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Abstract: The blind pixel suppression is the key preprocess to guarantee the real-time space-based
infrared point target (IRPT) detection and tracking. Meanwhile, flickering pixels, as one of the
blind pixels, is hard to suppress because of randomness. At present, common methods adopting
a single feature generally need to accumulate dozens or hundreds of frames to ensure detection
accuracy, which cannot update flickering pixels frequently. However, with low detection frequency,
the flickering pixels are easily miss detected. In this paper, we propose an on-board flickering pixel
dynamic suppression method based on multi-feature fusion. The visual and motion features of
flickering pixels are extracted from the result of IRPT detection and tracking. Then, the confidence
of flickering pixel evaluation strategy and selection mechanism of flickering pixel are introduced to
fuse the above features, which achieves accurate flickering pixel suppression using a dozen frames.
The experimental results evaluated on the real image of four scenarios show that the blind pixel false
detection rate of the proposed method is no more than 1.02%. Meanwhile, evaluated on the simulated
image, the flickering pixel miss suppression rate is no more than 2.38%, and the flickering pixel
false suppression rate is 0. The proposed method could be an addition to most other IRPT detection
methods, which guarantees the near-real-time and reliability of on-board IRPT detection applications.

Keywords: flickering pixel suppression; infrared point target; multi-feature fusion

1. Introduction

Space-based infrared point target (IRPT) detection is one of the most important ap-
plications of the on-board intelligent information processing technology, which has been
wildly used in both the civil and military fields. Blind pixel suppression is the essential
preprocess for all infrared camera applications. Owing to the limitation of the material,
craftwork, and working environment, some infrared pixels will experience permanent or
temporary functional degradation, namely blind pixels. Especially, blind pixels with a
visual feature similar to that of IRPT can easily lead to false detection of IRPT and obstruct
the real-time performance of the IRPT detection algorithm. Indeed, threshold filter [1],
coding mechanism [2], and support vector machine [3], etc., are proposed to eliminate false
alarm sources and have obtained good results in the IRPT detection algorithm. However,
these sophisticated methods consume most computing resources to eliminate more indis-
tinguishable false alarm sources from background. These blind pixels have a catastrophic
effect on on-board intelligent information processing if they are not properly suppressed.
Therefore, an effective blind pixel suppression method is vitally needed for on-board IRPT
detection application.

Generally, blind pixels are divided into constant blind pixels and flickering pixels [4,5].
The constant blind pixels which appear as loog-live over-bright or over-dark can be cor-
rected by the existing method effectively. However, considering that the flickering pixels
can oscillate randomly between several levels, flickering pixels suppression is a hard
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task. Nowadays, blind pixel suppression is divided into two steps: blind pixel detection
and blind pixel compensation. The blind pixel detection method can be classified into
two categories. The first category is the calibration-based method [6–8], which uses the
blackbody to obtain uniform reference images and detect blind pixels by comparing each
pixels’ response rate, deviation factor, noise statistics, and other properties. This method
is easy to implement and has a good detection effect for constant blind pixels. However,
flickering pixels cannot be detected accurately by this method due to their randomicity.
More importantly, this method requires additional hardware equipment, such as blackbody
and electromechanical parts, which will consume valuable hardware resources of satellites.

