
����������
�������

Citation: Liu, C.; Yao, Y.; Zhu, H.

Hybrid Salp Swarm Algorithm for

Solving the Green Scheduling

Problem in a Double-Flexible Job

Shop. Appl. Sci. 2022, 12, 205.

https://doi.org/10.3390/

app12010205

Academic Editor: Chun-Cheng Lin

Received: 1 October 2021

Accepted: 20 December 2021

Published: 25 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Hybrid Salp Swarm Algorithm for Solving the Green
Scheduling Problem in a Double-Flexible Job Shop

Changping Liu 1,* , Yuanyuan Yao 2 and Hongbo Zhu 3

1 Faculty of Management Engineering, Huaiyin Institute of Technology, Huaian 223200, China
2 College of Economics and Management, Suzhou Chienshiung Institute of Technology, Taicang 215411, China;

tracy_yao11@163.com
3 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China;

zhb8151@hyit.edu.cn
* Correspondence: lcpzwy@hyit.edu.cn; Tel.: +86-0517-8355-9603

Abstract: Green scheduling is not only an effective way to achieve green manufacturing but also an
effective way for modern manufacturing enterprises to achieve energy conservation and emission
reduction. The double-flexible job shop scheduling problem (DFJSP) considers both machine flexi-
bility and worker flexibility, so it is more suitable for practical production. First, a multi-objective
mixed-integer programming model for the DFJSP with the objectives of optimizing the makespan,
total worker costs, and total influence of the green production indicators is formulated. Considering
the characteristics of the problem, three-layer salp individual encoding and decoding methods are
designed for the multi-objective hybrid salp swarm algorithm (MHSSA), which is hybridized with
the Lévy flight, the random probability crossover operator, and the mutation operator. In addition,
the influence of the parameter setting on the MHSSA in solving the DFJSP is investigated by means
of the Taguchi method of design of experiments. The simulation results for benchmark instances
show that the MHSSA can effectively solve the proposed problem and is significantly better than the
MSSA and the MOPSO algorithm in the diversity, convergence, and dominance of the Pareto frontier.

Keywords: double flexible job-shop scheduling; multi-objective optimization; hybrid salp swarm
algorithm; green shop scheduling

1. Introduction

Traditional job shop scheduling problems usually do not consider human factors. With
increasing research on job shop scheduling problems, researchers believe that human factors
should be considered in production scheduling and operation management activities [1–4].
Based on the flexible job shop scheduling problem (FJSP), Gong et al. [5] proposed a double-
flexible job shop scheduling problem (DFJSP) for the first time, which is more in line with
the actual production situation. That is, each process of each workpiece can be processed
by multiple machines, and each machine can be operated by multiple workers. The DFJSP
is an NP hard combinatorial optimization problem that is an extension of FJSP. At present,
there is no polynomial time algorithm to solve the problem [5].

In recent years, with the increasingly severe environmental problems, research on
green manufacturing has attracted a lot of attention. For example, He and Liu [6] studied
the issue of reducing energy consumption for the job-shop scheduling problem, constructed
the biobjective model of minimizing both the energy consumption and the makespan, and
used the Tabu search algorithm to optimize the model. Mouzon et al. [7] proposed a multi-
objective mathematical programming model of minimizing the energy consumption and
total completion time. By solving the model, we can get a set of non-dominated solutions
to determine the most efficient production sequence. The model only considers the energy
saving by shutting down non-bottleneck or idle equipment, and it does not consider the
energy saving of running machines and equipment. Dai and Tang et al. [8] modeled an
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energy-efficient scheduling with makespan and energy consumption. The results showed
that the relationship between the two objectives was apparently one of conflict. Similar
results were also proved in the study of Liu and Huang [9]. Mansouri et al. [10] developed
a mixed integer linear multi-objective optimization model to find the Pareto frontier com-
prised of makespan and total energy consumption, and they defined lower bounds for the
objectives and proposed a heuristic for the problem. In addition, some scholars have also
carried out similar studies related to green production (see references [11–15], etc.). The
above research results mainly focus on the theoretical model, which is quite different from
the actual green manufacturing and production scheduling. Green production indicators
need to be used to build scheduling models closer to the actual situation.

