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Abstract: The acoustic activity developed in marble specimens under various loading schemes is
explored in terms of the recently introduced F-function. The novelty of the study is that instead
of describing the temporal evolution of the F-function in terms of conventional time, the Natural
Time concept is employed. Although completely different geometries and loading schemes were
considered, the evolution of the F-function in the Natural Time domain exhibits a self-consistent
motive: its values increase progressively with fluctuations of varying intensity, however, while
the fracture is approaching, a power law appears to systematically govern the response of the
specimen/structure loaded. The exponent of this law, somehow corresponding to the intensity of the
acoustic activity within the loaded complex, varies within broad limits. The onset of validity of the
power law designates that the system has entered into its critical stage, namely that of impending
fracture, providing a useful pre-failure signal.

Keywords: acoustic emissions; natural time; pre-failure indicators; marble; F-function

1. Introduction

The irreversible processes (for example, microcracking, propagation and coalescence
of microcracks, various changes of the microstructure) taking place due to the activation
of damage mechanisms at the interior of loaded structural elements are responsible for
the generation of acoustic emissions (AEs). The respective sensing technique that detects
and records these emissions, namely the AE technique, was introduced long ago [1–3] and
is still under further development. Gradually it became an extremely useful tool in the
hands of engineers from various disciplines since it allows the real-time monitoring of the
damage evolution under either quasi-static or dynamic loads, as well as the characteriza-
tion/classification of the failure modes taking place [4]. Nowadays, the AE technique is
considered the most mature and reliable tool in the attempt to understand the mechanisms
activated before the loaded structure enters into its critical stage (i.e., that of impending
fracture) and during this critical stage. Moreover, it is widely used for structural health
monitoring purposes.

Quite a few characteristics of the AEs (such as, for example, their rate of occurrence,
their cumulative energy, the temporal evolution of b-values, the cumulative number of
counts, etc.) are properly elaborated statistically enlightening interesting aspects of the
overall response of the loaded structures [4–9]. The number of hits recorded per second
is an often-used index for monitoring the acoustic activity during a loading/fracture
process. Recently an alternative procedure was introduced, which offers monitoring the
acoustic activity with increased resolution by taking advantage of the inter-event time
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intervals between two successive hits. The procedure is based on the F-function [10], which
is determined by utilizing the interevent time intervals of a sufficient number of n (n >
10) consecutive AE hits/events. In fact, the F-function represents the average frequency
of appearance of AE hits/events in a sliding time window including n consecutive AE
hits/events. Each value of the F-function is paired to an average time instant, τ, determined
as the average of the time instants at which each one of the n successive hits of the group
contained in the specific time window appeared.

Contrary to the traditional way of representing the AE activity through the “number-
of-hits-per-second”, the temporal evolution of the F-function is advantageous since it
highlights according to a clearer manner the variability of the acoustic activity, especially
during the last phase of the loading process just before the catastrophic fracture. Taking
into account that the vast majority of acoustic events are recorded during the very last time
instants prior to the macroscopically observed catastrophic fracture, the time evolution
of the F-function is usually described in terms of the “time-to-failure” parameter, (tf −
τ), where tf is the time instant when the last AE hit/event was recorded (i.e., the time
instant of the catastrophic fracture, when usually an AE hit/event with an amplitude of
99 dB is detected). Adopting the specific description offers an enlightening view of what
happens during the very last loading instants. The use of the F-function for the exploration
of acoustic activity is nowadays adopted by many researchers worldwide [11–17].

The temporal evolution of the F-function in terms of the “time-to-failure” parameter,
during the last loading stages before the catastrophic fracture, was found to obey a power
law [10,18] of the form:

F = A ·
(

t f − τ
)−m

(1)

where A is a constant and m is an exponent, the numerical value of which ranges around
the unit. In general, the exponent m characterizes the intensity of the rate of production
of acoustic hits/events just before fracture. Moreover, it has been experimentally veri-
fied [19,20] that the temporal evolution of the F-function provides indices that could be
safely considered as pre-failure signals.

