−1
0 HI)

(B−k+1) . The above process is iterated for (B− 1) times, and (B− 1)
intensity thresholds are finally acquired. The calculation formula of the above process is
represented as

∑Tk
Tk−1+1 HI

(
N−Σ

Tk−1
0 HI

)
B−k+1

 ≈ 1 (2)

where, in order for k = 0 to satisfy the formula, T0 = 0 is set. According to the (B− 1) adap-
tive intensity thresholds, divide the pixels in the support region into B sub-regions. Then,
we can define a mapping η(x, T) to map all pixels x in LSR to the corresponding sub-region.

η(x, T) =


1, I(x) ≤ T1
k, Tk−1 < I(x) ≤ Tk, k = 2, 3, · · ·, B− 1
B, I(x) > TB−1

(3)

where the integer obtained by η(x, T) is the index of the sub-region, Bink is represented as
the kth sub-region. Figure 3 shows a schematic representation of this sub-region partition
based on adaptive strength partitions, where each sub-region is colored differently. It
can be seen that compared with the computational complexity of sorting the supporting
region, the histogram method has lower computational complexity. The method of multiple
equalizations makes the partition less affected by the illumination change.

Bin 1

Bin 2

Bin 3

Bin 4

Figure 3. Demonstration of sub-region generation.

3.3. Local Gradient Order Encoding

Xing et al. [11] introduced the LIOP [26] descriptor into line feature matching and
obtained certain illumination robustness, proving that the method based on intensity sort-
ing is more robust to illumination change than the one based on direction estimation [8,9].
However, they only focus on the local intensity information of the LSR, ignoring the gra-
dient information which can better describe the line segment. Song et al. [27] proposed
a texture classification descriptor by sorting the intensity difference of the center and its
neighboring pixels. Inspired by them, we combined the adaptive intensity partition to
carry out local gradient order encoding for the sub-region of the line support region.

Before constructing the local gradient order descriptor, an index table is defined. Let
ΠP be the set of permutations of P integers, which would have P! elements in total. Next,
number the elements in the collection ΠP in non-descending order to ensure that each
arrangement has a unique corresponding index. Table 1 is an example.
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Table 1. Index table.

Arrangement Index

1, 2, 3 0
1, 3, 2 1
2, 1, 3 2
2, 3, 1 3
3, 1, 2 4
3, 2, 1 5

Before sampling, gradient information should be extracted. First, two Sobel operators
are employed to process u direction and v direction of the image, respectively, to obtain
u direction and v direction gradients gu and gv. To guarantee the invariance of the pixel
gradient rotation, the gradients are projected under the original coordinate system of the
image to the line support region coordinate system,

gdL
= gu × cosdL +gv × sindL (4)

gdO
= gu × cosdO +gv × sindO (5)

where gdO and gdL represent the gradient projected to the dO direction and dL direction
under the local coordinate system of the support region, cosdL represents the cos value
in the dL direction, and the same for the other ones. Thereafter, the sum of gdO and
gdL is calculated to obtain the gradient g under the local coordinate system of the line
support region.

g = gdO + gdL (6)

In the latter, unless otherwise specified, all references to gradients refer to gradients in
the local coordinate system of the line support region.

Considering a pixel xi(xi ∈ Bink) in the sub-region Bink, when constructing the feature
descriptor of this pixel, the gradient order information of its neighborhood sampling points
is needed. To achieve this goal, a neighborhood circle centered at this pixel with radius R is
formed and P sampling pixels are selected within the circle, denoted as

G(xi) =
(

gxi ,0, gxi ,1, gxi ,2, · · · gxi ,P−1
)

(7)

where G(xi) stores the gradient of the sampling points of pixel xi, and gxi ,p is defined as
the gradient of the pth sampling point of the pixel xi. To reduce the dimensionality, divide
these P sampling points into M groups with Q points within each group. (Q is limited to 3).

The starting point of sampling is defined as the position where the gradient of adjacent
sampling points is maximum. This leaves the descriptor invariant to rotation When rotating
the sampling sequence cyclically the point with the largest gradient is located at the first
position. Then, the group corresponding to this sampling point will be the starting sampling
group, thus forming a rotation-invariant sampling sequence.