On the other hand, green scheduling is an important part of green manufacturing, and
some scholars have studied it. For example, in reference [16], green job shop scheduling
is defined as efficiency increasing, energy saving, emission reduction, and consumption
reduction, which improve economic benefits and lead to a green manufacturing process
through resource allocation, operation sequencing, and reasonable optimization of the
operation mode. Wang et al. [17] analyzed the complexity of the green job shop scheduling
problem and the corresponding processing mechanism and summarized and reviewed the
representative research on green job shop scheduling from the problem, method, and appli-
cation levels. To solve the flexible job shop scheduling problem, Lei et al. [18] proposed a
hybrid frog-leaping algorithm that considers the energy consumption index. Wu et al. [19]
took completion time and energy consumption as the optimization objectives, studied
the flexible job shop problem with multi-speed machines, analyzed the energy consump-
tion distribution of machines, established the energy consumption calculation model, and
solved it by the NSGA-II algorithm. Dong and Ye [20] constructed a scheduling model for
green manufacturing collaborative optimization of the semiconductor wafer distributed
heterogeneous factory and proposed an improved gray wolf algorithms to solve the model.
To solve the process scheduling problem, Yao et al. [21] designed a multi-objective salp
swarm algorithm to solve the process scheduling problem of a TFT-LCD panel array that
considers energy saving. Nanthapodej et al. [22] proposed a variable neighborhood strat-
egy adaptive search method to minimize energy consumption while also considering job
priority and makespan control for parallel-machine scheduling problems. In addition,
some researchers have also carried out similar studies related to green scheduling (see
references [23–25], etc.). To sum up, the current research on green scheduling mostly fo-
cuses on optimizing green production indicators, such as energy consumption and carbon
emissions, while there are few studies considering human factors in green scheduling;
Moreover, there are still many indicators related to resource consumption and environ-
mental impact, such as emissions of toxic substances and wastes, noise, workpiece chip
recycling, etc. The research on green scheduling considering these factors is also rare. At
present, there are still many tasks on green workshop scheduling to deal with, such as
constructing new models closer to practical production scheduling using green production
indicators and developing more efficient algorithms to solve the green scheduling problem.

In this paper, a double-flexible job shop green scheduling problem model is constructed
with the objectives of minimizing the maximum completion time, the total labor cost, and
the total green index. A multi-objective hybrid salp swarm algorithm is proposed to solve
the complex job shop scheduling problem, such as the DFJSP. By testing a benchmark
example and comparing it with two typical algorithms, the feasibility and effectiveness
of the algorithm designed in this paper in solving the double flexible job shop green
scheduling problem are verified.

2. Green Scheduling Problem Model of Double Flexible Job Shop
2.1. Problem Description

The DFJSP can be described as follows: n workpieces are processed on m parallel
machines of different types, which can be operated by l workers with different skill levels.
The workpiece i includes ri processes, and the processing sequence of each process is given
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in advance. The j-th process Oij of the workpiece i can be processed on any machine in
the set of optional processing machines. At the same time, each machine can be operated
by any worker in the set of optional workers. The solution of the DFJSP includes three
sub-problems: machine selection, worker selection, and process scheduling. Its scheduling
goal is to select the most suitable machine and matching operators for each process and
determine the optimal processing sequence and start-up time of each process on each
machine so that some performance indexes of the production system can be optimized.

The double-flexible job shop green scheduling problem constructed in this paper has
three optimization objectives: minimizing the maximum completion time, total labor cost,
and total green index. Among them, the maximum completion time represents the final
completion time of all jobs and all processes, which reflects the production efficiency. The
total labor cost is an important part of the production cost of an enterprise. By reducing the
total labor cost, the operating cost of an enterprise can be reduced. The total green index
in this paper includes energy consumption, noise, workpiece chip recycling, and safety,
making it a comprehensive green production index. Minimizing the total green index can
help enterprises save energy, reduce emission, and reduce the impact on the environment.

The assumptions and constraints to be met are as follows: (1) Each machine can handle
only one process at a time. (2) Each process can be processed only once on one machine.
(3) Each worker can operate only one machine at a time. (4) Each process can be processed
only once by one worker. (5) There are sequential constraints between the same workpiece
processes, and there are no sequential constraints between different workpiece processes.
(6) Interruption is not allowed after a process starts. (7) All machines and workpieces
are ready at zero hour. (8) The installation and adjustment time of the workpiece is not
considered. According to the skill levels, workers are divided into three types. In addition,
the processing time, the labor cost, and the energy consumption corresponding to each
process, as well as the attribute values of various green indexes of the machine, are known
and fixed.

