Development of a Vibration Technique Based on Geometric Optimization for Fatigue Life Evaluation of Sandwich Composite Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Framework
2.2. Establishing the Face Sheet Properties Values
2.3. Specimen Design
2.4. Experimental Set-Up
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zenkert, D.; Shipsha, A.; Burman, M. Fatigue of closed cell foams. J. Sandw. Struct. 2006, 8, 517–538. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gibson, R.; Ayorinde, E. Fatigue of Foam and Honeycomb Core Composite Sandwich Structures: A Tutorial. J. Sandw. Struct. 2006, 8, 263–319. [Google Scholar] [CrossRef]
- Stone, H. Fatigue Testing of Flexible Foams. J. Cell. Plast. 1983, 19, 47–60. [Google Scholar] [CrossRef]
- Roosen, D. Fatigue behavior of sandwich foam core materials: Comparison of different core materials. J. Adv. Mater.-Covina 2005, 37, 38–42. [Google Scholar]
- Yau, S.; Mayer, G. Fatigue crack propagation in polycarbonate foam. Mater. Sci. Eng. 1986, 78, 111–114. [Google Scholar] [CrossRef]
- Noble, F.; Lilley, J. Fatigue crack growth in polyurethane foam. J. Mater. Sci. 1981, 16, 1801–1808. [Google Scholar] [CrossRef]
- Mahi, A.; Farooq, M.; Sahraoui, D. Mechanical behavior of Sandwich Composite Material under Cyclic Fatigue. In Proceedings of the New Trends in Fracture and Fatigue Conference, Metz, France, 8–9 April 2002. [Google Scholar]
- Kulkarni, N.; Mahfuz, H.; Jeelani, S.; Carlsson, L. Fatigue Crack Growth and Life Prediction of Foam Core Sandwich Composite under Flexural Loading. Compos. Struct. 2003, 59, 499–505. [Google Scholar] [CrossRef]
- Caprino, G. Predicting Fatigue Life of Composite Laminates Subjected to Tension-Tension Fatigue. J. Compos. Mater. 2000, 34, 1334–1355. [Google Scholar] [CrossRef]
- Clark, S.D.; Shenoi, R.A.; Allen, H.G. Modeling the Fatigue Behavior of Sandwich Beams under Monotonic, 2-step and Block Loading Regimes. Compos. Sci. Technol. 1999, 59, 471–486. [Google Scholar] [CrossRef]
- Berkowitz, C.K.; Johnson, W.S. Fracture and Fatigue Tests and Analysis of Composite Sandwich Structure. J. Compos. Mater. 2005, 39, 1417–1431. [Google Scholar] [CrossRef]
- Kanny, K.; Mahfuz, H.; Thomas, T.; Jeelani, S. Temperature Effects on the Fatigue Behavior of Foam Core Sandwich Structures, Polymers and Polymer Composites. Polym. Polym. Compos. 2004, 12, 551–559. [Google Scholar]
- Wu, W.F.; Lee, L.J.; Choy, S.T. A Study of Fatigue Damage and Fatigue Life of Composite Laminates. J. Compos. Mater. 1996, 30, 123–137. [Google Scholar] [CrossRef]
- Epaarachchi, J.A.; Clausen, P.D. A New Cumulative Fatigue Damage Model for Fiber Reinforced Plastic Composites under Step/Discrete Loading. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1236–1245. [Google Scholar] [CrossRef]
- Collins, J.A. Failure of Materials in Mechanical Analysis, Prediction, Prevention, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1993. [Google Scholar]
- Piersol, A.G.; Paez, T.L. Harris’ Shock and Vibration Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Instron. Available online: https://www.instron.com/ (accessed on 16 October 2021).
- Zwick Roell. Available online: https://www.zwickroell.com (accessed on 16 October 2021).
