On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion
Abstract
:1. Introduction
2. Methodology
2.1. Visual Feature Extraction Based on Facet Model
2.2. Motion Feature Extraction
2.3. The Strategy of Flicking Pixel Suppression
3. Experimental Results and Discussion
3.1. Experimental Data
3.2. Evaluation Criterion
3.3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hai-Bin, P.; Wei, M.; Ming-Yu, C. Detection algorithm for space dim moving object. Proc. SPIE 2007, 6595. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, T.; Shao, S.; Zhang, E.; Lin, G. Infrared moving small-target detection via spatiotemporal consistency of trajectory points. IEEE Geosci. Remote Sens. Lett. 2020, 17, 122–126. [Google Scholar] [CrossRef]
- Wan, M.; Ye, X.; Zhang, X.; Xu, Y.; Gu, G.; Chen, Q. Infrared small target tracking via gaussian curvature-based compressive convolution feature extraction. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Gross, W.; Hierl, T.; Schulz, M. Correctability and long-term stability of infrared focal plane arrays. Opt. Eng. 1999, 38, 862–869. [Google Scholar]
- Wang, E.; Jiang, P.; Hou, X.; Zhu, Y.; Peng, L. Infrared stripe correction algorithm based on wavelet analysis and gradient equalization. Appl. Sci. 2019, 9, 1993. [Google Scholar] [CrossRef] [Green Version]
- Ribet-Mohamed, I.; Nghiem, J.; Caes, M.; Guenin, M.; Hoglund, L.; Costard, E.; Rodriguez, J.B.; Christol, P. Temporal stability and correctability of a MWIR T2SL focal plane array. Infrared Phys. Technol. 2019, 96, 145–150. [Google Scholar] [CrossRef]
- Arounassalame, V.; Guenin, M.; Caes, M.; Hoglund, L.; Costard, E.; Christol, P.; Ribet-Mohamed, I. Robust evaluation of long-term stability of an InAs/GaSb type II superlattice midwave infrared focal plane array. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Shi, Y.; Mao, H.C.; Zhang, T.X.; Cao, Z.G. New approach of IRFPA non-effective pixel discrimination based on pixel’s characteristics histogram analysis. J. Infrared. Millim. W 2005, 24, 119–124. [Google Scholar]
- Korchev, D.; Kwon, H.; Owechko, Y. Detecting small, low-contrast moving targets in infrared video produced by inconsistent sensor with bad pixels. Opt. Eng. 2015, 54, 113102. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Y.; Huang, J.; Fan, F.; Ma, J.Y. A registration based nonuniformity correction algorithm for infrared line scanner. Infrared Phys. Technol. 2016, 76, 667–675. [Google Scholar] [CrossRef]
- Liu, N.; Xie, J. Interframe phase-correlated registration scene-based nonuniformity correction technology. Infrared Phys. Technol. 2015, 69, 198–205. [Google Scholar] [CrossRef]
- Tchendjou, G.T.; Simeu, E. Detection, location and concealment of defective pixels in image sensors. IEEE Trans. Emerg. Top. Comput. 2021, 9, 664–679. [Google Scholar] [CrossRef]
- Liu, Y.C.W.J.C.L.X. Scene-based bad pixel dynamic correction and evaluation for IRFPA device. In Proceedings of the Advances in Optoelectronics and Micro/Nano-Optics, Guangzhou, China, 3–6 December 2010. [Google Scholar]
- Zhang, Z.S.D.Z.S. Scene-based blind and flickering pixel dynamic correction algorithm. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019. [Google Scholar]
- Chen, S.T.; Meng, H.; Pei, T.; Zhang, Y.Y. An adaptive regression method for infrared blind-pixel compensation. Infrared Phys. Technol. 2017, 85, 443–449. [Google Scholar] [CrossRef]