2.2. Mathematical Model of the DFJSP

The mathematical symbols in the model and their meanings are as follows:
m: Number of machines;
n: Number of work pieces;
l: Number of workers;
i, h: Workpiece serial number; i, h = 1, 2, · · · , n;
ri: Total number of operations of workpiece i;
j, g: Operation sequence number, j, g = 1, 2, · · · , r;
k: Machine serial number, k = 1, 2, · · · , m;
s: Worker serial number, s = 1, 2, · · · , l;
Oij: The j-th process of workpiece i;
Cij: Completion time of process Oij;
Ck: Completion time of machine k;
Pijks: Processing time of the process Oij operated by worker s on machine k;
Lijks: Processing cost of the process Oij operated by worker s on machine k;
EIijks: Green index value of the process Oij operated by worker s on machine k;
Eijks: Energy consumption of the process Oij operated by worker s on machine k;
Nijk: Noise generated by the process Oij on machine k;
Rijk: Chip recovery rate of the process Oij processed on machine k;
Sijk: Safety of the process Oij processing on machine k;

xijk =

{
1, theprocess Oij is processed on machine k
0, other

xijks =

{
1, the process Oij is processed on machine k and operated by the worker s
0, other
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Based on the research in [5], this paper constructs the following model where CM
represents the maximum completion time target, LC represents the total labor cost, and G
represents the total green index.

Target function:
MinCM = max

1≤k≤m
(Ck) (1)

MinLC =
n

∑
i=1

ri

∑
j=1

m

∑
k=1

l

∑
s=1

(
Lijks × xijks

)
(2)

MinG =
n

∑
i=1

ri

∑
j=1

m

∑
k=1

l

∑
s=1

(
EIijks × xijks

)
(3)

EIijks = Eijks
′ + Nijk

′ +
(

1/Rijk

)′
+
(

1/Sijk

)
′ (4)

Constraints:

Cij − Ci(j−1) ≥ Pijksxijks, ∀i, j ;i = 1, 2, · · · , n; j = 2, 3, · · · , ri (5)

m

∑
k=1

l

∑
s=1

xijks = 1, ∀i, j;i = 1, 2, · · · , n; j = 1, 2, · · · , ri (6)

[(
Chg − Cij − thgk

)
xhgkxijk ≥ 0

]
∨
[(

Cij − Chg − tijk

)
xhgkxijk ≥ 0

]
,

∀i, j, h, g, k;i, h = 1, 2, · · · , n; j = 1, 2, · · · , ri;g = 1, 2, · · · , rh; k = 1, 2, · · · , m;
(7)

Here, Equations (1)–(3) represent the objective functions of maximum completion
time, total labor cost, and total green index, respectively. Equation (4) defines the green
index value EIijks of the process Oij on machine k operated by worker s. The value of
this index is determined by four factors: energy consumption, noise, chip recovery, and
safety. The lower the energy consumption and noise value, the better and the higher the
chip recovery rate and safety index value, so the reciprocal is taken for calculation. In
addition, because the measurement units and meanings of the above four green indicators
are different, they cannot be calculated directly. Therefore, it is necessary to normalize
the four indicators by the min–max standardization method. The calculation formula of
the min–max standardization method is x′ = x−xmin

xmax−xmin
, where x′ represents the new value

after x normalization, xmax is the maximum value of x indicator, and xmin is the minimum
value of x indicator. Equation (5) is a process constraint to ensure that the workpiece is
processed according to the specified process. Equation (6) ensures that each process can be
assigned only to a machine in the set of optional processing machines for the process and
the machine can be operated only by a worker in the set of optional workers. Equation (7)
ensures that each machine can handle only one working procedure at a time.