The other category is the scene-based blind pixel detection method, which utilizes
image processing and computer vision to statistically analyze the scene image. Although
this method has a lower accuracy compared to the calibration-based method, it can operate
during the system’s normal mission and does not require other equipment. Namely,
this method has better real-time performance and adaptability. Presently, one of the
most important tools for scene-based blind pixel detection methods is image registration.
Korchev et al. [9] proposed a method that created bad pixel masks by frame registration
using simple pixel differences, and produced good results for detecting moving, low-
contrast targets at the same time. Liu et al. [10] adopted a registration-based method that
could correct the fixed pattern noise with less error using the estimation of scene motion.
In addition, Liu et al. [11] used the correlated phase information to make the registration
more precise and adopted linear mapping to estimate true pixel value. However, the
efficiency of image registration methods may influence the real-time performance of these
methods. For instance, the registration based on the Fourier transform would make some
methods difficult to apply to real-time hardware [11]. In addition, a good image registration
effect asks for rich scene details, which limits the application for some scenarios. Recently,
analyzing the intensity of adjacent pixels is also efficient. Tchendjou and SIMEU [12]
proposed real-time and online defective pixel detection and correction algorithms. By using
basic arithmetic operations on adjacent pixels, these algorithms have been implemented on
an FPGA platform. Additionally, Cao et al. [13] proposed a scene-based bad pixel dynamic
correction method. According to the self-adaptive median filter and the keyframe technique,
this method can search for blind pixels with high detection accuracy. Song et al. [14] also
gave an adaptive median filtering method to detect real-time blind and flickering pixels,
in which a human-vision-based algorithm is applied to avoid misjudging blind pixels.
However, these methods also have limitations. For instance, they detect blind pixels using
high spatial frequency, which can easily cause the IRPT to be falsely identified as blind
pixels. Therefore, these methods need dozens or hundreds of frames to ensure the accuracy
of blind pixel detection, which may cause miss detection of the flickering pixel with low
flickering frequency.

The blind pixel compensation method is applied to overcome the bad effect of the
blind pixel which is detected by the previous step. At present, the existing blind pixel
compensation methods [15–18] have achieved great compensation effect. These methods
use adversarial networks, dual-band information, or regression model to compensate the
blind pixel, and the rich scene details are preserved. Despite their success in estimated
accuracy, aforementioned methods also have a limitation, since they generally treat each
blind pixel as the constant blind pixel. However, the flickering pixels still retain a part of
the information acquisition ability [19]. Therefore, how to choose the flickering pixel that
should be compensated is worth studying.

In this paper, in order to address the problems mentioned above, we proposed an
on-board flickering pixel dynamic suppression method based on multi-feature fusion. The
visual and motion features of flickering pixels were extracted from the result of IRPT
detection and tracking, which economizes computing resources. Meanwhile, the above
features are fused by the confidence of flickering pixel (CFP) evaluation strategy and
selection mechanism to guarantee the accuracy of flickering pixel detection with a dozen
frames. Finally, CFP and visual features of flickering pixels are combined to compensate
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flickering pixels dynamically and accurately. This method overcomes the drawbacks
associated with the conventional scene-based method that depends on a single feature
consuming large amounts of frames to ensure detection accuracy.

2. Methodology

As shown in Figure 1, the proposed method is embedded in a IRPT detection process
and, the block diagram briefly summarizes the processing steps of the proposed method
including visual feature extraction, motion feature extraction, multi-feature fusion, and
blind pixel compensation.
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2.1. Visual Feature Extraction Based on Facet Model

A point target is a target whose actual image area on the surface of the detector is
smaller than one pixel of the detector [20]. However, the imaging process of the practical
optical system is influenced by diffraction and aberration. Therefore, IRPT imaging is not
an ideal point but a speckle. Conversely, blind pixels are mainly caused by the limitations
of the sensor, and their image is entirely unrelated to the optical system. Hence, blind pixels
appear as bright or dark points in the infrared focal plane array (IRFPA).

From the above results and analysis, we propose a visual feature extraction method
based on the facet model using the result of IRPT detection as input to distinguish blind
pixels from suspected IRPT. The facet model was proposed by Robert M. Haralick [21]. This
model considers the discrete pixel response as surface, and a polynomial function is used
to estimate the surface in a small neighborhood [22]. Therefore, the spatial domain of the
image can be partitioned into connected smooth regions called facets. Obviously, the blind
pixels cannot be estimated by the facet model accurately because of its pulse shape. On
the contrary, the intensity of IRPT decreased gradually from the center to the edge, which
could be estimated more accurately by using the facet model. Therefore, we regard the
detected IRPTs as potential blind pixels, and estimate them based on the facet model. Then,
the estimation error of the facet model is segmented by the threshold to extract blind pixels.
A detailed description of the steps is provided bellow.

