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Featured Application: Automatic seismic fault detection, exploration of underground resources,
and other areas of image recognition where large-scale artificial data is possible but real-world
data is extremely limited.

Abstract: This paper empirically evaluates two kinds of features, which are extracted, respectively,
with traditional statistical methods and convolutional neural networks (CNNs), in order to improve
the performance of seismic patch image classification. In the latter case, feature vectors, named
“CNN-features”, were extracted from one trained CNN model, and were then used to learn existing
classifiers, such as support vector machines. In this case, to learn the CNN model, a technique of
transfer learning using synthetic seismic patch data in the source domain, and real-world patch data
in the target domain, was applied. The experimental results show that CNN-features lead to some
improvements in the classification performance. By analyzing the data complexity measures, the
CNN-features are found to have the strongest discriminant capabilities. Furthermore, the transfer
learning technique alleviates the problems of long processing times and the lack of learning data.

Keywords: seismic patch classification; CNN-features; transfer learning; data complexity

1. Introduction

Seismic faults are important subsurface structures that have significant geologic im-
plications for hydrocarbon accumulation and migration in a petroleum reservoir. On the
basis of these characteristics, it is very important to detect faults with advanced techniques.
Recently, seismic fault detection using deep-learning techniques has been actively stud-
ied [1–5]. In this approach, seismic images are first divided into patches of a certain size.
The fault detection problem then becomes a two-class classification problem that classifies
fault and nonfault (normal) patches. The fault detection problem can be solved by identify-
ing the location of the patches classified as abnormal patches in the fault line. This paper
focuses on the classification of patch data. First, feature vectors were extracted from seismic
patch data and were then classified as fault and nonfault patches using existing classifiers
to find fault lines.

Convolutional neural networks (CNNs) are now state-of-the-art approaches for a lot
of applications. On the basis of their good performance, CNNs have recently been used to
detect seismic faults [4]. However, two constraints can be found in this approach: one is
the need to provide a huge amount of interpreted data (e.g., fault and nonfault patches);
the other is the significant amount of time required to process them. To address the first, a
synthetic dataset, having simple fault geometries, was built. Therein, the input to the CNN
was the seismic amplitude only; that is, the approach did not require the calculation of the
other seismic attributes, but the second constraint remains without any solution.

As is commonly known, CNNs take a tremendous amount of time to learn when
allowing “sufficient” training data. Recently, it has been observed that the convolutional
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(C) and fully connected (FC) layers take the most time to run [6]. In particular, since the
latter is responsible for the multiplication of large-scale matrices, it consumes up to almost
60% of the computation time. From the above review results, as well as from the findings
in [6–11], we may consider replacing the FC layers responsible for classifying seismic patch
data in a CNN with an existing classifier, such as support vector machines (SVMs). The
role of the C layer in this framework corresponds to, for example, the role of the principal
component analysis (PCA) in traditional statistical-based classification.

The use of SVMs instead of FC layers is known to improve the classification accu-
racy [7,12], but no analysis has been made on why. Rather than embarking on a general
analysis, in this paper, we will consider a comparative study that will be taken as the basis
for the above improvements. In addition, the measures of the data complexity can be
used to estimate the difficulty in separating the sample points into their expected classes.
Especially, it has been reported that the measurements can be performed to figure out
a variety of characteristics related to data classification [13]. From this point of view, to
derive an intuitive comparison and to answer the above question, we will consider the
complexity measurements.

In this paper, we use CNN-features in seismic patch classification. Using this feature
vector, we can avoid the problems of a long learning time and a lack of training data,
without deteriorating the classification performance. We also analyzed the data complexity
to compare the discriminating powers of the features. A preliminary short version of
this paper was published as a conference paper [14]. In particular, the current version
has been expanded to include: First, additional techniques to improve the classification
performance of CNNs; second, a quadratic pooling strategy that was reviewed and tested
in order to further increase the discriminative capabilities of the CNN-features [15]; and
third, new experiments were conducted and analyzed to consider how improving CNNs in
classification systems that classify CNN-features using conventional classifiers changes the
system performance.