In this direction, and in an attempt to detect complementary pre-failure indicators,
the evolution of the F-function is considered here in terms of the Natural Time, χ, rather
than in terms of conventional time (i.e., of the “time-to-failure” parameter). The onset of
validity of the power-law of Equation (1) is indicative of the (self-organized) criticality,
which governs the response of the specimens, just before catastrophic fracture. According
to the influential work of Bak et al. (1987) [21], various complex systems, operating far from
their thermodynamic equilibrium, will be spontaneously organized under their natural
evolution (and without the need of an external intervention), into a critical boundary state
which resides at the transition point between the equilibrium and non-equilibrium states.
During this phase transition, the appearance of power (or approximately power) laws has
been extensively reported in the literature [9,19].

Within these lines and considering that the generation of AEs while fracture ap-
proaches is a non-equilibrium phenomenon of complex dynamic systems (namely the
brittle specimens under severe mechanical load), the Natural Time concept has been proven
as a quite flexible alternative theoretical framework for describing the proximity of the
system to criticality (i.e., to catastrophic fracture) [22,23], which in the case of the F-function
is manifested through the power-law of Equation (1).

The analysis of the acoustic emission data, recorded during a series of experimental
protocols with marble specimens, revealed definitely that a power law governs, again,
the evolution of the F-function in terms of Natural Time during the intervals that the
load-carrying capacity of the loaded element tends to be exhausted. The instant at which
this power law starts governing the mechanical response of the system reflects somehow
a change of the damage mechanisms which are activated within the specimen and these
mechanisms that will lead to the macroscopic destruction of the specimen start prevailing.
Thus, the onset of validity of this power law may be considered as the threshold beyond
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which the system enters into its critical stage (i.e., the stage of impending fracture) providing
a pre-failure signal, which deserves to be further investigated.

2. Theoretical Preliminaries

The concept of Natural Time, χ, was introduced in 2001 by P. Varotsos et al. [24,25] and
it was initially used in the field of Seismology. Since then the analysis in the Natural Time
domain has been proven quite advantageous when describing the dynamic evolution of
complex systems: It reduces uncertainty, allowing optimal extraction of signal information,
especially for signals originating from dynamic systems approaching the criticality [26].
In this context, the Natural Time concept became gradually a valuable alternative tool
in the tedious effort of the scientific community to develop theories for the prediction of
upcoming catastrophic events. Soon after the concept was introduced it was adopted for
data analysis in an amazingly wide range of scientific disciplines, from seismology [26–30],
to medicine [31,32], condensed matter physics [33] and mechanics of materials [34–40].

As mentioned above in a fracture process, the function F(τ) is created by assuming
that is a time series consisting of N values, namely: F1 = F(τ1), F2 = F(τ2), . . . , Fk = F(τk),
. . . , FN = F(τN). Instead of the conventional time τ, a value k of order (1, 2, 3 . . . N) will be
characterized by the evolution of the pair (χk, Fk) where χk = k/N and Fk is the value of
F(τk). This creates the time series F(χ) where χ is the Natural Time (see Figure 1).
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Figure 1. Schematic interpretation of the F-function in terms of conventional time (up) and in the
Natural Time domain (down).

In order to further clarify the above-described procedure, a detailed example will be
discussed in this section, indicating the way of representing the acoustic activity (expressed
here as the rate of occurrence of the acoustic hits) in terms of the F-function, both in the
conventional (τ) and the Natural Time (χ) domains: a uniaxial tensile test with a Double
Edge Notched (DENT) marble specimen (Figure 2a) with notch length equal to α = 8
cm is considered. Details of the experimental protocol concerning the specimen and the
experimental set-up have been reported in previous works [41,42]. During the specific
test, a total of 137 acoustic hits of amplitude A ≥ 40 dB were recorded, the vast majority of
which were detected at the very last loading stages, i.e., when the externally applied load
was approaching the tensile strength of the specimen.
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Figure 2. (a) Geometrical characteristics of the DENT specimen. The red arrows indicate the direction
of the imposed tensile force. (b) The temporal evolution of the amplitudes of the acoustic hits in
juxtaposition to that of the tensile force.

