Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Analysis
2.2.1. Digestate
2.2.2. Soil
2.2.3. Vegetable Crops
2.3. Statistical Analyses
3. Results
3.1. Biomass and Nitrogen Use Efficiency Indexes
3.2. Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tani, M.; Sakamoto, N.; Kishimoto, T.; Umetsu, K. Utilization of anaerobically digested dairy slurry combined with other wastes following application to agricultural land. Int. Congr. Ser. 2006, 1293, 331–334. [Google Scholar] [CrossRef]
- Tambone, F.; Genevini, P.; D’Imporzano, G.; Adani, F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. Outlook for biogas and biomethane: Prospects for Organic Growth. World Biogas Summit, 6th July 2021. Available online: https://world-biogas-summit.com/wp-content/uploads/2021/07/Mr.-Sadamori-IEA_Biomethane.pdf (accessed on 19 November 2021).
- International Energy Agency. Outlook for Biogas and Biomethane: Prospects for Organic Growth. World Energy Outlook Special Report 2020. IEA, Paris. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/annex (accessed on 19 November 2021).
- García-Sánchez, M.; Siles, J.A.; Cajthaml, T.; García-Romera, I.; Tlustoš, P.; Száková, J. Effect of digestate and fly ash applications on soil functional properties and microbial communities. Eur. J. Soil Biol. 2015, 71, 1–12. [Google Scholar] [CrossRef]
- Muscolo, A.; Settineri, G.; Papalia, T.; Attinà, E.; Basile, C.; Panuccio, M.R.S. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Sci. Total. Environ. 2017, 586, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, M.R.; Romeo, F.; Mallamaci, C.; Muscolo, A. Digestate Application on Two Different Soils: Agricultural Benefit and Risk. Waste Biomass Valoriz. 2021, 12, 4341–4353. [Google Scholar] [CrossRef]
- Alburquerque, J.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldan, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani, F. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total. Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; Zilio, M.; Adani, F. Measuring the organic amendment properties of the liquid fraction of digestate. Waste Manag. 2019, 88, 21–27. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Horta, M.C. Normal Climatológica 1986–2015. Posto Meteorológico. Escola Superior Agrária de Castelo Branco; Editor IPCB: Castelo Branco, Portugal, 2016. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicar-Bonate; USDA United States Department of Agriculture, Circular Nr. 939; USDA United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- INIAP. Laboratório Químico Agrícola Rebelo da Silva. Manual de Fertilização das Culturas; INIAP: Lisbon, Portugal, 2006; p. 282. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- AFNOR: FD CR 13456. Amendments du Sol et Supports de Culture—Etiquetaje, Spécifications et Listes de Produits; AFNOR Normalisation: Paris, France, 2001. [Google Scholar]
- Siebert, S. Quality Requirements and Quality Assurance of Digestion Residuals in Germany. ECN/ORBIT Workshop the Future for Anaerobic Digestion of Organic Waste in Europe, Nuremberg. 2008. Available online: http://www.kompost.de/uploads/media/Quality_Requirements_of_digestion_residu%20als_in_Germany_text_01.pdf (accessed on 19 November 2021).
- Ministério da Economia. Decree Law 103/2015-Decreto Lei 103/2015, Diário da República, 1a série no 114-15 junho de 2015; Portuguese legislation; Ministério da Economia: Brasil, Portugal, 2015.