In this paper, we focus on the following research issues regarding the use of CNN-
feature vectors. First, we attempt to hybridize deep-learning techniques and pattern
recognition (PR) methods for seismic patch classification. Traditional PR proceeds in two
stages: data representation and feature classification, while CNN is implemented in two
stages: feature extraction and classification. It is well known that the representation phase
of PR is sensitive to the domain properties, while the classification phase of a CNN has
a long training time. The main issue of this paper is the hybridization of the above two
stages to address these shortcomings. On the basis of this hybrid strategy, we can combine
the feature extraction capabilities of CNNs with the various classifiers that have been
developed so far and can utilize the appropriate classifiers for applications.

Second, we attempt to adopt transfer learning [16] in model learning for seismic patch
classification. In general, while artificially generating experimental data is not expensive,
there is a limit to presenting the detailed state of the real world. On the other hand, the
real-world data can reflect the true state well, but it is difficult to obtain a sufficient amount.
The second research point of the paper is the use of the transfer learning technique in
the learning of models for the extraction of CNN-features. That is, we first learned CNN
models using well-prepared artificial data, and then leveraged them as pre-trained models
to learn classification models on real-world data.

The third issue of the paper is the application of data complexity in an effort to find
reasons why this hybrid approach leads to improved classification results. To achieve our
purpose, we measured the data complexity of the feature vectors extracted with traditional
methods, including PCA, and compared them with that of the CNN-features.

Finally, the fourth concern of the paper is to represent the seismic patches in CNN-
features. To avoid the curse of dimensionality in image classification, various approaches
have been used so far. The CNN-features can be utilized regardless of their sensitivity to
the cardinality and dimensions of the dataset since they are extracted from CNNs.
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The remainder of the paper is organized as follows: in Section 2, a brief introduction
to the latest findings on seismic fault detection, using CNN-features and data complexities,
is provided; in Section 3, a classification method related to this empirical study and the
structure of seismic patch image data are presented, in turn; in Section 4, experimental
studies, such as experimental data and methods, and classification accuracy rates and data
complexity measurements, are described in detail; in Section 5, conclusive arguments and
limitations that are worthy of further research are summarized.

2. Related Work

This section briefly reviews some of the latest results for detecting seismic faults,
using CNN-features and data complexities for measuring the discrimination power of
the features.

2.1. Seismic Fault Detection

In geophysics, current fault detection methods can be broadly categorized into two
classes: traditional methods [17–19], and machine-learning-based algorithms [1–5,20–23].
In general, traditional methods work by detecting the local discontinuity in seismic images
on the basis of some of the seismic features, such as semblance, variance, etc. For example,
Wang and Alregib [19] propose a combination of the Hough transform and the tracking
vector to extract faults from coherence maps. Although these methods can produce satis-
factory results in early studies, they are time-consuming, and they also require professional
background knowledge to calculate the informative attributes.

With the great success of various machine-learning and deep-learning techniques
in many fields, scholars have developed many automatic fault detection procedures to
alleviate the shortcomings of traditional ones. For instance, SVMs [20] and the multilayer
perceptron technique [21] are separately applied to analyze the attributes (including the
detected edges, and the geometric and texture features) extracted from different seismic
images, and, finally, to classify whether there are faults or not. In [5], Wang et al. provide
a review of the use of image-processing and machine-learning methods to identify faults.
Considering that the performance of machine-learning algorithms strongly relies on the
calculated attributes, it is popular, in recent years, to employ deep-learning approaches
to achieve automatic fault detection. Among them, the CNN is the most commonly used
technique because of its powerful ability to extract useful features. Recently, it has been
combined with transfer learning [1–3] in order to further enhance its performance while
alleviating the difficulty in obtaining sufficient labeled data.

