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Abstract: Graphene—a two-dimensional allotrope of carbon in a single-layer honeycomb lattice
nanostructure—has several distinctive optoelectronic properties that are highly desirable in advanced
optical communication systems. Meanwhile, silicon photonics is a promising solution for the next-
generation integrated photonics, owing to its low cost, low propagation loss and compatibility with
CMOS fabrication processes. Unfortunately, silicon’s photodetection responsivity and operation
bandwidth are intrinsically limited by its material characteristics. Graphene, with its extraordinary
optoelectronic properties has been widely applied in silicon photonics to break this performance
bottleneck, with significant progress reported. In this review, we focus on the application of graphene
in high-performance silicon photonic devices, including modulators and photodetectors. Moreover,
we explore the trend of development and discuss the future challenges of silicon-graphene hybrid
photonic devices.

Keywords: graphene; silicon photonics; optics communications

1. Introduction

The ongoing fourth industrial revolution [1] is driven by the tremendous quantities
of data associated with the internet of things [2], cloud computing [3], and big data ana-
lytics [4]. Fast and highly efficient tele- and data-communication systems are essential to
support these data intensive technologies. Optical communication technology plays a key
role in nearly every aspect of the modern communication links such as access networks,
aggregation networks and core networks [5]. Silicon optical interconnect chips, especially
silicon modulators and photodetectors, are at the heart of communication networks, thanks
to their CMOS compatible fabrication process, cost- and energy-efficient properties [6–8].

To meet the explosive demands of the data traffic, silicon optical interconnect chips
need to exhibit extraordinary performance, underscored by the following key merits: band-
widths above 100 GHz, photodetector responsivities larger than 1 A/W, modulation depth
larger than 3.5 dB and modulator power consumption less than 30 fJ/bit [9]. Pure silicon
devices cannot meet these goals simultaneously owing to the drawbacks of its inherent
material properties, such as its indirect bandgap of 1.14 eV and its carrier drift velocity of
around 1000 cm2/(V·s) [10]. Thanks to the impressive optoelectronic properties of graphene,
including its ultra-large heat conductivity [11], ultra-high carrier mobility [12], and ultra-
wide light absorption spectrum [13], the hybrid integration of monolayer graphene and
silicon photonic devices is a promising solution, with encouraging progress achieved in the
last decade [14–16].

In this review, we first analyze the current research status of silicon/graphene hy-
brid modulators, including thermal-optical modulators and electro-optical modulators.
Next, we introduce high-performance silicon/graphene photodetectors, covering both the

Appl. Sci. 2022, 12, 313. https://doi.org/10.3390/app12010313 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010313
https://doi.org/10.3390/app12010313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12010313
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010313?type=check_update&version=1


Appl. Sci. 2022, 12, 313 2 of 12

photodetection mechanisms and the state-of-the-art performances. Finally, we discuss the
challenges and the future trend of the silicon/graphene hybrid devices.

2. Physical Properties and Hybrid Graphene/Silicon Fabrication Processes

Graphene, a single-atomic-layer system consisting solely of carbon atoms formed in a
hexagonal lattice, holds several distinctive physical properties owing to its unique linear
energy dispersion relation [17]. These properties make it an ideal enhancement towards the
silicon modulators and detectors. Among these properties, the ultrahigh carrier mobility
of graphene is most widely exploited since it enables the ultrafast silicon modulator and
photodetector [12,18–20]. Moreover, thanks to the gapless nature of graphene, it absorbs
photons in wavelengths ranging from the visible to the infrared. This is highly favorable
for photodetection operating in the telecommunications C-band (1530–1565 nm), in which
silicon is transparent. Furthermore, graphene’s extraordinarily large heat conductivity and
relatively low light absorption can be exploited in high-performance nanoscale thermos-
optic phase shifters within silicon photonics. These properties combine to exhibit superior
performance in terms of the tuning efficiency and response time [21–25], when compared
to traditional p-i-n or metallic microheater structures, which will be discussed in detail in
the Section 3.