- AFNOR: NF U44-051. Amendments Organiques—Dénominations, Specifications et Marquage; AFNOR Normalisation: Paris, France, 2006. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture, FAO Irrigation and Drainage Pap. 29, Rev. 1; FAO: Rome, Italy, 1985. [Google Scholar]
- Voća, N.; Krička, T.; Ćosić, T.; Rupić, V.; Jukić, Ž.; Kalambura, S. Digested residue as a fertilizer after the mesophilic process of anaerobic digestion. Plant Soil Environ. 2005, 51, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Schulz, R.; Müller, T. Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr. Cycl. Agroecosyst. 2010, 87, 307–325. [Google Scholar] [CrossRef]
- Teglia, C.; Tremier, A.; Martel, J.-L. Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use. Waste Biomass Valorization 2011, 2, 43–58. [Google Scholar] [CrossRef]
- García-Albacete, M.; Tarquis, A.M.; Cartagena, M.C. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Sveyn, H.; Eder, P. End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals, Joint Research Centre Scientific and Policy Reports; Report EUR 26425 EN; European Commission: Brussels, Belgium, 2014. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Deshpande, V.V.; Telang, M.S. Pipet Method of Sedimentation Analysis. Rapid Determination of Distribution of particle Size. Anal. Chem. 1950, 22, 840–841. [Google Scholar] [CrossRef]
- Farag, A.A.A.; Abdrabbo, M.A.A.; Abd-Elmoniem, E.M. Using different nitrogen and compost levels on lettuce grown in coconut fiber. J. Hortic For. 2013, 5, 21–28. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.-K.; Guo, W.-Z.; Xu, Z.-G.; Wang, L.-C.; Ma, L. Yield, nitrogen use efficiency and economic benefits of biochar additions to Chinese Flowering Cabbage in Northwest China. Nutr. Cycl. Agroecosyst. 2019, 113, 337–348. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Malerba, A.D.; Pezzolla, D.; Gigliotti, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Manag. 2014, 34, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P. (Ed.) Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Lungu, O.I.; Dynoodt, R.F. Acidification From Long-Term Use Of Urea And Its Effect On Selected Soil Properties. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Rigby, H.; Smith, S.R. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Manag. 2013, 33, 2641–2652. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Wierzbowska, J.; Kovacik, P.; Krzebietke, S.; Zarczynski, P. Digestate as a substitute of fertilizers in the cultivation of Virginia Fanpetals. Fresenius Environ. Bull. 2018, 27, 3970–3976. [Google Scholar]
- Ehmann, A.; Thumm, U.; Lewandowski, I. Fertilizing Potential of Separated Biogas Digestates in Annual and Perennial Biomass Production Systems. Front. Sustain. Food Syst. 2018, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Möller, K. Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutr. Cycl. Agroecosyst. 2009, 84, 179–202. [Google Scholar] [CrossRef]
Treatments | Lettuce | Kale | ||||
---|---|---|---|---|---|---|
Before Planting | 1st Top-Dressing | 2nd Top-Dressing | Before Planting | 1st Top-Dressing | 2nd Top-Dressing | |
February 2020 | March 2020 | April 2020 | October 2020 | December 2020 | February 2021 | |
kg N ha−1 | ||||||
Control | 0 | 0 | 0 | 0 | 0 | 0 |
Ni85 | Ni35 | Ni25 | Ni25 | Ni35 | Ni25 | Ni25 |
CAN | CAN | CN | AS | AS | CAN | |
DG-N85 | DG-85 | 0 | 0 | DG-85 | 0 | 0 |
DG-N170 | DG-170 | 0 | 0 | DG-170 | 0 | 0 |