3. DFJSP Solution Based on the Multi-Objective Hybrid Salp Swarm Algorithm
3.1. Salp Swarm Algorithm

The salp swarm algorithm (SSA) is a population intelligent optimization algorithm
proposed by scholars Mirjalili and Gandomi in 2017 [26]. This stochastic optimization
algorithm simulates the movement and foraging behavior of the salp swarm group in
the ocean, and its effectiveness is verified by solving function optimization problems and
engineering design problems. The salp swarm algorithm divides the salp chain into two
parts: the first half of the individuals as leaders and the second half of the individuals as
followers. It is assumed that there is a food source F in the search space, which is the search
target of the group. The position update of the leader is only related to the position of the
food source, while the position update of the follower is only related to the position of
the salp swimming in front of it. The multi-objective salp swarm algorithm (MSSA) is a
multi-objective swarm intelligent optimization algorithm based on the SSA, using the same
population division and individual location update methods and referring to the external
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archive access mechanism of the MOPSO algorithm [27]. The basic idea is as follows:
N salp individuals are randomly generated as the initial population; then, the objective
function value of these salp individuals is calculated, and all non-dominated individuals
in the population are identified according to the Pareto dominance relationship. If the
number of individuals in the current external archive does not exceed the specified number,
the non-dominated solution is directly saved to the archive. Otherwise, the redundant
individuals are deleted from the archive-dense area before a new non-dominated solution
is added. When performing the deletion operation, each solution in the archive needs to
be sorted and selected by roulette. After updating the archive, according to the sorting
value, an individual is selected as the food source F from the sparse area of the archive by
the roulette method. Next, the value of c is updated, and the individual position in the
population of salp is updated according to the food source F. The above steps are repeated
until the termination conditions are met. The key operations involved in the MSSA are the
update and maintenance of the archive and the selection of the food source F.

According to the above analysis, the MSSA is easy to implement, because it only has
two main control parameters: c and archive size. In addition, the non-dominated solutions
obtained so far are stored in the archive, so even if the whole population degenerates, the
non-dominated solutions found will not be lost. Moreover, food source F is selected from
the list of non-dominated solutions with the least number of neighboring solutions, which
leads the search toward the less crowded regions of the Pareto optimal front obtained and
improves the coverage of solutions found [26]. As a result of these reasons, the MSSA is
logically able to find accurate Pareto optimal solutions with high distribution across all
objectives, and it is proved experimentally on benchmark problems.

3.2. Multi-Objective Hybrid Salp Swarm Algorithm for Solving the DFJSP
3.2.1. Algorithm Framework

According to the characteristics of the DFJSP, this paper designs a multi-objective hy-
brid salp swarm algorithm (MHSSA) to solve the double-flexible job shop green scheduling
problem. The flowchart of the MHSSA is shown in Figure 1. The main operators for the
studied problems are encoding and decoding, individual position update of the OS part,
and crossover and mutation operation of MA and WA parts.

3.2.2. Encoding and Decoding Mechanisms

The double-flexible job shop green scheduling problem needs to solve three sub-
problems: machine selection, worker selection, and process scheduling. According to the
characteristics of the DFJSP, the multi-objective hybrid salp swarm algorithm designed in
this paper needs three layers of salp individuals to represent: operation sequence (OS),
machine assignment (MA), and worker assignment (WA). The length of each layer is equal
to the total number of processes of all workpieces, as shown in Figure 2. The OS part adopts
random key coding based on ascending arrangement, and the corresponding process
sequencing is obtained by arranging the element values of each position in ascending
order. The specific operation method is shown in the decoding process of the OS part in
Figure 2. The MA part adopts machine codes arranged according to processes, which are
arranged according to the order of workpieces and workpiece processes, and it is expressed
by integers representing the machine number of the processing machine selected in the
current process. The WA part adopts worker codes arranged according to processes, which
are arranged according to the order of workpieces and workpiece processes, and it is
expressed by integers representing the worker type number selected in the current process.
For example, in Figure 2, the first numeral, 2, in the MA section indicates that the process
O11 is arranged to be processed on the second machine, and the fourth numeral, 1, indicates
that the process O21 is arranged to be processed on the first machine. The first number, 3, in
the WA part indicates that the process O11 has selected the third type of worker to operate.
The other numbers represent the same meaning as above.
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To sum up, the following information can be interpreted from Figure 2: in the schedul-
ing scheme represented by the salp individual, process O11 is processed first, and it is
operated by a third type of worker on the second machine. The second process to be
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processed is O21, which will be processed by a third type of worker on the first machine.
Then, other processes will be operated.