The fabrication process of the silicon/graphene hybrid devices typically consists of
three steps. The first step is the fabrication of passive silicon photonic circuit. In this
step, the grating coupler, waveguides, and other passive elements is fabricated using a
lithographic and etching processes. Subsequent planarization then allows the graphene to
be placed flat on top of the silicon structures. Generally, graphene is first deposited with a
chemical vapor deposition (CVD) process on a cooper coil. Then, it is then transferred onto
the target area of the chip using a wet or dry transfer process [26]. This step is crucial, and
the most challenging, as the quality of the transfer (and therefore of the graphene sample
on the device) determines the performance of the graphene-based components on the chip.
The third step is the patternization and metallization of the silicon/graphene hybrid chip,
which is achieved by standard CMOS fabrication processes. In order to reach ideal Ohmic
contact between the graphene and the metal pad, the type of the metal should be carefully
chosen since large contact resistance can lead to large RC constant thus low operation speed
of the device. Normally, titanium (Ti), palladium (Pd) and platinum (Pt) are ideal choices
since they hold low contact resistance with graphene [27].

3. High-Performance Modulation Devices Based on Graphene

In optical telecommunications scenarios, optical modulators are used to convert the
encoding of electronic data to the optical domain. Any combination of photonic degrees of
freedom can be utilized, for example intensity, phase, and/or frequency [28–30]. Afterwards
low-loss optical fibers are used to achieve long distance communication links. Integrated
silicon optical modulators allow an orders-of-magnitude decrease in size, weight and
power in modulation systems, and thus have attracted great attention since their first
demonstrations [30].

Among these modulation mechanisms, intensity modulation is most widely applied
due to its simplicity. There are two typical methods to realize intensity modulation in
integrated silicon chips. One method is to directly alter the absorption of the active
medium, and the other is to convert phase modulation to intensity modulation with
interference structures, for example using a Mach-Zehnder interferometer (MZI) or a
micro-ring resonator (MRR). Both methods rely on the efficient modulation of either the
refractive index of the waveguide or the absorption of the active medium. For both types
of phase shifter, graphene’s impressive optical and electrical properties offer a significant
enhancement in key performance metrics, such as bandwidth and power consumption.
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3.1. Thermo-Optic Modulators Based on Graphene

Thermo-optic phase modulators change the refractive index of the waveguide via a
temperature differential. This is typically realized with a metallic microheater fabricated
proximally to the silicon waveguide [31–33], or a conducting p-i-n structure close to, or part
of the optical waveguide [34]. Typically, a ~1 µm layer of silicon dioxide is fabricated
between the metallic microheater and waveguide to localize heating to the waveguide,
while eliminating the strong absorption light by the metallic microheater (Figure 1a).
However, this insulative layer impedes the speed and efficiency of heat transmission from
the heater to the waveguide, resulting in high power consumption and low modulation
speed. In p-i-n based structures, the induced carriers cause additional optical loss by
photonic absorption by mid-band doner states.

Graphene is considered to be an ideal replacement of the metallic microheater as close
to transparent, while retaining strong Joule heating properties, removing the requirement
an oxide layer (Figure 1a) [35]. Based on this principle, graphene microheaters have been
applied in many fields including flexible heaters and heat conductors, while its application
as a thermo-optic modulator in silicon photonics was first proposed by Yu et al. in 2014 [21].
Figure 1b shows graphene acting as a heat conductor to deliver heat from a non-local
traditional metal heater to the silicon waveguide integrated within a MZI structure. The
tuning efficiency is around 0.07 nm/mW while the 90% rising and decaying times (the
time it takes for the change in temperature to reach 90% of the maximum value from rest)
are 20 µs. It should be noted that in this work graphene only acts as a thermal conductor,
rather than a microheater.

In 2015, Bao et al. reported a novel thermo-optic modulator where graphene operates
as a transparent microheater fully covering a silicon MRR (Figure 1c). Thanks to the
ultrahigh heat conductivity of graphene, the response time of the graphene-based thermo-
optic MRR modulator is only 750 ns. Meanwhile, the tuning efficiency is enhanced to
0.1 nm/mW [22]. To further enhance the performance of the thermo-optic silicon modulator
based on graphene, the shape of the graphene is patterned to only cover the optical mode,
rather than covering the entire device. This method is widely applied in silicon MRRs
and micro-disk resonators, with tuning efficiencies of 0.33 nm/mW and 1.67 nm/mW
demonstrated respectively, leveraging efficient heat transport from the microheater to the
resonator [23,24].