Firstly, we use a bivariate cubic function f in canonical form as Equation (1) to fit the
3 × 3 neighborhood.

f (r, c) = ∑8
i=1 ki pi, (1)

where, (r, c) ∈ R × C, R, C = {−1, 0, 1} are symmetric index sets of row and column
respectively. pi ∈

{
1, r, c, r2 − 2/3, rc, c2 − 2/3, r

(
c2 − 2/3

)
, c
(
r2 − 2/3

)}
are 2-D discrete
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orthogonal Chebyshev polynomials, and ki is the fitting coefficient which could be deduced
by the least-squares algorithm as shown in Equation (2).

ki =
∑(r,c)∈R×C Pi(r, c)I(r, c)

∑(r,c)∈R×C Pi
2(r, c)

, (2)

where I(r, c) is the response intensity of pixel (r, c). Obviously, I(r, c) is independent of the
remainder in Equation (2). Therefore, we can define this remainder as fixed filters ωi in
Equation (3) so that ki could be calculated by convolution.

ωi =
Pi(r, c)

∑(r,c)∈R×C Pi
2(r, c)

, (3)

Then, the estimation of the facet model can be deduced through Equations (1) and (2)
as follows:

f f acet(i, j) = k1 −
2
3

k4 −
2
3

k6, (4)

where (i, j) is the coordinate of potential blind pixels, and f f acet(i, j) is the estimation of
the facet model. The non-zero fitting coefficients could be calculated by the Equation (3)
as follows: 

ω1 = 1
9

 1 1 1
1 1 1
1 1 1


ω4 = 1

6

 1 1 1
−2 −2 −2
1 1 1


ω6 = ω4

T

, (5)

Up to now, we could estimate the response intensity of the 3 × 3 neighborhood of
potential blind pixels quickly. Figure 2 shows simulated blind pixel and IRPT and their
estimation by the above-mentioned facet model. It can be clearly seen that the estimation
of IRPT is more accurate.
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Figure 2. The estimation of facet model (a) simulated blind pixel, (b) estimation of blind pixel by
facet model, (c) simulated IRPT, (d) estimation of IRPT by facet model.
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Subsequently, the estimation error of the facet model could be determined based on
the following criterions as

Dev(i, j) =
∑1

m=−1 ∑1
n=−1

√[
I(m + i, n + j)− f f acet(m + i, n + j)

]2

∑1
m=−1 ∑1

n=−1

√
[I(m + i, n + j)−mean(pic)]2

, (6)

where Dev(i, j) is the estimation error of the facet model while mean(pic) represents the
mean of the current image. Note that the denominator of Equation (6) is used in the
normalization of the estimation error for easy threshold comparison.

Finally, we set up a visual feature model of blind pixels (VFBP model) and define ThIM
as the threshold of estimation error. The results of matching VFBP model are expressed by
XIM(i, j), which is written as

XIM(i, j) =
{

1, Dev(i, j) < ThIM
0, Dev(i, j) ≥ ThIM

, (7)

If Dev(i, j) is smaller than ThIM, XIM(i, j) will be assigned to 0, which means this
potential blind pixel might be an IRPT. On the contrary, XIM(i, j) will be set to 1, which
means this pixel might be a blind pixel. In this paper, ThIM is set to 0.30. According to the
change of practical optical system, this threshold needs to be adjusted.

2.2. Motion Feature Extraction

In this paper, the IRPTs are divided into two categories: space target and aircraft. The
movement of the space target is restricted to a specific orbit. Meanwhile, the movement of
aircraft is also constrained by specific flight envelop [23]. Therefore, the moving path of
IRPT can be treated as smooth curvilinear motion within a short time. In terms of blind
pixel, although blind pixels cannot move, the inter-frame correlation may cause an error
path formed by adjacent blind pixels. Therefore, the blind pixels appear as static points or
winding paths.

According to the above analysis, we set up two kinds of motion feature models of blind
pixels (MFBP model) to extract the motion feature of blind pixels. The static MFBP model
with IRPT detection results as input is used to detect isolated blind pixels. Meanwhile, the
dynamic MFBP model with IRPT tracking results as input detects adjacent blind pixels by
evaluating the curvature degree of the path.