2.2. CNN-Features

CNN-features are composed of values taken from the activation unit of the first FC
layer of the CNN architecture [8]. Various studies have been conducted using CNN-features
in many applications. In [24], it was evaluated whether the CNN weights obtained from
large-scale source tasks could be transferred to a target task with a limited amount of
training material. Along with this study, many other studies related to the extraction and
utilization of CNN-features have been conducted [6,9,10].

In [25], it was reported that reusing a previously trained CNN as a generic feature
extractor leads to a state-of-the-art result, meaning that CNNs are able to learn generic
feature extractors that can be used for different tasks. Thus, some studies have recently been
reported in the industry on the techniques of extracting, and classifying feature vectors with
this approach [7,11]. In [7], top-performing hand-crafted descriptors, including the LBP
(local binary pattern) and the HOG (histogram of oriented gradients), were compared with
CNN-based models using variants of AlexNet [26]. Experiments on three datasets reported
that CNN-based models were superior to other models. However, it was also pointed out
that, to extract meaningful features from raw data, the approach requires huge amounts of
training data. In case the generation of data is expensive, it might not be appropriate, as
in [27].
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In the meantime, CNNs have improved performances while building deeper and
wider networks [28]. In a different way, there are studies to improve the performance by
simply using a pooling based on quadratic statistics, such as covariance, rather than sum
(mean) or max pooling. A few examples are: second-order pooling (O2P) [15]; bilinear
pooling (BiP) [12]; compact BiP [29]; deep architecture for O2P [30]; improved BiP [31];
matrix power normalized covariance (MPN-COV) [32]; and the iterative matrix square root
normalization of covariance pooling (iSQRT-COV) [33].

In [12], an effective architecture, called a bilinear CNN (B-CNN), was developed for
visual classification. B-CNNs represent an image as a pooled outer product of features,
derived from two CNNs, which capture the localized feature interactions. The work in [31]
shows that feature normalization and domain-specific fine-tuning provide additional
benefits, improving the accuracy using identical networks. In subsequent studies, various
methods were proposed, in turn, to overcome the disadvantages of the B-CNN, such as the
high dimensionality of the feature vectors, or GPU-unfriendly algorithms.

2.3. Data Complexity

An attempt to identify the relationship between the data and the classifier that classifies
it was specifically initiated in [34]. Since then, it has been studied a lot. A few examples,
but not all, can be found in [13,35,36]. Referring to these findings, we selected the data
complexity measures to be used in our experiments as the following four indicators: the
Fisher’s discriminant ratio (F1); the directional-vector Fisher’s discriminant ratio (F1v, or
simply, Fv); the distance of erroneous instances to a linear classifier, or its training error
rate (L2); and the volume of the local neighborhood (D2).

Each measurement of complexity mentioned above is made as follows. First, F1 is
used to measure the separation capacity of a single feature between two classes. One way
to obtain the value for multiple features is:

F1 =
2

∑
i=1

pi(m−mi)C−1(m−mi), (1)

where mi (and m) is the mean of each class (and ci the entire class); C is the pooled covariance
matrix derived from averaging the covariance of each class; and pi is the proportion of
examples in the class, ci. As a result, the higher the value, the less redundancy and the
easier it is to distinguish between the two classes.

Second, the Fv value, developed as a complement to F1, is calculated as in [29]:

Fv =
1

1 + dTBd/dTWd
, (2)

where B is the between-class scatter matrix; W is the within-class scatter matrix; and
d = W−1(m1 −m2). That is, d is a directional vector in which the data are projected to
maximize class separation, and the value of Fv approaches zero by maximizing W−1B,
which becomes a simpler classification. Therefore, the lower the measurement, the simpler
the classification problem is.