Gm(xi) =



(
gxi ,0, gxi ,M, gxi ,2M, · · ·, gxi ,(Q−1)M

)
, m = 1(

gxi ,1, gxi ,M+1, gxi ,2M+1, · · ·, gxi ,(Q−1)M+1

)
, m = 2

...
...(

gxi ,M−1, gxi ,2M−1, gxi ,3M−1, · · ·, gxi ,P−1
)
, m = M

(8)

where Gm(xi)(m ∈ [1, M]) represents the gradient value of the mth set of adjacent sampling
pixels of the ith pixel in the sub-region Bink. The local gradient of each group of sampling
points is sorted by order, and the resultant sequence is used as an index vector. The vector is
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converted to a unique integer by the index table. The corresponding histogram is obtained
by this integer.

Hm(xi) =

(
0, · · ·, 0, 1 , 0, · · ·, 0

Ind(γ(Gm(xi))

)
(9)

where γ(·) is defined to sort a sequence in non-descending order, Ind(·) is a mapping
function. Ind(·) maps each index to the corresponding number. Figure 4 illustrates this
process by taking M = 3, Q = 3.

Group1

Group2

Group3

18.3

30.2

17.7

55.3

60.0

33.3

44.8

-10.5

77.5

30.2

60.0

-10.5

17.7

33.3

77.5 18.3

55.3

44.8

(77.5, 17.7, 33.3)

(18.3, 55.3, 44.8)

(30.2, 60.0, -10.5)

(3, 1, 2)

(1, 3, 2)

(2, 3, 1)

5

2

4

(0, 0, 0, 0, 1, 0)

(0, 1, 0, 0, 0, 0)

(0, 0, 0, 1, 0, 0)

Figure 4. Hm(xi) Histogram construction demonstration.

After that, we repeated this procedure for all the pixels in Bink, and added up the
histograms of each pixel to obtain:

desk,m = ∑ w(xi)Hm(xi), xi ∈ Bink (10)

where the dimension of the desk is Q!×M. Most dimensions are reduced compared to
P!. The above process is carried out for all B sub-region to obtain the histograms of B
sub-regions, and then the B histograms are cascaded together to obtain the final local
gradient encoding descriptor of the line segment:

Dlocal = (des1, des2, des3, · · ·, desB) (11)

where Dlocal represents the local gradient order descriptor of the line segment, and its dimen-
sion is Q!×M× B. Figure 5 illustrates the calculation of a local gradient order descriptor.

The local gradient order encoding descriptor has the following characteristics: Firstly,
the adaptive intensity partition is used to divide the line support region. Second, the
local gradient order is used for encoding instead of the intensity order [11,28,29], which
makes the descriptor more robust to illumination changes. Third, the encoding sequence
is determined by the maximum value of the gradient of the sampling points to make the
descriptors more discriminative.

3.4. Non-Local Structural Information Encoding

Mehta et al. [30], Fathi et al. [31], and Liu et al. [32] pointed out that non-uniformity is
useful for describing some texture structures and Song et al. [29] used non-local structural
information for encoding and obtained some resistance to noise. Most of the common
methods focus only on the local information. For better robustness, the non-local structural
information is encoded in this work. The non-local structure information encodes the
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inter-relationship between sampled pixels and pixels outside the line support region. For
better adaptivity, several anchor points based on global intensity information are computed.

des,k,1 des,k,2 des,k,3

des,k

Group1 Group2 Group3

Dlocal

Figure 5. Demonstration of local gradient order descriptor construction process.

By encoding the intensity relationship between locally sampled points and non-local
anchor points, the structural variation of line segments concerning the whole image is
obtained. In this case, the structural information obtained based on the global image
has better robustness compared to local information [27,29,33]. The local gradient order
descriptor ignores the center of sample points, nevertheless, this central point information
can be supplemented by encoding non-local information.

Song [29] used the method of sorting intensity to calculate anchor points. However,
sorting intensity is computationally expensive. Therefore, the image intensity histogram
proposed above is taken to calculate the anchor points.

