Incorporating Setup Effects into the Reliability Analysis of Driven Piles
Abstract
:1. Introduction
2. Basic Assessment Methods for Pile Setup
3. Estimation of the Reliability Index of Driven Piles
3.1. General Reliability Evaluation Method of Driven Piles
3.2. Setup Effect in Reliability Evaluation of Driven Piles
3.3. Uncertainties of Loads and Resistances
4. Reliability Analysis
4.1. The Effect of FOS on Reliability Index
4.2. The Effect of ρ on Reliability Index
4.3. The Effect of Msetup on Reliability Index
4.4. The Effect of ρR0,Rsetup on the Reliability Index
5. Validation Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavenas, F.; Audy, R. Limitations of the Driving Formulas for Predicting the Bearing Capacities of Piles in Sand. Can. Geotech. J. 1972, 9, 47–62. [Google Scholar] [CrossRef]
- Samson, L.; Authier, J. Change in pile capacity with time: Case histories. Can. Geotech. J. 1986, 23, 174–180. [Google Scholar] [CrossRef]
- Basu, P.; Prezzi, M.; Salgado, R.; Chakraborty, T. Shaft Resistance and Setup Factors for Piles Jacked in Clay. J. Geotech. Geoenviron. Eng. 2014, 140, 04013026. [Google Scholar] [CrossRef]
- Komurka, V.E.; Wagner, A.B.; Edil, T.B. Estimating Soil/Pile Set-Up; Wisconsin Highway Research Program: Madison, WI, USA, 2003. [Google Scholar]
- Ng, K.W.; Roling, M.; AbdelSalam, S.S.; Suleiman, M.T.; Sritharan, S. Pile setup in cohesive soil. I: Experimental investigation. J. Geotech. Geoenviron. Eng. 2013, 139, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.N.; Abu-Farsakh, M.Y.; Nickel, C.; Tsai, C.; Rauser, J.; Zhang, Z. A load-testing program on large-diameter (66-Inch) open-ended and PSC-instrumented test piles to evaluate design parameters and pile setup. Transp. Res. Rec. 2018, 2672, 291–306. [Google Scholar] [CrossRef]
- De Beer, E.E. Etude des fondations sur piloitis et des fondations directes. Ann. Des. Trav. Publiques Belg. 1945, 46, 1–78. [Google Scholar]
- Brinch, H.J. Simple Statical Computation of Permissible Pile Load; CN-Post: Copenhagen, Denmark, 1995. [Google Scholar]
- Berezantsev, V.G. Design of deep foundations. In Proceedings of the Sixth International Conference of Soil Mechanics and Foundation Engineering, Toronto, ON, Canada, 8–15 September 1965; Volume 2, pp. 234–237. [Google Scholar]
- Terzaghi, K. Theoretical Soil Mechanics; Wiley: New York, NY, USA, 1943. [Google Scholar]
- Vesic, A.S. Design of Pile Foundations: National Cooperative Highway Research Program; Synthesis Highway Practice Report No. 42; Transport Research Board: Washington, DC, USA, 1977. [Google Scholar]
- Achmus, M.; Thieken, K. On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading. Acta Geotech. 2010, 5, 199–210. [Google Scholar] [CrossRef]
- Conte, E.; Pugliese, L.; Troncone, A.; Vena, M. A Simple Approach for Evaluating the Bearing Capacity of Piles Subjected to Inclined Loads. Int. J. Géoméch. 2021, 21, 04021224. [Google Scholar] [CrossRef]
- Graine, N.; Hjiaj, M.; Krabbenhoft, K. 3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 265–290. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.Y.; Haque, M.N.; Tavera, E.; Zhang, Z. Evaluation of Pile Setup from Osterberg Cell Load Tests and Its Cost–Benefit Analysis. Transp. Res. Rec. J. Transp. Res. Board 2017, 2656, 61–70. [Google Scholar] [CrossRef]
- Haque, M.N.; Abu-Farsakh, M.Y.; Tsai, C. Filed investigation to Evaluate the effects of pile installation sequence on pile setup behavior for instrumented test piles. Geotech. Test. J. 2016, 39, 769–785. [Google Scholar] [CrossRef]
- Haque, M.N.; Abu-Farsakh, M.Y. Estimation of pile setup and incorporation of resistance factor in load resistance factor design framework. J. Geotech. Geoenviron. Eng. 2018, 144, 04018077. [Google Scholar] [CrossRef]
- Bullock, P.J.; Schmertmann, J.H.; McVay, M.C. Side shear setup. II: Results from florida test piles. J. Geotech. Geoenviron. Eng. 2005, 131, 292–300. [Google Scholar] [CrossRef]