Third, D2 is related to the density measurement, defined as the average number of
samples per unit volume in the space where all samples are distributed [36]. The value of
D2 in n training samples is determined by measuring the average volume occupied by the
k nearest neighbors in each sample, xi, referred to as Nk(xi). The value is counted as:

D2 =
1
n

n

∑
i=1

d

∏
h=1

(max( fh, Nk(xi))−min( fh, Nk(xi) )), (3)

where max( fh, Nk(xi)) and min( fh, Nk(xi) ) denote the maximum and minimum values of
the feature, fh, among the k-NN of xi, respectively.
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Finally, the L2 value is decided by referring to the error rate of the linear SVM classifiers.
Therefore, the higher the value, the more errors, and the more difficult it is to classify
linearly, which increases the complexity. Here, each measurement is briefly described to
the minimum required. A detailed description of each of these measurements, and other
measures that were not selected here, but that were closely related to the selected ones, can
be found in the relevant literature.

3. Methods and Data

This section first introduces the classification methods associated with the current
empirical research, and then presents the seismic wave image data used in this paper.

3.1. Classification Methods

The classification system to be developed in this paper (named HYB) is a method of
hybridizing an existing linear (or nonlinear) classifier (e.g., an SVM) with a CNN. HYB
is a classification framework that performs feature extraction on CNNs, and then trains
SVMs using the extracted features. In this approach, when learning the CNN in the target
domain, the problem of insufficient learning data can be avoided through transfer learning,
using a model learned in advance in the source domain.

The CNN architecture extracting the feature vector consists of an input layer, a hidden
layer, and an FC layer. The hidden layer includes layers that perform convolution and
subsampling. In this structure, the feature vectors we are trying to extract are made from
input neurons directly connected to the FC layer. The extracted vector is a midlevel repre-
sentation, just before the input image passes through the hidden layers and is transferred
to the FC layer. Therefore, the dimension of the feature vector is equal to the number of
neurons that make up the first FC layer. As a result, we can adjust the number of FC input
neurons to find the optimal dimension for the given application.

To extract CNN-features as described above, the weights of the CNN that make up
the C layers should be fixed in advance. To this end, transfer learning can be used [16]. In
transfer learning, the cardinality of the target task’s dataset is usually less than that of the
source task’s training dataset. Because of this, the proposed CNN-feature extraction method
can avoid the general difficulty of CNN learning, which requires a large amount of data.
Moreover, CNN training in the transfer learning mode is made up of fine-tuning. Therefore,
the learning time can be significantly reduced with a small amount of fine-tuning.

The CNN model is learned by repeatedly performing forward propagation (FP) and
backward propagation (BP), in an end-to-end manner. At this time, one of sum-, max-, or
O2P-pooling is used to reduce the amount of processed data. When using O2P-pooling, the
learning process is performed as follows: First, for the FP, it is assumed that a feature tensor,
X ∈ Rh×w×d, of the height, h, width, w, and channel, d, is generated from the last C layer,
and that this tensor is reshaped into a matrix, X ∈ Rn×d, consisting of n = hw features of
the d-dimension. Then the second-order pooling, Σ ∈ Rd×d, for X is computed as:

Σ = X
¯
I XT, (4)

where
¯
I = 1

n

(
I− 1

n 1
)

; I and 1 are the n× n identity matrix and the matrix of all the ones,
respectively. To improve the representation power, Σ is transformed into Z by performing
matrix power normalization using SVD (singular value decomposition) and is then sent to
the FC layer.

Next, BP proceeds in the opposite direction. Given the gradient of a loss function, l
w.r.t. Z, propagated from the FC layer, i.e., ∂l/∂Z, the gradient of l w.r.t. Σ is estimated
sequentially. First, we have prepared all the relevant derivations (see Equation (2) in [31]),
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and then we can calculate the ∂l/∂Σ. Using this derivative, the gradient of l w.r.t. X, which
is used to update the weights of the network, is determined as:

∂l
∂X

= IX

(
∂l
∂Σ

+

(
∂l
∂Σ

)T
)

. (5)

Here, it should be noted that the BP contains GPU-nonfriendly computations, such as
SVD, which leads to costly training. To solve this problem, fast end-to-end methods were
developed, such as MPN-COV [32] and iSQRT-COV [33], which are suitable for parallel
implementation.