For the calculation of the F-function n = 10 consecutive inter-event time intervals were
used and its evolution in conventional time τ is presented in Figure 3a. The sharp increase
of the F-function starts at the instant τ ≈ 1245 s when the externally applied tensile force
attained a value equal to about 2889 N, corresponding to 98.4% of the maximum force
attained during the specific test. It is clearly seen that densely packed information is hidden
in a very narrow time interval (just before fracture) and thus it is quite possible that critical
details are lost. Therefore, the need for an alternative representation of the acoustic activity
becomes a pressing demand. In this direction, the evolution of the F-function is considered
in the Natural Time domain (χ) as it is shown in Figure 3b. It is highlighted that, for the
whole time interval for which the applied force varies around its maximum value (i.e., the
catastrophic fracture is impending), the function F(χ) is governed by a power law of the
form:

F(χ) = A · χm (2)

where A is a constant [A = F(χ = 1)] and m is an exponent related to how strongly the
acoustic activity is intensified at the time instants just before macroscopic fracture.

For the specific experiment analyzed in this section and for the time interval corre-
sponding to the shaded rectangular in Figure 3b, proper curve fitting yields for m a value
equal to 4.65. The interval of χ-values, for which the power law of Equation (2) governs
the response of the material starts at χ = 0.36 and ends at χ = 0.85. The respective values
for the applied load are equal to 2931 N and 2928 N. The maximum force attained was
equal to 2933 N, indicating that the power law of Equation (2) governs the response of
the material a little before and a little after the maximum force is attained. Translating the
above numerical values to the conventional time domain, it can be seen that the power law
is valid in the time interval between 2.4 s and 0.08 s before fracture (in practical terms until
the final fracture of the specimen).

In the sections following, the above-described approach for representing the F-function
in the Natural Time domain (χ) will be applied for the exploration of the acoustic activity in
a series of characteristic experimental protocols, with Dionysos marble specimens of various
geometries subjected to various loading schemes. The composition and physicochemical
properties of Dionysos marble are well documented in the international literature. A
comprehensive review is provided by Perdikatsis et al. [43] in terms of trace-, isotope- and
mineralogical analysis.
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Figure 3. (a) The temporal evolution of the F-function and the load imposed. (b) The respective
evolution in the Natural Time domain for the DENT marble specimen.

3. Analysis of the Acoustic Activity by Means of the F-Function in the Natural Time
Domain
3.1. Three-Point Bending of Notched Marble Prismatic Specimen

Prismatic Dionysos marble specimens (dimensions 20 mm × 20 mm × 100 mm) with
a central notch (machined mechanically normal to the longitudinal axis of the specimens)
were subjected to three-point bending (Figure 4a). The length (depth) of the notch was
equal to α = 4 mm while its width (breadth) was equal to b = 2.5 mm. An AE sensor was
attached to the specimen in the immediate vicinity of the crown of the notch (blue circle in
Figure 4a) for the detection of acoustic activity. The load was imposed with the aid of a
metallic cylinder of radius equal to 10 mm uniformly all along the width of the specimens
and normally to their horizontal axis. Displacement control loading mode was adopted at
a constant rate of 0.01 mm/min, so that quasi-static conditions were simulated. During
the experiment, the force applied and the deflection of the central section was recorded
together with the characteristics of the AEs.
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imposed load, and the black circles represent the cylinders used to apply the load. (b) The temporal
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Focusing now on a typical experiment of this protocol, N = 176 acoustic hits of
amplitude exceeding 40 dB were recorded up to the fracture of the specimen. Figure 4b
shows the time evolution of the load applied and that of the amplitudes of the AEs recorded.
The maximum value attained by the force applied was equal to 656.9 N. For the calculation
of the F-function n = 10 consecutive interevent time intervals were used.

Its evolution in Natural Time χ is shown in Figure 5 in juxtaposition to the respective
evolution of the load applied. The F-function attains a maximum value equal to 38.4 s−1

shortly before the fracture of the specimen. The specific time instant corresponds to about
1.5 s in conventional time units and about χ = 0.79 in the Natural Time domain. The interval
within which F(χ) is governed by the power law of Equation (2), lies in the range from
χ = 0.46 to χ = 0.79 in Natural Time terms. Proper curve-fitting gives for the exponent m
(of Equation (2)) a value equal to 8.80. In the interval of validity of Equation (2) the load
attained values ranging from 647 N (before its maximization at 656.9 N) to 643 N after its
maximization.
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Figure 5. The evolution in the Natural Time domain of the F-function and the load imposed for the
notched specimens under three-point bending.