- Komurka, V.E.; Winter, C.J.; Maxwell, S.G. Applying Separate Safety Factors to End-of-Drive and Set-Up Components of Driven Pile Capacity. Geotechnical Applications for Transportation Infrastructure: Featuring the Marquette Interchange Project in Milwaukee; ASCE: Reston, VA, USA, 2006; pp. 65–80. [Google Scholar]
- Bian, X.Y.; Chen, X.Y.; Lu, H.L.; Zheng, J.J. Determination of base and shaft resistance factors for reliability-based design of piles. J. S. Afr. Inst. Civ. Eng. 2018, 60, 53–60. [Google Scholar] [CrossRef]
- Paikowsky, S.G.; Birgisson, B.; McVay, M.; Nguyen, T.; Kuo, C.; Beacher, G.; Ayyub, B.; Stenersen, K.; O’Malley, K.; Chernauskas, L. Load and Resistance Factor Design (LRFD) for Deep Foundations. In Proceedings of the 6th International Conference on the Application of Stress-Wave Theory to Piles, Sao Paulo, Brazil, 28–29 September 2004; pp. 281–304. [Google Scholar]
- Yang, L.; Liang, R. Incorporating set-up into reliability-based design of driven piles in clay. Can. Geotech. J. 2006, 43, 946–955. [Google Scholar] [CrossRef]
- Bian, X.; Chen, J.; Chen, X.; Xu, Z. Reliability-Based Design of Driven Piles Considering Setup Effects. Appl. Sci. 2021, 11, 8609. [Google Scholar] [CrossRef]
- Axelsson, G. A conceptual model of pile set-up for driven piles in non-cohesive soils. Deep foundations 2002. In Proceedings of the International Deep Foundations Congress, Orlando, FL, USA, 14–16 February 2002; pp. 64–79. [Google Scholar]
- Skov, R.; Denver, H. Time dependence of bearing capacity of piles. In Proceedings of the Third International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, ON, Canada, 25–27 May 1988; pp. 879–888. [Google Scholar]
- Svinkin, M.R. Setup and relaxation in glacial sand-discussion. J. Can. Geotech. Eng.-ASCE 1996, 122, 319–321. [Google Scholar] [CrossRef]
- Bogard, J.D.; Matlock, H. Application of model pile tests to axial pile design. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 7–10 May 1990; Volume 3, pp. 271–278. [Google Scholar]
- Bian, X.; Xu, Z.; Zhang, J. Resistance factor calculations for LRFD of driven piles based on setup effects. Results Phys. 2018, 11, 489–494. [Google Scholar] [CrossRef]
- AASHTO. LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials; AASHTO: Washington, DC, USA, 2007. [Google Scholar]
- Ang, A.H.-S.; Tang, W.H. Probability Concepts in Engineering Planning: Emphasis on Applications to Civil and Environmental Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yang, L.; Liang, R. Incorporating setup into load and resistance factor design of driven piles in sand. Can. Geotech. J. 2009, 46, 296–305. [Google Scholar] [CrossRef]
- Hansell, W.C.; Viest, I.M. Load factor design for steel highway bridges. J. AISC Eng. 1971, 8, 113–123. [Google Scholar]
- Withiam, J.L.; Voytko, E.P.; Barker, R.M. Load and Resistance Factor Design (LRFD) for Highway Bridge Substructures; Federal Highway Administration Report, NHI Course No. 13068; U.S. Department of Transportation Federal Highway Administration: Washington, DC, USA, 2001. [Google Scholar]
- Barker, R.; Duncan, J.; Rojiani, K. Manuals for the Design of Bridge Foundations; National Cooperative Highway Research Program (NCHRP) Report 343; Transportation Research Board: Washington, DC, USA; National Research Council: Washington, DC, USA, 1991. [Google Scholar]
- Zhang, L.M.; Tang, W.H. Bias in Axial Capacity of Single Bored Piles Arising From Failure Criteria; International Association for Structural Safety and Reliability: Newport Beach, CA, USA, 2001. [Google Scholar]
- McVay, M.C.; Birgisson, B.; Zhang, L. Load and resistance factor design (LRFD) for driven piles using dynamic methods—A Florida perspective. Geotech. Test. J. 2000, 23, 55–66. [Google Scholar]
- Zhang, L.; Li, D.Q.; Tang, W.H. Reliability of bored pile foundations considering bias in failure criteria. Can. Geotech. J. 2005, 42, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
Reference | Equation | Comments |
---|---|---|
Skov and Denver [25] | t0 = 1.0 and A = 0.6 in clay; t0 = 0.5 and A = 0.2 in sand; Rt is the predicted resistance at time t after driving; R0 is the measured resistance at time t0. | |