The processing sequence of each process and the corresponding processing machines
and operators can be determined from the individual code of salp. Then, the method in [5]
is adopted to decode and generate activity scheduling for the salp individual. The specific
steps are as follows:

(1) Determine the machine set required to process each workpiece and the process set
processed on each machine.

(2) Determine the allowable starting processing time AS of each process, that is, the
processing end time of the previous process.

(3) Adopt a process insertion method to determine the earliest starting processing time
S of each process. The method is as follows: Find all interval idle time periods [TS, TE] on
the machine where the current process is located and judge whether each interval idle time
period meets the insertion conditions from left to right. If so, insert it into the current idle
time period, S = max(TS, AS). Otherwise, S = max(LM, AS), where LM represents the
end time of the last operation of the current machine.

(4) Calculate the processing completion time C of each operation, where C = S + P
and P represents the processing time of the operation.

By the above decoding process, the processing sequence of the workpieces on each
machine and the corresponding start time and completion time can be obtained. After
calculation, the corresponding objective function value can be obtained.

3.2.3. Individual Location Update Operations in OS Part

In the SSA algorithm, the foraging chain of salp is divided into two parts: leader
and follower. Therefore, the individual position update of the population includes the
individual position update of leaders and the individual position update of followers. At
the same time, combined with the coding method of the OS part, the following methods
are used to update the location of the OS part of the salp population.

The position update of the individual leader is related to the position of the food
source F, and the position update method is shown in Equation (8).

xi
j =

{
Fj + c · L rand < 0.5
Fj − c · L rand ≥ 0.5

(8)

Suppose there are N individuals in the population and the OS part of each individ-
ual has D-dimensional variables (i.e., the total number of processes). xi

j represents the
j-dimensional variable value of the OS part of the i-th salp individual;

i = 1, 2, · · · , N/2; j = 1, 2, · · · , D; and Fj represents the j-dimensional variable value
of the OS part of the food source. The correlation coefficient c is the most important
parameter in the SSA, which is used to balance global exploration and local development.
See Equation (9), where t is the current number of iterations, tmax is the maximum number
of iterations of the population, and the value of c decreases from 2 to 0 with the iteration
process. L is the Lévy flight step size, which can effectively prevent premature convergence
of the algorithm. The calculation method [28] is shown in Equations (10)–(12), where β is a
parameter between [1,2] and taken here to be equal to 1.5, u and v obey normal distribution,
and rand is a random number between [0,1]. When rand < 0.5, xi

j changes in the positive
direction of the food source Fj; otherwise, it changes in the negative direction.

c = 2 · exp

(
−
(

4t
tmax

)2
)

(9)

L =
u

β
√
|ν|

(10)

u ∼ N
(

0, σ2
u

)
, v ∼ N

(
0, σ2

v

)
(11)
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σu = β

√
Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2
, σv = 1 (12)

The individual position update of the follower is only related to the position of the
salp individual in front of it, which is updated according to Equation (13), where xi

j
represents the variable value of the j-th dimension of the OS part of the i-th salp individual,
i = (N/2) + 1, (N/2) + 2, · · · , N, j = 1, 2, · · · , D.

xi
j =

xi
j + xi−1

j

2
(13)

3.2.4. Cross Operations in MA and WA Parts

According to the characteristics of the coding mode of the salp individual, the crossover
and mutation operators of the genetic algorithm are embedded in the MSSA to update
the position of the salp individual in MA and WA parts. The crossover operation mainly
helps obtain better offspring by enabling the exchange of excellent gene fragments between
parent chromosomes. To avoid generating infeasible solutions, MA and WA parts are
regarded as a whole for the crossover operation. Meanwhile, since the MA and WA
parts must ensure that the sequence of each element remains unchanged, the random
probability crossover operation method is adopted, as shown in Figure 3. Two individuals
are randomly selected in the population, and a random number rand on [0,1] is generated
from left to right for each position element. If rand is less than the crossover probability
(CR), the position element remains unchanged; otherwise, the position element is crossed to
produce two new individuals. The above steps are repeated until all individuals complete
the crossover operation.
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3.2.5. Mutation Operations in MA and WA Sections

Usually, mutation operators are used to jump out of the local optimal solution and
increase the diversity of the population. In this paper, a random number rand is generated
for each individual in the salp population. If rand is less than the mutation probability
(MR), the mutation operation is performed. The specific method of mutation operation for
MA and WA parts is as follows: randomly select a process, randomly select a device in
the optional processing machine set of the process, and randomly select an operator in the
corresponding optional worker set.