Suppose that there are W pixels in the image, and the histogram is defined as HI =
{H0, H1, H2, · · ·, H255}. According to Equation (2), the intensity histogram of the image is
divided into V intervals, and there are V− 1 intensity thresholds defined as Tk, k ∈ [1, V− 1].
Thereafter, calculate an anchor for each interval as follows:

∆Av =
1

bW/Vc

I=Tv

∑
I=Tv−1

HI × I (12)
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where I is intensity, ∆Av(vε[1, V]) denotes the intensity of the vth anchor. In order for v = 1,
T0 = 0 is set. Figure 6 illustrates this process by taking v = 4, P = 9. The anchor points
calculated by the intensity histogram are rotation-invariant. When the intensity of the
image changes monotonically, the anchor points will also change.

A 

A!

A"

A#

Figure 6. Demonstration of anchors generation.

Then, according to the relationship between the sampling point and the anchor point,
the uniformity measurement U is obtained:

U(xi) =
∣∣∣s(Ixip

− ∆Av

)
− s
(

Ixi1
− ∆Av

)∣∣∣
+

P−1

∑
p=1

∣∣∣s(Ixip
− ∆Av

)
− s
(

Ixip−1
− ∆Av

)∣∣∣ (13)

where U(xi) is defined as the uniformity of a pixel xi in the LSR. Ixip
is the intensity value

of the sampling point centered on xi. s(·) is defined as

s(a) =
{

1, a ≥ 0
0, a < 0

(14)

In combination with uniformity measurement, encode the pixels in the line support
region:

Indexi,v =


∑P−1

p=0 s
(

Ixip
− ∆Av

)
, U(xi) ≤ 2

P + 1, U(xi) = 4
P + 2, U(xi) = 6

(15)

where Indexi,v represents the index of the non-local structural information histogram of the
pixel xi. Then, the histogram corresponding to the vth anchor point is obtainable:

Hv = ∑
xi∈Ω

(
0, · · ·, 0, 1 , 0, · · ·, 0

Indexi,v

)
(16)

The dimension of Hv is P + 3, and then cascade the V histograms to obtain:

Dnon−local = (H1, H2, · · ·, HV) (17)

Figure 7 illustrates the calculation of a non-local descriptor.
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Hv

A 

A!

A"

A#

Av

Dnon-local

Figure 7. Demonstration of non-local descriptor construction process.

3.5. Normalized Histogram

Dlocal and Dnon-local encode the local gradient order information and the non-local
structure information of the LSR, respectively, which are complementary to each other and
could be cascaded together. Considering different sizes of them, Dlocal and Dnon-local are
first normalized, respectively, to reduce non-linear interference, and then cascaded together
to obtain the descriptor, which is described as

D = (Normalizer(Dlocal), Normalizer(Dnon−local)) (18)

In summary, the final dimensionality of the descriptor D is Q!×M× B + (P + 3)×V.
Because Q = P/M, Q is limited to a small value, which also avoids the dimensionality
explosion caused by stratification operations.

3.6. Generating Candidate Line Pairs and Obtain Final Result

Firstly, it is necessary to calculate the similarity of the line descriptors. The similarity
between the two descriptors is determined by calculating the minimum Euclidean distance
of the feature descriptor vector. It is worth noting that the line segments in different
octaves should be considered when calculating the minimum distance because the same
line segments in different octaves are extracted through the image pyramid during the line
segment extraction process.

After that, the NNDR is adopted, which refers to the minimum distance divided by
the maximum distance. If the ratio is less than a threshold, then the two line segments
are regarded as a set of a candidate matching line. To guarantee the accuracy of matching,
the threshold is set to a rough value. In this experiment, it is set to 0.7, which is an
empirical value.
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After screening, there will be some mismatches in the alternate matching line segments.
To eliminate these mismatches, the cross-ratio, projection ratio, relative angle of the line
segment are taken use of, and the minimum distance of the descriptor obtained in the last
section is utilized to establish the link matrix [9,24]. Then solve the problem through a
greedy algorithm [25] to obtain the final matching result.

4. Experiment
4.1. Experimental Datasets

Eight pairs of the typical image are selected to test the performance of the proposed
approach as shown in Figure 8. All these images are taken from public datasets on the
Internet and are often used in previous line matching studies [8,9,34,35]. They also include
typical scenes: scale changes, rotation changes, viewpoint changes, occlusion, low textures,
and illumination changes.