The static MFBP model firstly calculates the frequency that a pixel is detected as the
blind pixel. Then, compare this frequency with the threshold to detect isolated blind pixels,
as shown in Equation (8).

XMOst(i, j) =

{
0, ∑F

f=F−Flength+1 Xd( f , i, j)/Flength < ThMOsst

1, ∑F
f=F−Flength+1 Xd( f , i, j)/Flength ≥ ThMOsst

, (8)

where Xd( f , i, j) is the result of IRPT detection. If Xd( f , i, j) is 1, it means that pixel (i, j) is
detected as potential blind pixel in f th frame. F presents current frame number while Flength
presents the frame range of testing. Finally, XMOst(i, j) is the result of static MFBP model
matching. If XMOst(i, j) equals to 1, it means that pixel (i, j) may be blind pixel. Conversely,
if XMOst(i, j) equals to 0, this pixel may be normal. In terms of parameter selection, the
threshold of static MFBP model (ThMOsst) is set to 0.3. However, this threshold needs to be
adjusted according to frame frequency and moving state of IRPT. It is necessary to point
out that, considering computational complexity and reliability, Flength is set to 10 to 20 in
this paper.

Dynamic FPMF model also evaluates within Flength frames and takes the path of IRPT
tracking as input. Suppose that (i f n, j f n) denotes the path points forms a certain path, and
the subscript fn means the frame number. Using the result of IRPT tracking as input, pick
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up direction vectors from the path, we now describe the procedure as follows. Firstly,
traverse all path points in frame order as the starting point of each direction vector. Then,
traverse the path points whose distance to the starting point is greater than

√
2 and the

frame number is greater than the starting point, and choose the path point with the smallest
frame number among them as the end point of the corresponding direction vector. Let
→
Dn be direction vectors and the subscript n means order number of direction vectors.
Finally, the threshold of the dynamic MFBP model (ThMOdy) was introduced to evaluate
the winding degree of a path, as shown in Equation (9).

XMOdy(i f n, j f n) =


0, 1

n−1 ∑n−1
j=1

→
Dj+1·

→
Dj∣∣∣∣ →Dj+1

∣∣∣∣·∣∣∣∣→Dj

∣∣∣∣ < ThMOdy

1, 1
n−1 ∑n−1

j=1

→
Dj+1·

→
Dj∣∣∣∣ →Dj+1

∣∣∣∣·∣∣∣∣→Dj

∣∣∣∣ ≥ ThMOdy or n ≤ 3
, (9)

where XMOdy(i f n, j f n) presents the matching result of the dynamic MFBP model. The
left side of the inequality denotes the mean value of the angle transformation of the path
direction vector. If this value is larger than or equal to ThMOdy, XMOdy(i f n, j f n) will be
set to 1, which means this path is tortuous and these path points may be blind pixels.
Furthermore, if the number of available direction vectors (n) is less than or equal to 3,
XMOdy(i f n, j f n) will be set to 1 also, which means the pixels forming this path are too close
and they might be blind pixel blocks. Note that ThMOsdy is set to 30. This threshold also
needs to be adjusted according to frame frequency and moving state of IRPT.

2.3. The Strategy of Flicking Pixel Suppression

The confidence evaluation mechanism based on multi-features fusion was introduced
to evaluate the blinking frequency of a pixel. We use C(i, j) to represent the confidence
of flickering pixel of pixel (i, j). The value range is 0 to 1. The greater the confidence
of flickering pixel of a pixel is, the higher the blinking frequency would be. In addition,
the step size of updating confidence is defined as c. Considering the iteration speed and
reliability of the confidence, we set c ranging from 0.02 to 0.05. The higher the c, the faster
the confidence update, but the lower the reliability.

All the pixels’ confidences are assigned to 0 at the beginning. If a certain pixel is
judged as a flickering pixel by the VFBP model and one of the MFBP models at the same
time, the confidence of this pixel will be increased a unit c, as shown in Equation (10).