Long et al. [3] | Values of : average = 0.13, lower bound = 0.05, and upper bound = 0.18. REOD is the measured resistance at the EOD. | |
Svinkin et al. [26] | Values of B: lower bound = 1.025, and upper bound = 1.4. | |
Bogard and Matlock [27] | Ru is the ultimate resistance with 100% of setup realized, T50 is the time required to realize 50% of pile setup. |
Random Variable | Bias Factor, λ | Standard Deviation, σ | Coefficient of Variation, COV | Distribution | Reference |
---|---|---|---|---|---|
R0 | 1.158 | 0.393 | 0.339 | Log-normal | Paikowsky et al. [21] |
Rsetup | 1.141 | 0.543 | 0.475 | Normal | Yang and Liang [22] |
1.023 | 0.593 | 0.580 | Log-normal | Yang and Liang [31] | |
QD | 1.080 | 0.140 | 0.130 | Log-normal | AASHTO [29] |
QL | 1.150 | 0.207 | 0.180 | Log-normal | AASHTO [29] |
Nos. | Project Name | Resistance of 14 Day (kN) | Resistance Increased with Respect to 14 Days (kN) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R30–14 | R45–14 | R60–14 | R90–14 | |||||||
Mea | Mea | Pre | Mea | Pre | Mea | Pre | Mea | Pre | ||
1 | Bayou liberty | 356 | 147 | 147 | 227 | 222 | 280 | 276 | 360 | 356 |
2 | US 90 LA | 222 | 156 | 98 | 196 | 147 | 222 | 182 | 262 | 236 |
3 | Calcasieu River TP-2 | 4310 | 289 | 365 | 445 | 556 | 556 | 694 | 707 | 885 |
4 | St. Louis Canal Bridge | 178 | 93 | 62 | 120 | 98 | 138 | 120 | 165 | 151 |
5 | Morman Slough TP-1 | 1401 | 125 | 151 | 182 | 231 | 227 | 289 | 289 | 369 |
6 | Bayou Bouef (west) | 592 | 182 | 102 | 231 | 156 | 262 | 196 | 311 | 249 |
7 | Fort Buhlow | 409 | 71 | 67 | 111 | 102 | 138 | 129 | 173 | 165 |
8 | Caminada Bay TP-3 | 556 | 485 | 356 | 743 | 547 | 925 | 681 | 1188 | 867 |
9 | Caminada Bay TP-5 | 712 | 574 | 302 | 498 | 463 | 618 | 574 | 792 | 734 |
10 | Caminada Bay TP-6 | 565 | 338 | 343 | 516 | 529 | 645 | 658 | 823 | 841 |
11 | Caminada Bay TP-7 | 222 | 173 | 191 | 267 | 298 | 329 | 369 | 423 | 472 |
12 | Bayou Lacasine TP-1 | 1601 | 311 | 111 | 360 | 173 | 396 | 218 | 445 | 276 |
13 | LA-1 TP-2 | 387 | 178 | 173 | 271 | 262 | 334 | 329 | 427 | 418 |
14 | LA-1 TP-4a | 770 | 360 | 356 | 556 | 547 | 694 | 681 | 885 | 872 |
15 | LA-1 TP-4b | 3189 | 494 | 614 | 756 | 939 | 943 | 1170 | 1205 | 1495 |
16 | LA-1 TP-5a | 787 | 294 | 294 | 449 | 449 | 560 | 560 | 716 | 721 |
17 | LA-1 TP-5b | 1721 | 187 | 254 | 285 | 387 | 356 | 485 | 454 | 618 |
18 | LA-1 TP-6 | 894 | 351 | 347 | 538 | 534 | 672 | 667 | 859 | 854 |
19 | LA-1 TP-10 | 574 | 116 | 111 | 178 | 173 | 222 | 214 | 280 | 276 |
Type of Soil | Time Intervals (30, 45, 60, and 90 Days after End of Driving) after the 14 Days from EOD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Results of Haque et al. (2018) | Results of This Paper (not Considering Correlation Coefficient between R0 and Rsetup) | Results of This Paper (Considering Correlation Coefficient between R0 and Rsetup) | ||||||||||
30–14 | 45–14 | 60–14 | 90–14 | 30–14 | 45–14 | 60–14 | 90–14 | 30–14 | 45–14 | 60–14 | 90–14 | |
Clay | 1.976 | 1.942 | 1.917 | 1.899 | 1.646 | 1.657 | 1.652 | 1.654 | 1.462 | 1.466 | 1.460 | 1.464 |
Sand | 1.976 | 1.942 | 1.917 | 1.899 | 1.482 | 1.495 | 1.486 | 1.481 | 1.299 | 1.304 | 1.294 | 1.291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, X.; Chen, J.; Bai, X.; Zheng, K. Incorporating Setup Effects into the Reliability Analysis of Driven Piles. Appl. Sci. 2022, 12, 2. https://doi.org/10.3390/app12010002
Bian X, Chen J, Bai X, Zheng K. Incorporating Setup Effects into the Reliability Analysis of Driven Piles. Applied Sciences. 2022; 12(1):2. https://doi.org/10.3390/app12010002
Chicago/Turabian StyleBian, Xiaoya, Jiawei Chen, Xixuan Bai, and Kunpeng Zheng. 2022. "Incorporating Setup Effects into the Reliability Analysis of Driven Piles" Applied Sciences 12, no. 1: 2. https://doi.org/10.3390/app12010002
APA StyleBian, X., Chen, J., Bai, X., & Zheng, K. (2022). Incorporating Setup Effects into the Reliability Analysis of Driven Piles. Applied Sciences, 12(1), 2. https://doi.org/10.3390/app12010002