3.2. Seismic Data

A total of 500 synthetic seismic images were prepared, and each of them contained one
fault line with different slopes and positions. The corresponding fault position in each image
was indicated in white by generating binary masks, referring to the seismic amplitude
information. Figure 1 presents an example of a seismic wave image (a), and a fault line (b)
to be extracted from it. The dataset of the synthetic seismic wave images (501 × 501 pixels),
reproduced through open-source code, IPF [37], is an artificial implementation of sequential
rock deformation over time.
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nonfault patch, according to the following rule: If the candidate pixel is a pixel forming a 
fault line, then it becomes a fault patch; otherwise, it becomes a nonfault patch. For exam-
ple, referring to the fault line matrix shown in Figure 1b, all possible fault patches were 
first extracted, and then the same number of nonfault patches were randomly extracted 
from the seismic wave image, shown in Figure 1a. 

  

Figure 1. Plots presenting synthetic seismic wave data: (a) a synthetic seismic image; (b) a fault
line. Here, two blocks, marked in the red color and in blue, indicate the fault and nonfault patches,
respectively.

From the dataset composed of image pairs, shown in Figure 1 (where the two images
on the left and right sides include seismic waves and fault lines, respectively), the fault and
nonfault patches were extracted. One patch is a (45 × 45)-dimensional matrix with one
candidate pixel in the center, and 2024 pixels adjacent to it (this is the smallest patch size
generating satisfactory results [4]). This patch can be classified as a fault patch or a nonfault
patch, according to the following rule: If the candidate pixel is a pixel forming a fault
line, then it becomes a fault patch; otherwise, it becomes a nonfault patch. For example,
referring to the fault line matrix shown in Figure 1b, all possible fault patches were first
extracted, and then the same number of nonfault patches were randomly extracted from
the seismic wave image, shown in Figure 1a.
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4. Experimental Study

In this section, we present the evaluation results for the classification performance and
data complexity of the CNN-features. These were compared to those of the feature vectors,
extracted in three ways: PCA; kPCA using “Gaussian” kernel [38]; and discriminative auto-
encoder (AE) [39]. kPCA and AE were selected as the nonlinear and the network-based
version of the PCA, respectively, and the implementations of the original authors were used
without modification. Regarding CNNs, two versions were implemented [40]. The first is a
typical CNN with sum-pooling, and the second is an improved CNN using O2P-pooling.
Then, the SVMs were realized from the LIBSVM [41].

4.1. Synthetic and Real Experimental Data

As mentioned above, we first generated synthetic seismic waves and fault images.
From the total of 500 seismic wave images, two patch sets of ‘Test1’ and ‘Train1’ were
constructed as follows: Test1 is a set of 76,038 patches extracted from the first 100 images;
and Train1 is a set of 284,850 patches extracted from 400 seismic images from the remaining
101 to 500 images. Train1 (and Test1) was used to pretrain the CNN models needed to
extract the CNN-features.

For real-world seismic images, we considered the real seismic wave image data,
cited from the Project Netherlands Offshore F3 Block—Complete [42]. We first asked some
experienced experts to manually mark the fault lines according to the structural information
(the work of assigning fault lines to real seismic wave images should be done by human
labelers using appropriate tools, as was performed in ImageNet [28]). Next, for a simple
comparative analysis, only ten seismic images along with fault lines were selected. Then, a
total of 52,026 (26,013 for each class) fault and nonfault patches were extracted from the ten
seismic images. When extracting the patches, the number of patches on the larger side was
adjusted to the smaller side by randomly selecting them in order to prevent an imbalance
between the classes. Hereafter, this real-world patch data is referred to as “RealPatch”.