(a) Scale (b) Viewpoint

(c) Rotation (d) Rotation

(e) Illumination (f) Illumination

(g) Low texture (h) Occlusion

Figure 8. The datasets used in this experiment where (a) is the scale changes image pair, (b) is the
Viewpoint change image pair, (c,d) are the rotation changes image pairs, (e,f) are the lighting change
image pairs, (g) is the low-texture scene image pair, (h) is the occlusion image pair.

4.2. Evaluation of Parameters

In this section, the selection of parameters used in the proposed method through
experiments will be discussed. The parameters including the height of the LSR, the number
of sub-regions, the sampling radius, the number of groups, and the number of non-local
anchors. The number of correctly matched is used to roughly measure the matching
performance. The following experiment was performed on an Intel i5-8500 processor with
8 GB of RAM.
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Figure 9a shows the influence of different line support region heights on matching
performance. As h increases, the matching performance first increases and then decreases,
reaching the maximum at h = 45.

Figure 9b is the influence of the number of sub-regions on matching performance. As
B increases, the matching performance first increases and then decreases, and when B = 4,
it reaches the maximum.

Figure 9c shows the influence of sampling radius on matching performance. When
the sampling radius is too large, the performance decreases sharply, and it reaches the
maximum when R = 5.

Figure 9d is the influence of the number of groups on matching performance. When
the number of groups is greater than 3, the matching performance tends to be unchanged,
so we choose M = 3.

Figure 9e shows the influence of anchor numbers on matching performance. When the
anchor number is too large or too small, the matching performance is poor. When V = 4, it
reaches the maximum.
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Figure 9. Parameter selection experiment. (a–e), respectively, show the influence of the setting of h,
B, R, M, and V on our experiment.

Informed by the experiment above experiment result, we determined the parameters
used in the proposed method, which were summarized in Table 2.

4.3. Comparative Experiments

In this section, the image pairs in Figure 10 are compared with MSLD [8], LPI [15], and
LJL [20], whose codes are obtained on the Internet [36]. MSLD and LPI are both classical line
segment matching methods. The framework based on MSLD is still being improved [9,11].
LPI is improved based on LP [14] proposed by the original paper author [15], and it was
extended in 2016 [16]. Therefore, these two methods still have the value of research and are
widely used in the comparative experiments of the latest papers. In addition, we compare
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the LJL [20]. It is another type of method that matches line segments in the group. The
comparative experiments compare three different types of line segment matching methods.
All the line segments used are extracted through EDLines [23].

Table 2. Parameters summary.

Parameter Description Value

h the length of LSR 45
B the number of sub-regions 4
R the sampling radius 5
M the number of groups 3
V the number of anchor points 4

To evaluate line segment matching performance, three commonly used metrics are
adopted: precision, recall, and F1-Measure.
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Figure 10. (a–c), respectively, show the comparison of our method, MSLD, LPI, LJL, reference [11]
(2020) and reference [22] (2021) in precision, recall, and F1-Measure. It is worth noting that results on
the occlusion image pairs is missing from reference [22].

According to Figure 10c, the matching performance of the approach is close to LJL in
most scenes. In the scene of large-scale change, the approach is lower than LJL. By analyzing
Figure 10a,b, the precision of the proposed method is as same as LJL. However, the recall
of the approach is lower than LJL under these scenes, which limits the comprehensive
matching performance of our approach. Both LJL and the proposed approach use the same
method that matches lines in the image pyramids. However, LJL matches line segments in
groups and the proposed method matches line segments in individuals. It is difficult to
keep the appearance of the line segments unchanged during large-scale change so that LJL
obtains more matched line segments.

Figure 10 also shows our comparison with the other two methods. The proposed
method outperforms MSLD and LPI in precision, recall, and F1-measure in eight pairs
of images.

Figure 11c,d are image pairs with rotation. The matching precision of the proposed
method is close to 1, while the recall is much higher than that of MSLD and LPI. This is
mainly because our computation is based on a rotation-invariant local coordinate system.
Secondly, our encoding order is based on the maximum gradient direction, which is
also rotationally invariant. Finally, the adaptive sub-regions obtained using the intensity
histogram are only intensity-dependent and are independent of image rotation.