4. Simulation Experiment and Analysis
4.1. Experimental Setup and Test Examples

To verify the effectiveness of the MHSSA in solving the double-flexible job shop green
scheduling problem, two multi-objective optimization algorithms, the MSSA [26] and the
MOPSO [27], are selected for comparison, and each algorithm runs independently 20 times.
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The simulation platform includes the Win7 operating system, a CPU of 2.60 GHz, and 4G
memory; MATLAB R2016a is used for programming.

In this paper, the DFJSP test example constructed in Reference [5] is selected for nu-
merical experiments. The test problem is improved on the basis of the existing Brandimarte
benchmark example [29]. Nine groups of data (DFJSP 01-09) are selected for testing the
MHSSA in this paper; we can download these test data from https://pan.baidu.com/s/
1mhHfv6K (accessed on 15 December 2021) [5] that in this example, with a decrease in the
processing time, the labor cost will increase and the energy consumption will decrease. In
addition, the example considers complete worker flexibility; that is, each machine can be
operated by any worker.

4.2. Performance Evaluation Index

Since the measurement units of the three optimization objectives in this paper (max-
imum completion time, total labor cost, and total green index) are different, in order to
evaluate the performance index of each algorithm, it is necessary to normalize the data
of each target value. In this paper, three evaluation indexes SP, IGD, and Ω are selected.
Since the optimal Pareto frontier of the tested problem is unknown, the non-dominated
solution set obtained from the operation results of the three algorithms is approximated as
the optimal Pareto frontier.

The SP index is used to measure the uniformity of the distribution of non-inferior
solutions on the Pareto frontier. The calculation process is shown in Equation (14). Where
di = minj

(∣∣∣ f i
1(x)− f j

1(x)
∣∣∣+ ∣∣∣ f i

2(x)− f j
2(x)

∣∣∣+ ∣∣∣ f i
3(x)− f j

3(x)
∣∣∣), i, j = 1, · · · , |PF|, d is the

mean of all di, and |PF| is the number of non-inferior solutions on the Pareto frontier.
A smaller SP value means better uniformity of the distribution of non-inferior solutions.
In particular, when the SP value is 0, the non-inferior solutions are equally uniformly
distributed on the Pareto frontier.

SP ,

[
1

|PF| − 1

|PF|

∑
i=1

(
d− di

)2
]1/2

(14)

IGD is a comprehensive index for simultaneously evaluating the diversity and frontier
convergence of the obtained Pareto non-inferior solutions. The calculation is shown in
Equation (15). |PF∗| is the number of non-inferior solutions on the optimal Pareto frontier,
and dist(x, PF) is the Euclidean distance between a solution on the optimal Pareto frontier
and the nearest solution on the obtained Pareto frontier. The smaller the IGD value, the
better the performance of the algorithm.

IGD =
∑x∈PF∗ dist(x, PF)

|PF∗| (15)

Ω is the dominant index, which is the percentage of the number of non-inferior solution
sets found by the algorithm falling into the optimal Pareto frontier. The calculation process
is shown in Equation (16), where Hk represents the set of non-dominated solutions obtained
by the k-th algorithm, and |P(S)| represents the number of non-dominated solutions in the
set S. The larger the value of Ω, the better the dominance of the Pareto frontier found by
the algorithm.

ΩHk =

∣∣∣∣P(∪i Hi)\P( ∪
i 6=k

Hi)

∣∣∣∣∣∣∣∣P(∪i Hi)

∣∣∣∣ × 100% (16)

4.3. Parameter Setting

The MHSSA proposed in this paper mainly involves three parameters: population size
N, crossover probability CR, and mutation probability MR. To obtain the best combination

https://pan.baidu.com/s/1mhHfv6K
https://pan.baidu.com/s/1mhHfv6K
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of factor levels, the Taguchi method is used for experimental design to explore the influence
of algorithm parameters on the solution effect [30], and DFJSP 01 is used as a test example.