Photonic crystal waveguides are also proposed to enhance graphene microheater effi-
ciency (Figure 1d). In 2017, Yan et al. combined the graphene microheater with a photonic
crystal waveguide, enabling a fast-tuning speed of 525 ns and slow-light enhanced tuning
efficiency of 1.07 nm/mW [36]. Enhancement via photonic crystal nanocavities has also
been demonstrated: Ref. [25] exhibits a tuning efficiency of 3.75 nm/mW, by virtue of
the tight confinement of the optical mode within the cavity. These works demonstrate
the significant advantages of graphene-based approaches when compared to the conven-
tional microheaters approaches in silicon photonics, in terms of both tuning efficiency and
modulation speed.

3.2. E-O Modulation

Although the modulation speed of thermo-optic modulator based on graphene micro-
heater can be in the MHz range, this is insufficient for high-speed optical communication
systems where the operation bandwidth is in the tens of gigahertz (GHz). Here, electro-
optical silicon/graphene modulators, which utilize the electro-optic effect to modulate
light, are more applicable. Indeed, graphene’s ultra-high carrier mobility may enable
modulation speeds of hundred gigahertz, which is particularly attractive for data- and
tele-communication systems.
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Reprinted from [Appl. Phys. Lett. 105, 251104 (2014)], with the permission of AIP Publishing. (c) MRR 
silicon thermo-optic modulator covered by graphene microheater. Reproduced from Ref. [22] with 
permission from the Royal Society of Chemistry [22]. (d) Hybrid integration of silicon photonic 
crystal structures and the graphene microheater [36]. 

3.2. E-O modulation 
Although the modulation speed of thermo-optic modulator based on graphene mi-

croheater can be in the MHz range, this is insufficient for high-speed optical communica-
tion systems where the operation bandwidth is in the tens of gigahertz (GHz). Here, elec-
tro-optical silicon/graphene modulators, which utilize the electro-optic effect to modulate 
light, are more applicable. Indeed, graphene’s ultra-high carrier mobility may enable 
modulation speeds of hundred gigahertz, which is particularly attractive for data- and 
tele-communication systems. 

The first experimental demonstration of a silicon/graphene electro-optical modulator 
operating at communication wavelengths is reported by Liu et al. in 2011 [37]. Here, a 
capacitor formed by graphene, Al2O3, and silicon waveguide forms the core of the electro-
optical modulator. The Fermi level of the graphene sheet is manipulated by applying ex-
ternal voltage on the electrical pad. When the Fermi level is close to the Dirac point, the 
guided light within the silicon waveguide experiences absorption from graphene, while 
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width of 29 GHz, which is capable of transmitting 50 Gbit/s non-return-to-zero data [40]. 

Figure 1. Thermo-optic modulators based on graphene for silicon photonics: (a) Schematic of the
cross-section of a thermo-optic modulator based on metallic microheater (left) and graphene micro-
heater (right). (b) Silicon thermo-optic modulator employing graphene as the heat conductor [21].
Reprinted from [Appl. Phys. Lett. 105, 251104 (2014)], with the permission of AIP Publishing. (c) MRR
silicon thermo-optic modulator covered by graphene microheater. Reproduced from Ref. [22] with
permission from the Royal Society of Chemistry [22]. (d) Hybrid integration of silicon photonic
crystal structures and the graphene microheater [36].

The first experimental demonstration of a silicon/graphene electro-optical modulator
operating at communication wavelengths is reported by Liu et al. in 2011 [37]. Here, a capac-
itor formed by graphene, Al2O3, and silicon waveguide forms the core of the electro-optical
modulator. The Fermi level of the graphene sheet is manipulated by applying external
voltage on the electrical pad. When the Fermi level is close to the Dirac point, the guided
light within the silicon waveguide experiences absorption from graphene, while shifting
the Fermi level away from the Dirac point results in transparency. Although this first
result is not as impressive as the state-of-the-art silicon modulators, it lays the theoretical
foundation for the practical use of graphene within electro-optical modulators.

To enhance the modulation depth of the graphene modulator, various schemes have
been reported, focusing on increasing the graphene absorption. The most straightforward
method is to use more than one layer of graphene [38–41], which was first proposed by
Liu et al. in 2012 [38]. Here, the double layer graphene and a thick oxide layer form a p-i-n
junction as the active region for modulation (Figure 2a), leading to a larger modulation
depth of 6.5 dB, though the bandwidth is limited to around 1 GHz. By optimizing the
RC constant, Giambra et al. showed a double-layer graphene modulator exhibiting a
bandwidth of 29 GHz, which is capable of transmitting 50 Gbit/s non-return-to-zero
data [40].