C(i, j) =
{

1 C(i, j) + c > 1
C(i, j) + c C(i, j) + c ≤ 1

i f (XIM(i, j) = 1)&&
(

XMOst(i, j) = 1
∣∣∣∣∣∣XMOdy(i, j) = 1

)
, (10)

If a certain pixel is judged as normal pixel by VFBP model or MFBP model, the
confidence of this pixel will be decreased a unit c, as shown in Equation (11).

C(i, j) =
{

0 C(i, j)− c ≤ 0
C(i, j)− c C(i, j)− c > 0

i f (XIM(i, j) = 0)
∣∣∣∣∣∣∣∣(XMOst(i, j) = 0&&XMOdy(i, j) = 0

)
, (11)

Especially, a threshold was introduced to maintain the scale of flickering pixels’ table.
Thre is the reserve threshold and is set to 0.5 c. When CFP of a pixel is greater than Thre, the
pixel will be added to the flickering pixels’ table. Otherwise, it will be removed from the
table. In addition, due to changes in working conditions, some flickering pixels will return
to normal. Therefore, we introduce forgetting factor (F) with values from 0.96 to 0.98. If a
certain pixel within the flickering pixels’ table is not updated CFP in the current frame, the
CFP of this pixel will be decreased by multiplying the forgetting factor. The block diagram
of proposed confidence evaluation mechanism of flickering pixel is shown in Figure 3.
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Subsequently, the dynamic compensation strategy based on confidence was proposed
to compensate the flickering pixel accurately to frame. The direct compensation threshold
ThD and the compensation after validation threshold ThV are introduced. If the CFP of
a certain pixel is equal to or greater than ThD, this pixel will be compensated directly.
Correspondingly, if the confidence of a certain pixel is equal to or greater than ThV but less
than ThD, this pixel will be validated by the VFBP model again. If it is judged as flickering
pixel by the VFBP model in current frame, this pixel will be compensated. Otherwise, this
pixel will not be compensated. In this paper, for saving computing resources, flickering
pixels would be compensated by the mean filter or median filter. Alternatively, the flickering
pixels are simply suppressed by skipping the IRPT detection process for these pixels.

Finally, the above parameters and thresholds selection are discussed. Indeed, these
values are important because they determine the effect of flickering pixel suppression.
The CFP fluctuates nonlinearly with the forgetting factor and steps size of updating CFP.
Therefore, it is hard to give a clear interpretation of fluctuations of CFP. Moreover, the
relation between blinking frequency of flickering pixel and the corresponding evolution
of CFP should be determined to select the thresholds ThV and ThD. Firstly, we introduce
the 90th-percentile CFP (Q90%CFP) to determine thresholds. The probability that the CFP
of a pixel with a certain blinking frequency is greater than Q90%CFP is 90%. Then, we
define that the flickering pixel with blinking frequency equal to or greater than 80% will
be suppressed directly, which corresponds to ThD. The blinking frequency corresponding
to ThV is 20%. Subsequently, we use uniformly distributed random numbers to simulate
the blinking frequency of flickering pixel. Finally, through ten million iterations, the
distribution of Q90%CFP with different blinking frequency (BF), forgetting factor (F) and
step size of updating CFP (c) is observed, as shown in Figure 4.

In this paper, the selection principle of parameters and thresholds is to make the blue
line (ThD) and the red line (ThV) showed in Figure 4 uniformly distributed within the
range of CFP. For instance, when the forgetting factor is equal to 0.98 and the step size
of updating CFP is equal to 0.05, there will be a huge space under the red line (ThV), as
shown in Figure 4c. It shows that flickering pixel needs more frames to accumulate CFP.
Correspondingly, when forgetting factor is equal to 0.96 and step size of updating CFP is
equal to 0.01, there will be a relatively huge space above the blue line (ThD), as is shown in
Figure 4a. It denotes the flickering pixel needs more frames to weaken CFP when returning
normal briefly. Following these principles, some recommended ranges of parameters and
thresholds are selected and highlighted in the dotted box in Figure 4. Meanwhile, some
typical selection of parameters and thresholds are listed in Table 1.
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Table 1. Typical selection of parameters and thresholds.