4.2. CNN Models Implemented

Figure 2 and Table 1 show the details of the CNN architecture designed for the
experiment. This CNN consists of two convolutional (and subsampling: SUB) layers, and
one FC layer, which is one of the smallest required scales for our goal. The parameters
involved in the CNN are listed in Table 1.
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Table 1. The details of the CNN architecture.

Layer
Descriptions

Input
Size

Output
Size

Feature
Maps

Kernel
Size

1st convolution and
subsampling 45 × 45 40 × 40 4 (8) 6 × 6

2nd convolution and
subsampling 20 × 20 16 × 16 8 (16) 5 × 5

Fully connected 512 × 1 2 × 1

In Table 1, the architecture is implemented with two different models, a conventional
sum-pooling CNN and an improved O2P-pooling CNN, which are referred to as “CNN-
sum” and “CNN-O2P”, respectively. Details related to the models are as follows: In
CNN-sum, the number of output maps of the two C layers was set to 4 and 8, respectively,
but, in CNN-O2P, the number was adjusted to 8 and 16, as indicated by the parentheses in
the fourth column of the table.

Second, in the two SUB layers, sampling was performed by sum-pooling, which
reduces the dimension of each axis by half. At this time, the CNN-sum directly connected
the output (which was reshaped to a vector) of the second SUB layer to the FC layer, but,
in CNN-O2P, O2P-pooling was additionally implemented, and the obtained result was
connected to the FC layer. In all these operations, pooling was performed with a stride of 2.

Third, the last component at the bottom of both models is the FC layer, and the number
of input neurons of this layer is defined as the number of weights output from the previous
layer. The CNN-features we are trying to extract consist of these input neurons that connect
directly to the FC layer. Therefore, the dimension of the feature vector can be determined
by adjusting the number of these neurons.

Fourth, each model deals with the two-class problem of classifying the seismic image
patches as normal and abnormal. Therefore, it is necessary to adjust the number of neuron
units in the output layer when expanding to multiclass problems. In addition, a soft-max
function is required to obtain the normalized probabilities for each class.

Finally, the parameters for learning the CNN models were experimentally set to a
learning rate of 1, a momentum of 0.5, a batch size of 10, and the number of epochs was
set to 100. The number of epochs was optimized by referring to the learning curve to
prevent overfitting.

4.3. Classification Accuracy Rates

Our CNN-features were extracted as follows: We first prepared a CNN model using
source training data, Data1 (# of epochs: 100). Next, we fine-tuned this pretrained model
using target training data, Data2 (# of epochs: 200). Here, as for Data1, Train1 was used as it
was, and Data2, of 10,000 patches (5000 per class), was randomly selected from RealPatch.

In classification work performed by a feature extractor and a classifier, in general,
there is no optimal feature extractor for all classifiers, and vice versa. Thus, to validate the
performance of our CNN-based extractor, we conducted a simple classification experiment
using only two types of classifiers: the k-nearest neighbor rules (kNNs: k = 1, 3), and SVMs
(of the polynomial and RBF kernels). (Here, each of these two classifiers was chosen as
the easiest to implement and the most widely used classifiers. Although kNNs have a
long execution time, the classifiers were chosen because the discriminative characteristics
of the input vectors can be directly reflected in the output determination. Therefore,
thorough evaluation using other classifiers, such as AdaBoost and the decision tree, is a
future challenge).

Table 2 presents a numerical comparison of the classification accuracy rates (%) of the
features extracted by the five methods, i.e., PCA, kPCA, AE, CNN-sum, and CNN-O2P.
Here, the values were averaged after repeating 10 times. Each time, 10,000 (and 10,000)
patches were randomly selected as the training (and test) data from RealPatch, and the five
different types of feature vectors were extracted. For a fair comparison, the dimensions of
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all the feature vectors were adjusted to 256. The highest (second) accuracy of each row is
emphasized in bold (underlined).