Another method to reach higher modulation depths is to employ resonance structures
such as photonic crystal cavities and MRRs. Photonic crystal cavities have the advantages of
ultra-compact light confinement and could be a promising way to reach higher modulation
depth [42–44]. According to Gan et al.’s report, a high modulation more than 10 dB is
demonstrated by modulating both the quality factor and the resonance wavelength of the
cavity (Figure 2b). Meanwhile, the hybrid integration of a MRR with a graphene monolayer
was first introduced in 2014 (Figure 2c) [43]. By altering the resonance wavelength and the
quality factor of the MRR, the resonance is modulated with a depth of 40% via gate tuning
of the Fermi level in the graphene. Here, the coupling condition of the MRR could also
leveraged to reach higher modulation depths. Ding et al. demonstrated that the modulation
depth could be as high as 12.8 dB when the MRR is covered with the optimum length of
graphene and working in the slightly under-coupled regime, close to the critical-coupling
condition (Figure 2d) [45]. Recently, the silicon slot waveguide is also reported to enhance
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the modulation depth of the graphene photodetector, with a modulation depth up to 25 dB
experimentally demonstrated [46–49].
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1482–1485. Copyright 2012 American Chemical Society. (b) Graphene modulator based on photonic
crystal nanocavity. Reprinted with permission from Nano Lett. 2013, 13, 2, 691–696. Copyright 2013
American Chemical Society. (c) Graphene modulator based on MRR. Reprinted with permission
from Nano Lett. 2014, 14, 12, 6811–6815. Copyright 2014 American Chemical Society. (d) High
modulation depth graphene modulator based on altering the coupling condition of MRR. Reprinted
with permission from Nano Lett. 2015, 15, 7, 4393–4400. Copyright 2015 American Chemical Society.

Although the modulation depths in the above-mentioned devices were optimized
to an impressive scale, the modulation bandwidth was limited to less than 1 GHz. This
is mostly due to the large RC constant of the circuit. To address this issue, the Lipson
group proposed a graphene modulator with a graphene monolayer replacing the metal
pad within the classical capacitor structure of the modulator, allowing the ultra-high carrier
mobility of graphene to be fully utilized. This resulted in a high modulation bandwidth of
30 GHz and a strong modulation depth of 15 dB [19]. Moreover, they also reported a high-
performance graphene modulator at cryogenic temperature with an intrinsic bandwidth of
200 GHz [50]. Most recently, a high-performance modulator utilizing a 2D–3D dielectric
integration in a high-quality encapsulated graphene device was used to exhibit a ~39 GHz
bandwidth, resulting in a three-fold increase in modulation efficiency when compared



Appl. Sci. 2022, 12, 313 6 of 12

to previously reported high-speed modulators [20]. Meanwhile, the electro absorption
graphene modulator could also be an ideal candidate as a photonic neuron thresholder,
as reported by Volker’s group in 2021 [51]. Besides the intensity modulator, the phase
modulator based on graphene with a modulation efficiency of 0.28 V·cm and an operation
bandwidth of 5 GHz has also been demonstrated [52].

4. High-Performance Photodetector Based on Graphene

Due to its transparency in the telecommunications C-band near 1550 nm, silicon is
inefficient in converting light into an electrical signal. Up to now, the mainstream of inte-
grated photodetectors in silicon photonics for the communication wavelengths includes
employing germanium (Ge) or monolayer graphene as photodetection material [53,54].
Ge-Si hybrid photodetectors have been widely studied and reached significant maturity
thanks to their ability to absorb light in the telecommunications band near 1550 nm. High re-
sponsivity larger than 1 A/W has been achieved and an impressive bandwidth of 265 GHz
has been demonstrated recently [53,55]. Compared to Ge/Si photodetectors, graphene/Si
photodetectors hold great potential in reaching ultra large operation bandwidth thanks
to the ultrahigh carrier mobility of graphene as well as its absorption ability in a broader
wavelength range. For graphene/silicon photodetectors, there are three different mech-
anisms for the photodetection, which are photovoltaic effect (PV), photo-thermoelectric
effect (PTE) and photo-bolometric effect (PB). The graphene photodetectors based on these
three mechanisms are discussed in detail below.