In the illumination changes image pairs (Figure 11e,f), we still obtained an accuracy
close to 1 and a high recall, with better performance than either of the other two methods.
The main reason is that the gradient order does not change greatly when the illumination
changes. MSLD based on direction estimation. Although illumination changes, its mean
value will also change in different directions, as a result, more line segments cannot be
correctly matched. LPI relies on line-point invariants. However, the endpoints of line
segments extracted from image pairs will change when the illumination changes. This
makes the invariants between line and point are unreliable. This unreliability is also evident
in the image pairs of viewpoint changes and occlusion.

LJL, MSLD, and LPI are among the best and most classic open source codes. They are
widely used in comparative experiments in the recent studies. However, in order to prove
that our method is competitive with the latest paper, we select two latest line segment
matching methods for comparison. References [11,22], they were published in 2020 and
2021. Unfortunately we do not have access to their source code, so the data we will use
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later are from their papers. Due to different environments, we did not compare real-time
performance with these two methods.

(a) Scale

(b) Viewpoint

(c) Rotation

Figure 11. Cont.
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(d) Rotation

(e) Illumination

(f) Illumination

Figure 11. Cont.
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(g) Low texture

(h) Occlusion

Figure 11. Lines of the same color in both figures represent matched lines. Those thin lines are
extracted by EDLines but not successfully matched.

It can be seen from Figure 10 that the precision of the proposed method is higher than
the other two latest methods in most image pairs. In the recall, our method is slightly
lower than the other two methods in some scenes. However, in these image pairs (a, b,
e, and f), our precision is higher than the other two methods. This is because we tend
to set parameters for precision rather than quantity. Finally, according to F1-Measure
comprehensive comparison, it can also be seen that the matching performance of our
method is better than the other two latest methods in general.

4.4. Real-Time Performance

Table 3 shows the average time in milliseconds consumed per matched line pair.
The average time consumed by the proposed method varies considerably over different
image pairs. Among the four methods compared, LJL has the worst real-time performance.
The main reason is that matching line segments in a group involves a huge number of
the corresponding relationship between line and line, line and junction. Although this
improves its matching performance, the real-time performance is drastically reduced.

Compared with the other two methods matching line segments in individual, our
real-time performance is close to MSLD and better than LPI.

In the two image pairs in Figure 11d,f, the proposed method consumes the least
average matching time per line segment. The encoding order of the proposed method is
the maximum gradient direction, which is low computational cost and invariant when
rotation and illumination change. Furthermore, the non-local structure information is the
interactions between the line support region and the image interval, which is also relatively
constant. Therefore, the proposed method is efficient for rotation and illumination scenes.
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Table 3. Real-time performance comparison.

Image Pair Our Method MSLD LPI LJL

a 22.6 NULL 41.2 280.7
b 2.4 2.4 35.3 217.7
c 3.0 2.5 6.7 78.3
d 1.7 2.2 6.6 128.4
e 4.4 2.8 7.1 179.5
f 2.2 2.3 9.5 170.6
g 4.2 1.2 9.3 52.1
h 2.9 2.5 4.9 200.3

In the low texture image pairs (Figure 11g), the proposed method does also not perform
well. The main reason is that the local appearance of line segments is to similar. It causes the
gradient order of line segments to become unrecognizable, and more mismatched candidate
line pairs cannot be found. This decreases the efficiency of the proposed approach. The
real-time performance is close to MSLD and better than LJL and LPI in other scenes.

5. Conclusions

The present paper proposes a line segment matching method fusing intensity his-
togram adaptive partitioning, local gradient order information, and non-local structure
information, in an attempt to match line features in various cases. The experiment shows
that the designed method succeeded in improving the effectiveness of line segments match-
ing in various scenes. The proposed method achieved higher scores in precision, recall,
and F1-Measure than MSLD and LPI, especially in the cases of rotation and illumination
changes. Our matching performance is slightly lower than that of LJL, but LJL’s time cost
is significantly higher than our method. In addition, compared with the latest methods
(reference [11] (2020) and reference [22] (2021)), our method also has better matching perfor-
mance in most scenes. Therefore, the proposed method not only ensures certain real-time
performance, but also ensures excellent matching performance.
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