Step Size of Updating CFP (c) 0.01 0.03 0.05

Forgetting factor 0.98 0.97 0.96
ThV 0.17 0.30 0.37
ThD 0.95 0.97 0.96
Thre 0.5 c

3. Experimental Results and Discussion
3.1. Experimental Data

In order to measure the performance of the proposed method in this paper, we used
MWIR 640× 512 pixels Integrated Detector Dewar Cooler Assembly to obtain experimental
data. Table 2 provides an overview of its specifications. In this letter, IRPT we mainly
study is space target or aircraft. Therefore, we obtained sky background and deep space
background with their IRPT as experimental data, as shown in Figure 5. In Figure 5, the
scenarios from the top row to bottom row are sky background, sky background with IRPT,
deep space background, and deep space background with IRPT, respectively. Each data set
has five sequences, and each sequence includes 150–200 frames. Figure 6 shows the details
about the acquisition of experimental data. In these data sets, the sky background and its
IRPT are the real shots of the sky and the aircraft as shown in Figure 6a; However, the deep
space background and its IRPT are simulated by blackbody and target board as shown in
Figure 6b. In Figure 6c, the blackbody penetrates the target hole to form an IRPT. Then, we
can control the field of view movement in a certain direction by moving the camera. In the
image, the IRPT will move in the opposite direction of the camera movement.
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Table 2. Specifications of the MWIR detector used to obtain experimental data.

Format 640 × 512

Pixel size 15 µm
Spectral Range 3–5 µm

F-number 4
Noise Equivalent Temperature Difference

(NETD) 30 mk

Framerate 50 Hz
Bits per pixel 14 bits
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Due to the limited number of flickering pixels of real experimental data, the simulated
flickering pixels with random blinking frequency were added to the real experimental data
to make a quantitative analysis on the effect of flickering pixel suppression.
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3.2. Evaluation Criterion

In this paper, the evaluation criteria consist of two parts, blind pixel detection evalua-
tion criterion and flickering pixel suppression evaluation criterion.

We adopt the number of detected blind pixels, the false detection rate of detected blind
pixels, and the average running time per frame to evaluate the effect of blind pixel detection.
The number of detected blind pixels (Nbp) denotes the number of constant blind pixels and
flickering pixels detected by a certain method. The false detection rate of detected blind
pixels is given by Equation (12).

R f bp =
N f bp

Nbp
·100%, (12)

where N f bp is the number of normal pixels that are falsely detected as blind pixels by a
method. In this paper, we obtain calibration data, and N f bp can be measured by the method
given in national standard [24]. Finally, the average running time per frame (Tp f ) can
present the operating efficiency of a method. The proposed method and other methods are
implemented under MATLAB R2018a with an Intel Core 2.80 GHz processor and 8 GB of
physical memory.

The number of suppressed flickering pixels, the miss suppression rate of flickering
pixels, and the false suppression rate of flickering pixels form the evaluation criterion for
flickering pixel suppression. The number of suppressed flickering pixels (Ns f ) means the
total number of frames suppressed for all flickering pixels. The miss suppression rate of
flickering pixel (Rms f ) is defined in Equation (13).

Rms f =
∑N

n=1 Nms f (n)

∑N
n=1 Nr f (n)

·100%, (13)

where N is the flickering pixel amount, and Nms f (n) refers to the frame amount that should
be suppressed but not be suppressed of the n th flickering pixels. Nr f (n) is the frame
amount of blinking of n th flickering pixel. Similarly, false suppression rate of flickering
pixel (R f s f ) is given by Equation (14).

R f s f =
∑N

n=1 N f s f (n)

∑N
n=1 Nr f (n)

·100%, (14)

where N f s f (n) refers to the frame amount that false suppressed of the n th flickering pixel.
As is mentioned above, the evaluation of flickering pixel suppression uses simulation data.
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Therefore, the Nr f (n), N f s f (n), and Nms f (n) in Equations (13) and (14) can be recorded
during simulation.