Table 2. Classification accuracy rates (mean) (%).

Classifiers
(Types)

Feature Extraction Methods

PCA kPCA AE CNN-Sum CNN-O2P

kNN (k = 1) 92.47 93.10 86.33 95.67 99.03
kNN (k = 3) 84.52 86.56 74.59 93.19 98.47

SVM (polyn.) 80.20 86.69 72.69 85.88 96.21
SVM (RBF) 91.16 93.32 83.58 95.91 97.99

From the comparison shown in Table 2, it can be observed that the use of the CNN-
based extractor, in conjunction with existing classifiers, can significantly improve the
classification accuracy compared to the other extractors included in the comparison. In
particular, it is noteworthy that the CNN-based extractor uses not only training data, but
also pretrained CNN models that could not be used for other extractions. Under this
condition, a direct comparison of the five feature extractors may not be fair. However,
from the perspective of machine learning, such as transfer learning, the results of this
experiment suggest one possibility related to the “new” extractor. From this consideration,
the performance improvements observed in the last column of the table may have resulted
from the discriminating ability of the pretrained models.

Finally, in Table 2, CNN-sum and CNN-O2P were included as feature extractors, but
they can also serve as classifiers with the FC layers. The classification performances of the
CNN-sum and CNN-O2P trained for the experiments in the table were 96.13 (%) and 96.61
(%), respectively.

4.4. Data Complexity Measures

To highlight the reason why the use of the CNN-features improves the classification
performance, the complexity measures were also measured and compared. Figure 3 shows
a comparison of the complexity measurements obtained by applying the four extractors
of PCA, kPCA, AE, and a CNN (CNN-O2P or CNN-sum) to RealPatch, prepared for
this experiment.

In Figure 3, the CNN (CNN-O2P or CNN-sum) bar has the highest height for the F1
complexity, while the PCA (or kPCA) bar has the highest for the Fv, D2, and L2 complexities.
Through this comparison, we can consider as follows: First, the result of comparing the data
complexity shown in Figure 3 is consistent with the result of comparing the classification
accuracy shown in Table 2. That is, compared to the accuracy of PCA and CNN-features
in Table 2, CNN-based is superior to PCA. In Figure 3, when comparing the F1 values for
these two extractors, the CNN bar height is higher than that of PCA.

Second, a comparison of the Fv, D2, and L2 complexities is the opposite of F1: the
CNN-based bar height is lower than the PCA height. Specifically, the fact that the CNN-
based accuracy rate in Table 2 is greater than that of the PCA is consistent with the fact
that the CNN-based F1 bar in Figure 3 is higher than that of the PCA. However, the Fv
value is small when the accuracy rate is large. As reported in the relevant literature [13],
the increasing value of F1 reduces the overlapping feature space and, thus, allows for a
better separation of the feature space of the two classes. Unlike F1, the smaller the value
measured in Fv, the simpler the classification problem.
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Similar comparative analyses can be applied for the other complexity measures, D2
and L2. In general, for D2 and L2, the larger the bar height, the greater the overlap between
classes, which makes classification difficult. The results of Figure 3 are very consistent with
the above fact. From the observations made above, it can be argued that the CNN-based
extractor is a good feature extractor when compared to the AE-based extractor, as well
as when compared to the PCA (and kPCA). In particular, the extractor can be applied to
situations where existing extractors do not work well because of the nature of the data.
In various practices dealing with high-dimensional data, PCAs, which rely on covariance
matrices, are known to be rarely used because they are not efficient.

4.5. Time Complexity

Finally, to make the comparison complete, the time complexity of the extraction
methods was explored. Rather than embarking on another analysis of the computational
complexities, however, the time consumption levels for the datasets were simply measured
and compared. In the interest of brevity, the processing CPU times for each dataset is the
time consumed by repeating the feature extraction several times and then averaging it.
Table 3 presents a numerical comparison of the processing CPU times. Here, the times
recorded are the required CPU times on a laptop computer with a CPU of 2.60 GHz and a
RAM of 16.0 GB, and that is operating on a Window 64-bit platform.