The PV effect relies on the separation of photoexcited electrons and holes by an
applied electric field to generate photocurrent, which can be utilized by graphene/silicon
photodetector structures with normal light incidence [53,54]. As the representative work
of early endeavors in graphene-based photodetectors, Xia et al. demonstrated that the
graphene/Si photodetectors can reach 40 GHz [55]. Moreover, the intrinsic response time
of graphene photodetectors is experimentally demonstrated to be 2.1 ps, indicating a high
bandwidth of 262 GHz (Figure 3a) [56].

However, the responsivities of graphene-based photodetectors with normal light inci-
dence are normally low. To increase the light-graphene interaction and obtain better perfor-
mances, waveguide-based photodetectors have been extensively researched [18,46,57–59].
A typical waveguide integrated structure is shown in Figure 3b [46]. In their design,
the graphene lies on top of the silicon slot waveguide as the absorption layer. Here, the
graphene monolayer absorbs the light within the waveguide mode’s evanescent field, and
a responsivity of 0.273 A/W is measured.

Meanwhile, hybrid integration of the silicon waveguide and graphene could also be
fabricated at the wafer-scale, thanks to its low fabrication complexity [60]. The proposed
photodetector holds a bandwidth of 41 GHz and the maximum responsivity is 46 mA/W. To
further optimize the performance of the photodetector, Ding et al. proposed a waveguide-
coupled integrated graphene plasmonic photodetector (Figure 3c) [57]. The plasmonic slot
waveguide is formed by two different metallic slabs with a gap of 120 nm. This structure
induces subwavelength light confinement within the surface of the graphene, dramatically
increasing light absorption within the graphene. Meanwhile, different types of metal
cause different doping levels in the graphene, enhancing the internal electrical field in
the gap and more effectively separating the photogenerated carriers, leading to a high
responsivity. Owing to these two points, the device features responsivity up to 0.36 A/W
and an operation bandwidth larger than 110 GHz.

When the plasmonic gap becomes even narrower (less than 50 nm), there exist a
competition between the PV and PB effect within the photodetection process, as Ma et al.
thoroughly investigated [61]. An impressively high responsivity of 0.7 A/W at 1310 nm
is achieved based on their work with PB effect. The PB effect refers to the modification
of the channel resistance by either a change in the number of carriers or a change of
the temperature-dependent carrier mobility. Thus, the PB effect leads to a negative pho-
tocurrent due to the increased channel resistance caused by the smaller mean free path
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induced by a temperature change due to photon absorption. A typical work based on PB
effect is reported by Ma Ping employing a bowtie structure to reach a high responsivity
of 0.5 A/W and a bandwidth of 110 GHz (Figure 4a) [62]. Wang et al. demonstrated a
coherent, plasmonic-structure-based graphene optical receiver (Figure 4b) which is capable
of the reception of both a 200 Gbit/s quadrature phase-shift keying (QPSK) signal and a
240 Gbit/s 16 quadrature amplitude modulation (16 QAM) signal on a single-polarization
carrier, thanks to the ultrahigh operation bandwidth of the graphene photodetector [58].
Finally, a plasmonic/silicon hybrid graphene photodetector covering 1.55 µm and 2 µm is
reported by Guo et al. where the responsivity is 0.07 A/W and 0.4 A/W at 1.55 µm and
2 µm respectively [63].
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From the above-mentioned works on plasmonic graphene photodetectors, we can
conclude that plasmonic structures can dramatically optimize both the responsivity and
the bandwidth of graphene-based receivers. Metallic absorption remains an obstacle,
acting to reduce responsivity, since its characteristic absorption does not contribute to the
photocurrent. To address this issue, Yan et al. proposed and demonstrated a double slot
structure consisting of both the silicon slot waveguide and the plasmonic slot waveguide
(Figure 4c) [59]. By optimizing the structural parameters, the metallic absorption is reduced
to 0.2 dB/µm and the responsivity increased to 0.6 A/W.