3.3. Results and Discussion

According to the experimental data and evaluation criterion above, the proposed method
is compared with the scene-based bad pixel dynamic correction (SBBPDC) method [13] and
the calibration-based adaptive threshold bad pixel detection (CBATBPD) method [9]. In
this experiment, we used the median filter and threshold segmentation to detect IRPT and
use the interframe matching to track IRPT, in which our proposed method was embedded.
The above IRPT process methods are one of the most common and the simplest methods
in IRPT application. It is necessary to point out that our proposed method can also be
embedded in any IRPT detection and tracking method.

Figure 7 shows the blind pixel maps of the first sequence of four scenarios, which are
detected by SBBPDC, CBATBPD, and our proposed method. The top row to bottom row of
Figure 7 is sky background, sky background with IRPT, deep space background, and deep
space background with IRPT, respectively. The left column to right column of Figure 7
is the proposed method, SBBPDC, and CBATBPD, respectively. The blue points denote
the blind pixels detected by our method. The red triangular rims and green square rims
represent the blind pixels that are not detected by SBBPDC and CBATBPD, respectively.
It is clear in the left column of Figure 7 that our method has detected many blind pixels
that are not detected by other methods. Similarly, the red triangles and green squares
denote the blind pixels detected by SBBPDC and CBATBPD, respectively, and the blue
round rims are the blind pixels that are miss detected by our method. Obviously, there
are only a few blind pixels that cannot be detected by the proposed method compared
with other methods. As the middle column of Figure 7 shown, the SBBPDC cannot detect
some adjacent blind pixels compared with our proposed method. This is because the
adaptive threshold segmentation of this method erroneously suppresses a part of adjacent
blind pixels. Furthermore, due to the movement of the background, some edges of the
image usually move out quickly and do not have the same part for inter-frame registration.
Therefore, the CBATBPD cannot detect the blind pixels at some edges of the field of view
as shown in Figure 7. In conclusion, our method adopts multi-feature to accurately identify
the real targets from potential targets. It can detect more real blind pixels compared with
other methods. The blind pixel maps of other sequences have similar results as the first
sequence. However, space does not permit their presentation.

In Figure 8, we respectively plotted the number of blind pixels detected by the above-
mentioned methods in each frame. Figure 8a–d illustrates the data of the first sequence
of sky background, sky background with IRPT, deep space background, and deep space
background with IRPT, respectively. It is obvious that the proposed method can detect
more blind pixels with fewer frames compared with other methods. SBBPDC uses the
keyframe to improve the detection accuracy and efficiency, which depends on the change
of background. Therefore, the detection rate of SBBPDC tends to slow down in deep space
because the change of background is not obvious. Additionally, CBATBPD needs hundreds
of frames to ensure detection accuracy.

Subsequently, we calculate the Nbp, R f bp, and Tp f mentioned in Section 3.2 of the
above three methods in Table 3. The false detection rate of the proposed method is less than
1.02% in different scenarios, while the average running time per frame of the proposed
method is less than 0.46 s. The proposed method could detect more blind pixels with
less false detection rate and less time. It can be clearly seen that the proposed method is
superior to others in four application scenarios.
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Table 3. The situation of blind pixels detected in four application scenarios.

Blind Pixel
Detection
Method

Application Scenarios

Cloud Cloud with Target Deep Space Deep Space with Target

Nbp Rfbp (%) Tpf (s) Nbp Rfbp (%) Tpf (s) Nbp Rfbp (%) Tpf (s) Nbp Rfbp (%) Tpf (s)