DG-N170+85 | DG-170+85 | 0 | 0 | DG-170+85 | 0 | 0 |
DG-N170+170 | DG-170+170 | 0 | 0 | DG-170+170 | 0 | 0 |
DG-N85+Ni60 | DG-85+Ni35 | Ni25 | 0 | DG-85+Ni35 | Ni25 | 0 |
DG+CAN | CAN | DG+AS | AS | |||
DG-N170+Ni60 | DG-170+Ni35 | Ni25 | 0 | DG-170+Ni35 | Ni25 | 0 |
DG+CAN | CAN | DG+AS | AS | |||
DG-N170+Ni25 | DG-170 | Ni25 | 0 | DG-170 | Ni25 | 0 |
CAN | AS |
DGL | DGK | |
---|---|---|
1 DM g kg−1 | 282 | 248 |
2 OM g kg−1 | 637 | 761 |
pH | 7.7 | 8.3 |
EC dS m−1 | 1.5 | 1.3 |
3 NO g kg−1 | 19.3 | 24.1 |
4 TKN | 29.7 | 29.7 |
C:N | 12 | 15 |
PT g kg−1 | 4.8 | 7.1 |
Pi g kg−1 | 4.5 | 6.8 |
Po g kg−1 | 0.3 | 0.3 |
WSP g kg−1 | 2 | 2.5 |
K g kg−1 | 17 | 20 |
Lettuce | Kale | |||
---|---|---|---|---|
Treatment | TKN | TKN | ||
Experiment | Nm kg N ha−1 | NO kg N ha−1 | Nm kg N ha−1 | NO kg N ha−1 |
Control | 0 | 0 | 0 | 0 |
Ni85 | 85 | 0 | 85 | 0 |
DG-N85 | 30 | 55 | 16 | 69 |
DG-N170 | 59 | 111 | 32 | 138 |
DG-N170+85 | 89 | 166 | 48 | 207 |
DG-N170+170 | 119 | 221 | 65 | 275 |
DG-N85+Ni60 | 90 | 55 | 76 | 69 |
DG-N170+Ni60 | 119 | 111 | 92 | 138 |
DG-N170+Ni25 | 84 | 111 | 57 | 138 |
pH | 1 OM | 2 CEC | Ca2+ | Mg2+ | Na2+ | K+ | Olsen P | Pi | Po |
---|---|---|---|---|---|---|---|---|---|
% | cmolc kg−1 | mg kg−1 | |||||||
6.4 (±0.04) | 5.4 (±0.05) | 36.9 (±3.81) | 7.30 (±0.17) | 0.90 (±0.02) | 0.02 (±0.005) | 1.37 (±0.17) | 149 (±11) | 663 (±59) | 373 (±21) |
pH | EC | MO | Nt | K | Ca | Mg | Na | |
---|---|---|---|---|---|---|---|---|
1 Year | dSm−1 | % | cmolc kg−1 | |||||
Lettuce-May_2020 | 6.1 | 0.13 | 6.1 | 2.7 | 1.44 | 7.45 | 1.22 | 0.04 |
Kale-March_2021 | 6.3 | 0.09 | 7.6 | 3.2 | 1.03 | 5.53 | 1.17 | 0.01 |
Significant | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p > 0.05 | p < 0.001 |
1 Treatment | ||||||||
Control | 6.2 cd | 0.09 b | 6.1 c | 2.5 c | 1.23 bcd | 6.50 ab | 0.95 de | 0.020 d |
Ni85 | 5.8 f | 0.13 a | 5.6 c | 2.4 c | 1.02 e | 5.99 b | 0.84 e | 0.021 cd |
DG-N85 | 6.3 c | 0.09 b | 6.1 c | 2.8 bc | 1.21 cd | 6.79 a | 1.09 cd | 0.026 bcd |
DG-N170 | 6.4 b | 0.10 b | 7.7 a | 2.9 abc | 1.35 abc | 6.50 ab | 1.23 c | 0.030 ab |
DG-N170+85 | 6.5 a | 0.12 a | 7.5 ab | 3.4 a | 1,43 a | 6.76 a | 1.51 b | 0.034 a |
DG-N170+170 | 6.5 a | 0.13 a | 7.6 a | 3.3 ab | 1.36 a | 6.96 a | 1.72 a | 0.034 a |
DG-N85+Ni60 | 6.0 e | 0.09 b | 7.2 ab | 2.9 abc | 1.10 de | 6.01 b | 1.07 cd | 0.026 bcd |
DG-N170+Ni60 | 6.1 d | 0.10 b | 7.7 a | 3.4 ab | 1.21 cd | 6.04 b | 1.14 c | 0.028 abc |
DG-N170+Ni25 | 6.3 c | 0.10 b | 6.4 bc | 2.8 abc | 1.21 cd | 6.87 a | 1.23 c | 0.028 abc |
Significant | p < 0.001 | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Interaction Year X Treatment | p < 0.001 | p < 0.001 | p > 0.05 | p > 0.05 | p < 0.01 | p < 0.01 | p < 0.001 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horta, C.; Carneiro, J.P. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Appl. Sci. 2022, 12, 248. https://doi.org/10.3390/app12010248
Horta C, Carneiro JP. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Applied Sciences. 2022; 12(1):248. https://doi.org/10.3390/app12010248
Chicago/Turabian StyleHorta, Carmo, and João Paulo Carneiro. 2022. "Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops" Applied Sciences 12, no. 1: 248. https://doi.org/10.3390/app12010248
APA StyleHorta, C., & Carneiro, J. P. (2022). Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Applied Sciences, 12(1), 248. https://doi.org/10.3390/app12010248