Table 3. The processing CPU times (in seconds).

Data PCA kPCA AE CNN

Train1 8.3 7775.0 9560.8 35.5

In Table 3, it can be observed that the extractor of the CNN-features requires a much
shorter processing CPU time than the traditional nonlinear algorithms for the datasets used.
Particularly, this demonstrates that the extractor can dramatically reduce the processing



Appl. Sci. 2022, 12, 197 11 of 14

time compared to other kernel- and network-based methods (e.g., kPCA and AE). However,
it should be noted that extracting the CNN-features requires a pretrained model. In Table 3,
Train1 was used for the seismic data to obtain the pretrained model (# of epochs: 100). The
training time for the model was excluded when counting the processing time in the table.

4.6. Summary and Future Challenges

As a result, from the above experiment, we can observe that the classification of seismic
patch data can be improved by means of hybridizing CNN-features with existing classifiers.
The summary of the experimental results and future tasks are as follows.

In this approach, CNN models were first trained to extract CNN-features. To this
end, we first prepared a CNN model using synthetic data and then used it as a pretrained
model when learning models for the feature extraction of real-life data. Therefore, it is
necessary to analyze the extent to which such transfer learning has affected the CNN-feature
extraction process.

More specifically, the task of analyzing the impact of the learning results of the source
domain (i.e., CNN models learned from the synthetic data) on the classification performance
of the target domain is a future challenge. We also experimented with a very limited number
of real-world data here. Therefore, the task of investigating the optimal cardinality of the
training set required for the target domain is also an open problem.

It is also interesting to see what has happened when using enhanced CNNs to extract
CNN-features with the hybrid method. Here, however, only CNN-sum and CNN-O2P were
implemented in one simple CNN and its weakly enhanced CNN, respectively, and were
compared to each other. Therefore, experiments on strongly enhanced CNNs, including
LesNet [43] and VGG-Net [44], remain open.

In order to find out why this hybrid approach leads to improved results, we measured
the data complexity of the CNN-features and compared it with that of the existing extractors.
However, complexity measurements were limited here, using only a limited number of
measurements. In addition, the feature-extraction performance was compared using only
a few traditional extractors. Therefore, introducing more diverse complexity metrics
and including handcrafted extractors in comparison, such as the LBP, the HOG, etc., is a
future challenge.

5. Conclusions

In this paper, the CNN-feature was first extracted using one CNN model, and was then
used to learn an existing classifier, such as an SVM. Here, the model was first pre-trained
using synthetic seismic data and was then fine-tuned using real-world data. By measuring
the data complexity, the answer to the question of why this approach works effectively
is presented.

However, the simulation was simply performed, by referring to the smallest structure
that can express basic algorithms. Therefore, a comprehensive evaluation, using various
architectures, such as ResNet and VGG-Net, and a comparison with the latest results in this
domain remain a challenge in the future. In addition, detecting the occurrence of negative
transfer that may occur in this approach is an important topic for future work. In addition
to these limitations, the problem of theoretically investigating the CNN-based extractor
remains unresolved.
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Glossary

Abbreviation Meaning
AE auto-encoder
B-CNN bilinear convolutional neural network
BP backward propagation
BiP bilinear pooling
C convolutional
CNN convolutional neural network
FC fully connected layer
FP forward propagation
GPU graphics computing units
HOG histogram of oriented gradients
HYB hybrid method of combining linear (nonlinear) classifier with CNN
iSQRT-COV iterative matrix square root normalization of covariance pooling
LBP local binary pattern
MPN-COV matrix power normalized covariance pooling
O2P second-order pooling
PCA principal component analysis
PR pattern recognition
SVM support vector machine
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