SBBPDC 62 1.61 0.71 69 1.45 0.99 37 0 0.71 32 0 0.89
CBATBPD 37 10.8 1.17 34 8.82 1.02 — — — — — —
Proposed 98 1.02 0.36 100 1.00 0.46 40 0 0.34 38 0 0.34
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Figure 7. The blind pixel maps of the first sequence of each scenario detected by different meth-
ods (a) Background: sky Method: the proposed method; (b) Background: sky Method: SBBPDC;
(c) Background: sky Method: CBATBPD; (d) Background: sky with IRPT Method: the proposed
method; (e) Background: sky with IRPT Method: SBBPDC; (f) Background: sky with IRPT Method:
CBATBPD; (g) Background: deep space Method: the proposed method; (h) Background: deep
space Method: SBBPDC; (i) Background: deep space with IRPT Method: the proposed method;
(j) Background: deep space with IRPT Method: SBBPDC.
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In order to discuss the time consumption of our proposed method in practical applica-
tions, we recorded the average frame time consumption of each step in different scenarios
in Table 4. The average frame time consumption of blind pixels detection and compensation
is about 0.09 s. After code optimization and parallel acceleration, the time-consuming situa-
tion of our method can be further improved. Furthermore, in practical applications, our
method can work once every two to three frames to ensure the near-real-time suppression
of blind pixels. Moreover, it is important to note, owing to the limitation of the transmission
bandwidth and computing resource, the current frame rate of IRPT detection and tracking
application usually only reaches 5~20 frames per second.

Table 4. The average frame time consumption of each step of our method used in the above experi-
ment in different scenarios.

Time Consumption

Scenarios
Cloud

Cloud with
Target Deep Space

Deep Space
with Target

IRPT detection
(Median filter and threshold

segmentation)
0.111 s 0.121 s 0.109 s 0.112 s

IRPT tracking
(Interframe matching) 0.156 s 0.247 s 0.135 s 0.141 s

Blind pixels detection
and compensation 0.091 s 0.089 s 0.091 s 0.090 s

Total 0.358 s 0.457 s 0.335 s 0.343 s

In the terms of flickering pixel suppression, our proposed method is to achieve frame-
accurate dynamical flickering pixel suppression. For instance, the pixel (347,487) was
detected as a flickering pixel in the second sequence of cloud scenario and Figure 9 shows
the suppression situation of this pixel. The CFP of this pixel was less than ThV before the
18th frame, so this pixel was not suppressed. After the 18th frame, our method accurately
suppresses this pixel when the response is too low.
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Meanwhile, we use the simulated data to make a quantitative analysis on the flick-
ering pixel suppression. Figure 10 shows the randomly added flickering pixels and miss-
suppressed flickering pixels of our method. Additionally, Figure 10a–d is sky background,
sky background with IRPT, deep space background, and deep space background with IRPT,
respectively. Blue points show the flickering pixels added randomly, red circles indicate
the flickering pixels which miss-suppressed by our proposed method. We calculate the
Ns f , R f bp, and R f s f mentioned in Section 3.2 of different simulated scenarios in Table 5.
The results showed that there is no false suppression of flickering pixels in all scenarios.
In addition, the miss suppression rate of flickering pixels is less than or equal to 2.38% in
all scenarios.
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Table 5. The situation of flickering pixels suppressed by proposed method.

Application Scenarios Nsf Rmsf (%) Rfsf (%)

Cloud 10,080 1.77 0
Cloud with target 9500 2.07 0

Deep space 7331 2.38 0
Deep space with target 7519 2.07 0

4. Conclusions

In this paper, an on-board flickering pixel dynamic suppression method based on
multi-feature fusion is proposed. This method is embedded in the IRPT detection process,
and the results of IRPT detection and tracking are used to extract the visual and motion
features of the flickering pixel. A small amount of extra computing resource was consumed.
Therefore, our proposed method can achieve real-time uninterrupted blind pixel detection
without interrupting IRPT detection. Furthermore, the confidence of the flickering pixel
evaluation strategy and the selection mechanism of flickering pixel are introduced to
fuse the above features, which can achieve frame-accurate dynamical flickering pixel
suppression. Experimental results have shown that our proposed method is superior to
others in blind pixel detection and flickering pixel suppression. The proposed method can
be an addition to most other IRPT detection processes, and it has significant meaning that
the ability to suppress blind pixels guarantees near-real-time IRPT detection.
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