- Chen, S.T.; Jin, M.; Zhang, Y.Y.; Zhang, C. Infrared blind-pixel compensation algorithm based on generative adversarial networks and Poisson image blending. Signal Image Video Process. 2020, 14, 77–85. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Mould, N.; Regens, J.L. Dead pixel correction techniques for dual-band infrared imagery. Infrared Phys. Technol. 2015, 71, 227–235. [Google Scholar] [CrossRef]
- Hailov, Y.P.A.S.A. Hardware implementation and verification of the sensor defective pixels correction algorithm. In Proceedings of the 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint-Petersburg, Russia, 1–5 June 2020. [Google Scholar]
- Liu, G.R.; Sun, S.L.; Lin, C.Q.; Lyu, P.Y. Analysis and suppression method of flickering pixel noise in images of infrared linear detector. J. Infrared Millim. Waves 2018, 37, 421–426. [Google Scholar]
- Cao, L.H.; Wan, C.M.; Zhang, Y.F.; Li, N. Infrared radiation characteristic measure method of point target. J. Infrared Millim. Waves 2015, 34, 460–464. [Google Scholar]
- Haralick, R.M. Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.Z.; Bi, Y.G. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Chen, Q.; Qian, W.X.; Zhang, W. Infrared Target Detection; Publishing House of Electronics Industry Press: Beijing, China, 2016. [Google Scholar]
- GB/T 17444-2013; Measuring Methods for Parameters of Infrared Focal Plane Arrays. Standardization Administration of the People’s Republic of China: Beijing, China, 2014.
Step Size of Updating CFP (c) | 0.01 | 0.03 | 0.05 |
---|---|---|---|
Forgetting factor | 0.98 | 0.97 | 0.96 |
0.17 | 0.30 | 0.37 | |
0.95 | 0.97 | 0.96 | |
Format | 640 × 512 |
---|---|
Pixel size | 15 μm |
Spectral Range | 3–5 μm |
F-number | 4 |
Noise Equivalent Temperature Difference (NETD) | 30 mk |
Framerate | 50 Hz |
Bits per pixel | 14 bits |
Blind Pixel Detection Method | Application Scenarios | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cloud | Cloud with Target | Deep Space | Deep Space with Target | |||||||||
SBBPDC | 62 | 1.61 | 0.71 | 69 | 1.45 | 0.99 | 37 | 0 | 0.71 | 32 | 0 | 0.89 |
CBATBPD | 37 | 10.8 | 1.17 | 34 | 8.82 | 1.02 | — | — | — | — | — | — |
Proposed | 98 | 1.02 | 0.36 | 100 | 1.00 | 0.46 | 40 | 0 | 0.34 | 38 | 0 | 0.34 |
Scenarios | Cloud | Cloud with Target | Deep Space | Deep Space with Target | |
---|---|---|---|---|---|
Time Consumption | |||||
IRPT detection (Median filter and threshold segmentation) | 0.111 s | 0.121 s | 0.109 s | 0.112 s | |
IRPT tracking (Interframe matching) | 0.156 s | 0.247 s | 0.135 s | 0.141 s | |
Blind pixels detection and compensation | 0.091 s | 0.089 s | 0.091 s | 0.090 s | |
Total | 0.358 s | 0.457 s | 0.335 s | 0.343 s |
Application Scenarios | |||
---|---|---|---|
Cloud | 10,080 | 1.77 | 0 |
Cloud with target | 9500 | 2.07 | 0 |
Deep space | 7331 | 2.38 | 0 |
Deep space with target | 7519 | 2.07 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Rao, P.; Chen, X.; Qiu, S. On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion. Appl. Sci. 2022, 12, 198. https://doi.org/10.3390/app12010198
Jia L, Rao P, Chen X, Qiu S. On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion. Applied Sciences. 2022; 12(1):198. https://doi.org/10.3390/app12010198
Chicago/Turabian StyleJia, Liangjie, Peng Rao, Xin Chen, and Shanchang Qiu. 2022. "On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion" Applied Sciences 12, no. 1: 198. https://doi.org/10.3390/app12010198
APA StyleJia, L., Rao, P., Chen, X., & Qiu, S. (2022). On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion. Applied Sciences, 12(1), 198. https://doi.org/10.3390/app12010198