The specific process is to set four factor levels for each parameter. According to the
number of experimental groups, the number of experimental factors, and the number of
factor levels, the orthogonal table of L16

(
43) is adopted, as shown in Table 1. For each factor-

level combination in the orthogonal table, the MHSSA runs independently 20 times and
records the obtained non-dominated solutions. Since the index Ω represents the percentage
of the number of non-inferior solution sets falling into the optimal Pareto frontier, which
can reflect the dominance of the algorithm, the index Ω is used as the response variable
(RV). The larger the RV value, the better the performance of the parameter combination.
The experimental results are shown in Table 2. The average value of response characteristics
(ARV) and the importance ranking of each parameter are shown in Table 3.

Table 1. Factor level setting of MHSSA parameters.

Factor
Factor Level

1 2 3 4

N 50 100 150 200
CR 0.2 0.5 0.7 0.9
MR 0.1 0.2 0.3 0.4

Table 2. Orthogonal table and response eigenvalues.

Experimental
Serial Number

Factor
RV

N CR MR

1 1 1 1 0.0098
2 1 2 2 0.0098
3 1 3 3 0.0392
4 1 4 4 0.0196
5 2 1 2 0.0196
6 2 2 1 0.0392
7 2 3 4 0.0392
8 2 4 3 0.0784
9 3 1 3 0.0686
10 3 2 4 0.0686
11 3 3 1 0.0882
12 3 4 2 0.0490
13 4 1 4 0.0882
14 4 2 3 0.1471
15 4 3 2 0.1275
16 4 4 1 0.1078

Table 3. Response table.

Factor Level N CR MR

1 0.0196 0.04655 0.06125
2 0.0441 0.066175 0.051475
3 0.0686 0.073525 0.083325
4 0.11765 0.0637 0.0539

Delta 0.09805 0.026975 0.03185
Rank 1 3 2

As can be seen from Table 3, the population size N is the most significant among the
three parameters. The N value is too large, the convergence speed of the algorithm is slow,
and the running time is too long. A small N value may cause premature convergence of
the algorithm. The variation probability MR is the second most significant, and the factor
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significance level of the crossover probability CR is the lowest. According to the above
parameters, the main parameters of the MHSSA are set to N = 200, CR = 0.7, and MR = 0.3,
which are the best combination of factor levels for simulation. Other parameters of the
algorithm are set as follows: the maximum number of iterations tmax = 100, and the external
file Archive_size = 100.

4.4. Test Results and Analysis

To verify the effect of the proposed HMSSA to solve the DFJSP, nine test problems
were selected to simulate the MHSSA. Each algorithm ran 20 times independently, and
a group of [SP, IGD, Ω] values was recorded each time. Table 4 lists the mean (Avg) and
standard deviation (Std) of each evaluation index of the three algorithms, and the optimal
results of each index are marked in bold. It can be seen from the IGD and Ω indexes in
Table 4 that the diversity, convergence, and dominance of the non-inferior solutions on the
Pareto frontier obtained by the MHSSA are the best in the comparison algorithms and that
the solution effects of the other two algorithms are not very different. For the SP index, the
difference between the three algorithms is not obvious. For all test problems, the MHSSA
designed in this paper has the best uniformity of the distribution of non-inferior solutions
on the Pareto frontier.

Table 4. Simulation test results of three algorithms.