3.2. Uniaxial Compression of Intact Prismatic Marble Specimen

Intact prismatic Dionysos marble specimens (dimensions 45 mm × 45 mm × 100 mm)
were subjected to uniaxial compression. A strain gauge was attached at the center of one
of the specimens’ lateral surfaces in order to measure the axial strain developed, while an
acoustic sensor was attached at the center of the adjacent lateral surface (Figure 6a). The
compressive force was applied at a constant rate equal to 475 N/s. During the experiments,
the force and the strain developed were recorded at a sampling rate of 75 values per minute.
In addition, the acoustic signals of amplitude A ≥ 45 dB were recorded. The time evolution
of their amplitudes is shown in Figure 6b together with the respective evolution of the force
applied. The axial stress-axial strain (σ-ε) curve for a typical experiment of the protocol is
shown in Figure 7a. The linear relationship, expected for brittle rocks, characterizes the
major portion of the σ-ε curve, corresponding to Young’s modulus equal to about 70 GPa
(the initial non-linearity for t < 7 s is attributed to unavoidable bedding errors). The time
evolution of the axial strain is shown in Figure 7b together with the respective linear fitting,
which governs the response of the material up to the t = 181 s time instant. At this time
instant, the stress level attained is equal to about 84 MPa, which corresponds to about
88% of the specimen’s compressive strength. For the specific experiment more than 1000
acoustic hits were recorded until the fracture of the specimen, most of which (more than
50%) were recorded after the specimen abandoned its linear response. Taking into account
the overall number of hits recorded the sliding window used for the calculation of the
F-function included n = 50 consecutive hits.

The evolution of the F-function in Natural Time χ is shown in Figure 8 in juxtaposition
to the respective evolution of the axial strain recorded. In the same figure, the linear fit
of the axial strain in Natural Time terms is plotted. It is clearly seen from this figure that,
as soon as the material ceases responding linearly, the evolution of the F-function in the
Natural Time domain is, again, governed by the power law of Equation (2).

Proper fitting of the data gives the exponent m a value equal to m = 5.26. The range of
applicability of the power law covers the interval from χ = 0.58 to χ = 0.93. The correspond-
ing conventional-time interval extends from t = 189 s to t = 198 s, while the corresponding
values of the axial stress are 89.9 MPa and 94.2 MPa, respectively, or, equivalently, 94% and
99% of the material’s compressive strength.
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Figure 6. (a) Sketch of the intact prismatic specimen. The red arrow indicates the direction of the
imposed load and the green rectangle the strain gauge. (b) The temporal evolution of the amplitudes
of the acoustic hits in juxtaposition to that of the compressive force imposed.
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Figure 7. (a) The axial stress versus the axial strain for the intact prismatic marble specimen. (b) The
temporal evolution of the strain for the intact prismatic marble specimen.
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Figure 8. The evolution in the Natural Time domain of the F-function and the axial strain developed
for the intact prismatic specimen under compression.

3.3. Diametral Compression of Circular Semi Ring Marble Specimens

In this protocol Circular Semi Rings (CSR) made of Dionysos marble were subjected
to diametral compression until fracture. The geometry and the dimensions of the specimen
along with the position of the acoustic sensor, from which the AE data were drawn, are
shown in Figure 9a. Details about the specific protocol and the motive that dictated its
introduction can be found in a series of publications by Kourkoulis et al. [44] and by
Markides et al. [45]. The load was imposed with the aid of two metallic cylinders fitted
into grooves of proper shape and size curved on the outer perimeter of the specimens.
Displacement-control loading mode was adopted at a constant rate of 0.02 mm/min.
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Figure 9. (a) The geometrical characteristics of the CSR marble specimen. The red arrows indicate the
direction of the imposed force, and the black circles represent the cylinders used to apply the force.
(b) The temporal evolution of the amplitudes of the acoustic hits in juxtaposition to that of the force.

During a representative experiment of this protocol, a total of about N = 507 acoustic
hits of amplitude exceeding 40 dB were recorded. The time evolution of the load imposed
is plotted in Figure 9b together with that of the amplitudes of the acoustic hits. It is worth
mentioning that the specimen appears almost “silent” concerning its acoustic activity up
to a time instant t = 162 s, when the first AE was recorded. The load level at that instant
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was about 80 N or, equivalently, about 30% of the maximum value attained. The load was
increasing up to the instant t = 473 s and then it started decreasing.