- Kanny, K.; Mahfuz, H. Flexural fatigue characteristics of sandwich structures at different loading frequencies. Compos. Struct. 2005, 67, 403–410. [Google Scholar] [CrossRef]
- Sun, C.; Chan, W. Frequency effect on the fatigue life of a laminated composite. ASTM Spec. Tech. Publ. 1979, 674, 418–430. [Google Scholar]
- Barron, V.; Buggy, M.; McKenna, N. Frequency effects on the behavior of Carbon fiber reinforced polymer laminates. J. Mater. Sci. 2001, 36, 1755–1761. [Google Scholar] [CrossRef]
- Zou, Y.; Tong, L.; Steven, P. Vibration based model dependent damage (delamination) identification on health monitoring for composite structures: A review. J. Sound Vib. 2000, 230, 357–378. [Google Scholar] [CrossRef]
- Ayorinde, E.O. Elastic constants of thick orthotropic composite plates. J. Compos. Mater. 1995, 29, 1025–1039. [Google Scholar] [CrossRef]
- Reifsnider, K.; Stinchcomb, W.; O’Brien, T. Frequency effects on a stiffness based failure criterion in flawed composite specimens. ASTM Spec. Tech. Publ. 1977, 636, 171–184. [Google Scholar]
- Gibson, R.F. Modal Vibration Response Measurements for Characterization of Composite Materials and Structures. Compos. Sci. Technol. 2000, 60, 2769–2780. [Google Scholar] [CrossRef]
- Liew, K.M.; Xiang, Y.; Kitiponchai, S. Research on Thick Plate Vibration: A Literature Survey. J. Sound Vib. 1995, 180, 163–176. [Google Scholar] [CrossRef]
- Penn, L.; Jump, J.; Greenfield, M. Use of the free vibration spectrum to detect delamination in thick composites. J. Compos. Mater. 1999, 33, 54–72. [Google Scholar] [CrossRef]
- Mead, D.; Markus, S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 1969, 10, 163–175. [Google Scholar] [CrossRef]
- Kosmatka, J.; Ricles, J. Damage detection in structures by modal vibration characterization. J. Struct. Eng. 1999, 125, 1384–1392. [Google Scholar] [CrossRef]
- Salawu, O.S. Detection of structural damage through changes in frequency: A review. Eng. Struct. 1997, 19, 718–723. [Google Scholar] [CrossRef]
- Shu, D. Vibration of sandwich beams with double delaminations. Compos. Sci. Technol. 1995, 54, 101–109. [Google Scholar] [CrossRef]
- Peeters, B.; Maeck, J.; Roeck, G. Vibration-based damage detection in civil engineering: Excitation sources and temperature effects. Smart Mater. Struct. 2001, 10, 518–527. [Google Scholar] [CrossRef]
- American Society of Testing and Materials. Annual Book of ASTM Standards, 2007 ed.; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Scott-Emuakpor, O.; Shen, M.H.H.; George, T.; Cross, C.J.; Calcaterra, J. Development of an improved high cycle fatigue criterion. J. Eng. Gas Turbines Power 2007, 129, 162–169. [Google Scholar] [CrossRef]
- George, T.; Seidt, J.; Shen, M.H.H.; Nicholas, T.; Cross, C. Development of a novel vibration-based fatigue testing methodology. Int. J. Fatigue 2004, 26, 477–486. [Google Scholar] [CrossRef]
- George, T.; Shen, M.H.H.; Scott-Emuakpor, O.; Nicholas, T.; Cross, C.; Calcaterra, J. Goodman diagram via vibration-based fatigue testing. J. Eng. Mater. Technol. 2005, 127, 58–64. [Google Scholar] [CrossRef]
- Peralta-Serrano, A. Innovative Vibration Technique as a Viable Substitute for Conventional Three Point Bending Fatigue Testing. Master’s Thesis, University of Puerto Rico at Mayaguez, Mayaguez, PR, USA, 2008. [Google Scholar]
- FR-7106 polyurethane foam, General Plastics Manufacturing Company. Available online: https://www.generalplastics.com/wp-content/uploads/2018/09/FR-7100-TDS.pdf (accessed on 7 August 2021).
- Just-Agosto, F.; Shafiq, B.; Serrano, D. Development of a Damage Detection Scheme Applicable to Sandwich Composites. J. Sandw. Struct. 2007, 9, 343–363. [Google Scholar] [CrossRef]
- Vanderplaats, G.N. Numerical Optimization Techniques for Engineering Design, 3rd ed.; McGraw-Hill: Colorado Springs, CO, USA, 2001. [Google Scholar]
- Model 810 Datasheet—MTS Systems Corporation—Material Testing System | Engineering360 (globspec.com). Available online: https://datasheets.globalspec.com/ds/2488/MTSSystems/CA6486D7-C041-412E-9B6C-757F618E3956 (accessed on 15 December 2021).