Table Evaluation
Index

MSSA MOPSO HMSSA

Avg Std Avg Std Avg Std

DFJSP 01 (10 × 6× 3)
SP 0.0562 0.0154 0.0488 0.0150 0.0691 0.0223

IGD 0.1912 0.0199 0.1882 0.0158 0.0940 0.0100
Ω 0.0025 0.0066 0.0025 0.0052 0.0449 0.0319

DFJSP 02 (10 × 6× 3)
SP 0.0650 0.0179 0.0647 0.0239 0.0609 0.0164

IGD 0.1864 0.0168 0.1854 0.0237 0.1042 0.0155
Ω 0.0029 0.0063 0.0075 0.0101 0.0397 0.0355

DFJSP 03 (15× 8× 3)
SP 0.0677 0.0169 0.0761 0.0297 0.0692 0.0150

IGD 0.1971 0.0133 0.1947 0.0208 0.1178 0.0139
Ω 0.0038 0.0063 0.0091 0.0106 0.0371 0.0389

DFJSP 04 (15× 8× 3)
SP 0.0619 0.0189 0.0708 0.0259 0.0649 0.0148

IGD 0.1867 0.0204 0.1950 0.0146 0.1029 0.0121
Ω 0.0016 0.0039 0.0032 0.0061 0.0452 0.0303

DFJSP 05 (15× 4× 3)
SP 0.0638 0.0202 0.0676 0.0316 0.0599 0.0121

IGD 0.1398 0.0133 0.1382 0.0087 0.0755 0.0075
Ω 0.0058 0.0070 0.0065 0.0082 0.0377 0.0304

DFJSP 06 (10× 15× 3)
SP 0.0603 0.0121 0.0570 0.0138 0.0678 0.0151

IGD 0.1809 0.0208 0.1848 0.0184 0.1032 0.0072
Ω 0.0084 0.0126 0.0074 0.0084 0.0342 0.0285

DFJSP 07 (20× 5× 3)
SP 0.0626 0.0174 0.0672 0.0275 0.0690 0.0144

IGD 0.1800 0.0229 0.1809 0.0157 0.0951 0.0101
Ω 0.0052 0.0082 0.0057 0.0076 0.0391 0.0317

DFJSP 08 (20× 10× 3)
SP 0.0590 0.0195 0.0618 0.0173 0.0566 0.0078

IGD 0.1722 0.0151 0.1857 0.0161 0.0950 0.0104
Ω 0.0072 0.0104 0.0011 0.0026 0.0417 0.0375

DFJSP 09 (20× 10× 3)
SP 0.0604 0.0110 0.0690 0.0226 0.0574 0.0148

IGD 0.1777 0.0154 0.1801 0.0158 0.0975 0.0111
Ω 0.0038 0.0048 0.0053 0.0096 0.0409 0.0289

Total
SP 0.0619 0.0034 0.0648 0.0081 0.0639 0.0052

IGD 0.1791 0.0165 0.1814 0.0170 0.0984 0.0113
Ω 0.0046 0.0023 0.0054 0.0026 0.0401 0.0036
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Furthermore, the significant differences between the algorithms were tested using the
Wilcoxon signed-rank test for relevant samples. For the three evaluation indexes of the test
problem, the three algorithms are compared in pairs. The test results are shown in Table 5.
The MHSSA has significant differences from the comparison algorithm in IGD and Ω
indexes, and the effect is the best. For the SP index, the three algorithms have no significant
difference. In conclusion, the MHSSA proposed in this paper can effectively solve the
dual-flexible job shop green scheduling problem. On the whole, the MHSSA is obviously
superior to the other two comparison algorithms in terms of diversity, convergence, and
dominance of non-inferior solutions on the Pareto frontier.

Table 5. Wilcoxon signed-rank test (the MHSSA vs. the MSSA and the MOPSO).

Evaluation
Index

MSSA MOPSO

p Value Sig (p < 0.05) p Value Sig (p < 0.05)

SP 0.477 N 0.515 N
IGD 0.008 Y 0.008 Y

Ω 0.008 Y 0.008 Y

5. Conclusions

In this paper, a multi-objective hybrid salp swarm algorithm is proposed to solve
the dual-flexible job shop green scheduling problem with the objectives of optimizing the
maximum completion time, total labor cost, and total green index. The specific research
contents include the following:

(1) According to the characteristics of the DFJSP, a three-layer individual coding and
decoding method of salp is designed, and it is decoded into an active scheduling
scheme. In the optimization process of the algorithm, the individual position of the
OS part of the individual salp is updated based on the Lévy random walk, and the
random probability crossover operation and corresponding mutation operation are
performed on the MA and WA parts, which effectively improves the optimization
accuracy and efficiency of the algorithm.

(2) In the part of numerical simulation experiment, the Taguchi method was used to study
the influence of the parameter setting on scheduling results and the best factor-level
combination of algorithm parameters was identified. Using a simulation test for the
benchmark example of the DFJSP, the MHSSA was compared with the MSSA and
the MOPSO to verify that the MHSSA can effectively solve the dual-flexible job shop
green scheduling problem.

In the next step, the DFJSP will be studied more extensively. In terms of the green
scheduling problem, considering that the machine has a variety of speeds and other
indicators, green manufacturing will be achieved by an actual production strategy.
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