To calculate the F-function n = 15 consecutive interevent time intervals were used. The
evolution of the F-function in Natural Time is shown in Figure 10 in juxtaposition to the
respective one of the loads applied, also in Natural Time. It is observed that when the load
has exceeded its maximum value (267 N), the behavior of the function F(χ) obeys the power
law of Equation (2), until the instant at which the load is reduced to 255 N. Proper fitting of
the data available indicates that during this interval, the exponent m is equal to 6.62. The
validity of the power law lasts from χ = 0.21 until χ = 0.36. It is here emphasized that for
the specific experiment (and the remaining ones of this protocol) the majority of acoustic
hits (more than 75%) were detected after the maximization of the externally applied load.
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Figure 10. The evolution in the Natural Time domain of the F-function and of the load imposed for
the CSR marble specimen.

3.4. Shear of Mutually Interconnected Marble Blocks

In this section data obtained from a structural experimental protocol during which
complex structures consisting of two blocks of Dionysos marble, mutually interconnected
by means of an “I” shaped titanium connector, were subjected to pure shear. The titanium
connector is placed in grooves carved onto the marble blocks and is then completely covered
with cementitious material (Figure 11a). A detailed description of the geometry of the
structures (specimens) is given by Pasiou et al. [46]. The loading scheme intended to impose
a system of forces on one of the two blocks so that it moves parallel to the other (rigidly
clamped) block in order for the “I” connector to be under pure shear. Displacement-control
loading mode was adopted at a constant rate equal to 0.2 mm/min. Eight sensors were
used for detecting and recording the AE data. For the typical test studied here, catastrophic
fracture (of the moving block) occurred when the force applied attained a maximum value
of 27.5 kN. During the whole loading process N = 1092 acoustic events were recorded. The
temporal evolution of their amplitude is shown in Figure 11b, together with the respective
evolution of the load imposed.

For the calculation of the F-function n = 30 consecutive interevent time intervals were
used. The evolution of the F-function in terms of conventional time is shown in Figure 12a,
again, together with the evolution of the load applied. The sharp increase of the F-function
is detected at the instant with τ ≈ 860 s when the load attained a value of 27.2 kN, i.e.,
at about 99% of the respective maximum value reached during this experiment. In the
previous time interval, i.e., for τ < 860 s, the F-function exhibits progressively increasing
values with a series of local peaks, which are attributed to locally intense acoustic activity
due to the formation of many microcracks at the interface between the titanium connector
and the cementitious material and to friction between the two marble blocks and, also,
between the marble blocks and the cementitious material.
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Figure 11. (a) Sketch of the mutually interconnected marble blocks. The red arrows indicate the
direction of the imposed force. (b) The temporal evolution of the amplitudes of the acoustic events
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Figure 12. (a) The temporal evolution of the F-function and the load imposed. (b) The respective
evolution in the Natural Time domain for the mutually interconnected marble blocks under shear.
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The evolution of the F-function in the Natural Time domain is shown in Figure 12b
in juxtaposition to the respective one of the imposed loads (also, in Natural Time terms).
The existence of a power law governing the evolution of the F(χ) function is now observed
when the applied load approaches its maximum value, and the catastrophic fracture is
impending. The validity of the power law lasts from χ = 0.91 until χ = 0.97. By proper
fitting, the exponent m for the specific experiment was found equal to 21.5. This high value
is well explained by the fact that a great number of acoustic events are produced in a quite
short period of time, for the reasons mentioned above.

4. Discussion and Conclusions

The evolution of the F-function in the Natural Time domain was studied in a series
of five experimental protocols, during which Dionysos marble specimens of various ge-
ometries were subjected to different loading schemes. Both elementary and structural
protocols were considered. In spite of the wide variety of the protocols studied (in terms
of the geometry of the specimens and the loading schemes imposed) the evolution of the
F-function in the Natural Time domain exhibited a more or less self-consistent motive: The
F(χ) values increase progressively for the major portion of the loading process, with some
fluctuations, the number and intensity of which depend on the specific protocol. During
the very last loading stages, i.e., while macroscopic fracture is approaching, the evolution
of the F(χ) function is systematically governed by a power law of the form F(χ) = Aχm.
The characteristics of the domain that is governed by the above power law are briefly
summarized in Table 1.