Besides the PV and PB effect, the PTE effect has also recently been employed in
silicon/graphene photodetectors. The PTE effect uses on the photon-induced electron
temperature difference between two different graphene doping regions, which is normally
achieved by external gating. Thus, the photocurrent is generated by an optically induced
temperature gradient, which is proportional to the Seebeck coefficient. By optimizing the
gate and source voltages simultaneously, a maximum responsivity of 0.36 A/W and a 3-dB
operation bandwidth of 42 GHz is reached [64].
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graphene photodetectors [58]. (c) Double-slot graphene photodetector with a high responsivity [59].

Moreover, photodetectors based on PTE effect can directly convert the optical signal
to voltage signal, removing the need for a transimpedance amplifier. Various structures
including photonic crystal waveguides [65], mircro-ring resonators [66] and double layer
graphene [67] have been employed to enhance the light-matter interaction of the PTE
effect, reaching impressive performances, such as responsivity higher than 90 V/W and
operation bandwidths larger than 65 GHz. Although the external gating function adds
complexity to the fabrication process compared to the photodetectors based on PV and PB
effect, the PTE graphene photodetector is appealing to industry since it supports the direct
connection between the photodetector and the read-out electric circuit. The performances
of a typical graphene/silicon photodetector and state-of-the-art photodetectors based on
conventional bulk materials is compared in Table 1. Graphene/silicon photodetector can
achieve high ultra-high bandwidth more than 110 GHz, thanks to the ultrahigh carrier
mobility of graphene. The responsivity of graphene photodetector is comparable with
the other material platforms and can be further improved with further optimization by
enhancing the light-graphene overlap and interaction.

Table 1. Comparison of the key parameters of the state-of-the-art photodetectors based on differ-
ent materials.

Absorption
Material Responsivity Bandwidth Size Operation Wavelength Range

InGaAs [68] 0.68 A/W 32 GHz 1 µm 1260 nm~1360 nm
InP [69] 0.8 A/W 40 GHz 5 µm 1240 nm~1650 nm
InP [70] 0.5 A/W 130 GHz N. A. 1310 nm and 1550 nm
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Table 1. Cont.

Absorption
Material Responsivity Bandwidth Size Operation Wavelength Range

α-Ge [71] 0.35 A/W >100 GHz 20 µm 1270 nm~1330 nm
Ge [55] 0.3 A/W 265 GHz 10 µm 1550 nm

Graphene [57] 0.36 A/W >110 GHz 20 µm 1540 nm
Graphene [59] 0.6 A/W 78 GHz 30 µm 1550 nm
Graphene [62] 0.5 A/W >110 GHz 6 µm 1480 nm~1620 nm
Graphene [63] 0.4 A/W >40 GHz 20 µm 1550 nm and 2000 nm

5. Outlook

In the past decade, we have witnessed the impressive rise of graphene within silicon
photonics. Silicon photonic modulators and photodetectors with outstanding performances
have been reported by several groups, leveraging to the exceptional properties of graphene.
However, there are several challenges that hinder further development of silicon/graphene
hybrid devices.

The first is to include graphene structures in optimized foundry processes for com-
mercial, wafer-scale fabrication featuring silicon/graphene components. Up to now, most
reports rely on the wet transfer of CVD-grown or exfoliated graphene onto the target
substrate. This is suitable for prototype demonstrations, but the typical uniformity of the
fabricated devices is lacking. Moreover, the wet transfer process can induce particles that
significantly increase the transmission loss of the silicon chip. Fortunately, there is already
exciting progress on this front [72,73], and we expect wafer-scale silicon/graphene hybrid
devices without the issue of uniformity and excess loss soon.

The second is enhancing the light-graphene interaction. Although the atomic thickness
of graphene has brought advantages in certain applications—especially the transparent
microheater—it also causes low modulation depth and low responsivity in the photodetec-
tor. A lot of effort has been dedicated to enhancing the absorption of the graphene layer
and significant progress has been made. However, the overall performance in terms of the
modulation depth and responsivity so far only matches devices based on bulk materials
and is achieved at the expense of sacrificing bandwidth. Therefore, further enhancing
the light-graphene interaction while maintaining the advantages of the graphene-based
devices remains a challenging but extremely valuable topic.

Overall, both silicon photonics and graphene technology are still in rapid development,
while the hybrid integration of these two cutting-edge platforms holds great potential.
We believe that once the above-mentioned challenges are fully addressed, hybrid sili-
con/graphene optoelectronic devices will enable truly new technological capability, both
in industry and for the scientific community.
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