- Peralta, A.; Just-Agosto, F.; Shafiq, B.; Serrano, D. Innovative vibration technique applied to polyurethane foam as a viable substitute for conventional fatigue testing. J. Mech. Behav. Mater. 2012, 21, 61–68. [Google Scholar] [CrossRef]
- American Society of Testing and Materials. ASTM D790-07e1, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Collins, J.A. Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Bull, S.J. Elastic Contact Stress Formulae. Available online: http://www.staff.ncl.ac.uk/s.j.bull/ecstr.html (accessed on 7 August 2021).
Property | Face Sheet | Foam Core |
---|---|---|
Density (kg/m3) | 1117 | 96 |
Longitudinal Modulus of Elasticity EZ (MPa) | 40 × 103 | 21.507 |
Transversal Modulus of Elasticity * Ex, Ey (MPa) | 40 × 103 | 21.507 |
Longitudinal Shear Modulus of Elasticity GXY (MPa) | 10 × 103 | 8.994 |
Transversal Shear Modulus of Elasticity * GXZ, GYZ (MPa) | 10 × 103 | 8.626 |
Poisson’s Ratio * νxy, νxz, νyz | 0.35 | 0.3 |
Stress Ratio | Experimental Result (Hz) | Predicted Frequency (Hz) | Average Number of Cycles to Failure (Vibrations) | Average Number of Cycles to Failure (Three-Point Bending) |
---|---|---|---|---|
0.77 | 32.5 | 31 | 5954 | 4507 |
0.70 | 31.95 | 31 | 18,078 | 14,726 |
0.62 | 32.25 | 31 | 85,461 | 66,741 |
0.55 | 32.5 | 31 | 186,876 | 166,742 |
Corrected Contact Stress Ratio | Average Cycles to Failure Using Three-Point Bending | Predicted Cycles to Failure Using Vibrations | Error Difference (Using TPB as Base) |
---|---|---|---|
0.78 | 4507 | 4742 | 5.22% |
0.71 | 14,726 | 15,332 | 4.12% |
0.63 | 66,741 | 58,586 | 12.22% |
0.56 | 166,742 | 189,365 | 13.56% |
Frequency, Hz | Time per Data Point | Time Required for Obtaining 10 Data Points | Time Required for Curve Four different Stress Ratios (10 Data Points/Stress Ratio) |
---|---|---|---|
5 | 5.5 h | 2.29 days | 9.16 days |
32 | 52 min | 8.67 h | 1.45 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegozzo, M.; Just-Agosto, F.A.; Serrano Acevedo, D.; Shafiq, B.; Cecchini, A.; Valencia Bravo, J.M.; Vaidya, U.K. Development of a Vibration Technique Based on Geometric Optimization for Fatigue Life Evaluation of Sandwich Composite Structures. Appl. Sci. 2022, 12, 16. https://doi.org/10.3390/app12010016
Menegozzo M, Just-Agosto FA, Serrano Acevedo D, Shafiq B, Cecchini A, Valencia Bravo JM, Vaidya UK. Development of a Vibration Technique Based on Geometric Optimization for Fatigue Life Evaluation of Sandwich Composite Structures. Applied Sciences. 2022; 12(1):16. https://doi.org/10.3390/app12010016
Chicago/Turabian StyleMenegozzo, Marco, Frederick A. Just-Agosto, David Serrano Acevedo, Basir Shafiq, Andrés Cecchini, Joaquín M. Valencia Bravo, and Uday K. Vaidya. 2022. "Development of a Vibration Technique Based on Geometric Optimization for Fatigue Life Evaluation of Sandwich Composite Structures" Applied Sciences 12, no. 1: 16. https://doi.org/10.3390/app12010016
APA StyleMenegozzo, M., Just-Agosto, F. A., Serrano Acevedo, D., Shafiq, B., Cecchini, A., Valencia Bravo, J. M., & Vaidya, U. K. (2022). Development of a Vibration Technique Based on Geometric Optimization for Fatigue Life Evaluation of Sandwich Composite Structures. Applied Sciences, 12(1), 16. https://doi.org/10.3390/app12010016