Table 1. The characteristics of the interval during which the F-function expressed in terms of the
Natural Time concept is governed by a power law of the form: F(χ) = Aχm.

Experiment Natural Time Load Region Maximum
Load Exponent m

Direct tension [0.36–0.85] [2931 N–2928 N] 2933 N 4.65
Three-point bending [0.46–0.79] [647 N–643 N ] 656.9 N 8.80
Uniaxial compression [0.58–0.93] [89.9 MPa–94.2 MPa] 95.3 MPa 5.26

Diametral compression [0.21–0.36] [267 N–255 N] 267 N 6.62
Shear [0.91–0.97] [27.25 kN–27.45 kN] 27.5 kN 21.5

Note: the blue color indicates a load value before it reaches its maximum value and the red color indicates the
respective value after maximization of the load (stage of decreasing load).

It is concluded, therefore, that in case the acoustic activity, expressed in terms of the
F-function, is explored in the Natural Time domain, important information is extracted
regarding the proximity of the loaded system into its critical stage: The onset of validity of
the above-mentioned power law provides a clear signal indicating that the system entered
into the stage of impending macroscopic fracture.

The above conclusions are definitely supported by similar ones drawn by the analysis
of the electric activity developed during all five protocols presented in this study. The
temporal evolution of the electrical activity was here investigated by means of the pressure
stimulated currents (PSC) technique [47], which is based on the detection and recording of
weak electric currents, systematically produced during the mechanical loading of specific
classes of brittle materials. This laboratory sensing technique is successfully applied world-
wide, and it has been proven that it provides reliable pre-failure indicators [19,42,48–51] in
the form of a rapid increase of the intensity of the electric current while the specimens are
about to enter into its critical stage, namely that of impending fracture.

Therefore, it was considered that it would be useful to compare the findings concerning
the pre-failure indicator provided by the evolution of the F-function in the Natural Time
domain against the respective ones provided by the PSC technique. In this direction, PSC
data are here considered as obtained from the protocol with Circular Semi Rings under
diametral compression. The temporal evolution of the PSC recorded during the specific
experiment of this protocol discussed in Section 3.3 is plotted in Figure 13.
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Figure 13. The temporal evolution of the PSC recorded during the diametral compression of the
circular semi ring specimen discussed in Section 3.3.

It is seen from this figure that for the major portion of the test’s duration the PSC
increases smoothly and almost linearly with some rather smooth fluctuations. However, at
the instant t ≈ 470 s the intensity of the PSC exhibits a rapid increase. The specific time
instant, according to the data provided by the AEs, corresponds to a Natural Time instant
with χ ≈ 0.19, which is exactly the instant at which the function F(χ) starts increasing
rapidly obeying the power law of Equation (2) (see Figure 10).

Moreover, the PSC is maximized at the instant t ≈ 480 s, which corresponds to χ ≈
0.46, i.e., when the F(χ) function has already attained its maximum level. In other words, a
clear direct analogy is observed between the intensification of the electric activity and the
respective acoustic one as it is described by the F-function in the Natural Time domain.

The above conclusion is definitely supported by considering the electric current
recorded during the protocol with mutually interconnected marble blocks under shear,
discussed in Section 3.4. The respective evolution of the PSC is plotted in Figure 14.
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Figure 14. The temporal evolution of the PSC recorded during the experiment with mutually
interconnected marble blocks under pure shear, that was discussed in Section 3.4.
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It is seen that the strong intensification of the electric activity is detected at the instant
t ≈ 865 s, corresponding to χ ≈ 0.91, which is again the instant at which the function F(χ)
starts increasing rapidly obeying the power law of Equation (2) (see Figure 12b). Similarly,
the PSC attains its peak value at t ≈ 874 s which corresponds to χ ≈ 0.985, the instant
at which the F-function, in terms of the Natural Time domain has, also, attained its peak
value.

Quite similar conclusions concerning the temporal evolution of the PSC and its close
agreement with the respective one of the F-function analyzed in the Natural Time domain
are drawn from the electric activity recorded during the remaining protocols of this study.
Clearly, further research is needed with additional experimental protocols and a wider
range of materials. In any case, the conclusions of this preliminary study are encouraging,
indicating, at least, that the topic deserves further attention.
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