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Abstract: This paper presents the development and implementation of integrated intelligent CAD
(computer aided design) system for design, analysis and prototyping of the compression and torsion
springs. The article shows a structure of the developed system named Springs IICAD (integrated
intelligent computer aided design). The system bounds synthesis and analysis design phases by
means of the utilization of parametric 3D (three-dimensional) modeling, FEM (finite element method)
analysis and prototyping. The development of the module for spring calculation and system inte-
gration was performed in the C# (C Sharp) programming language. Three-dimensional geometric
modeling and structural analysis were performed in the CATIA (computer aided three-dimensional
interactive application) software, while prototyping is performed with the Ultimaker 3.0 3D printer
with support of Cura software. The developed Springs IICAD system interlinks computation module
with the basic parametric models in such a way that spring calculation, shaping, FEM analysis and
prototype preparation are performed instantly.

Keywords: integrated intelligent CAD system; springs; parametric 3D modelling; FEM analysis;
prototyping; C#

1. Introduction

Springs are one of the most fundamental elements in the wide spectrum of mechanical
engineering applications [1]. A spring represents an elastic body whose function is to store
strain energy when deflected by the force and return the same amount of energy when
being released [2,3]. Traditional spring design has several forms, which are used to perform
different functions in various fields of use, such as manufacturing processes, automotive
design, electronics, and consumer goods [4]. The design process of springs is based on
material characteristics mostly defined by the shear modulus and maximum shear stress of
the material, and a series of design parameters such as mean coil diameter, inner and outer
coil diameters, wire diameter, and pitch [5,6].

In the recent period, the rapid development of new technologies has brought a new
industrial era. The current industrial reform is based on integrating the existing knowl-
edge of the classical design process with the modern manufacturing and production
services [7,8]. Continuous improvements in the firmly based conventional technologies
with introduction to complex knowledge-based systems results in new, higher degree
technology implemented in mechanical and manufacturing fields [9–11]. Nowadays, me-
chanical engineering is becoming a growing domain with an upgraded level of automation
and intelligent manufacturing processes which results in a higher degree of parameter
control, and the minimization of rejections and errors, i.e., product defects, reduction of
unplanned downtimes and improved flexibility [12,13]. As is the case with other mechan-
ical components, spring design is commonly carried out with various tables and charts
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which contain pre-determined specifications. The exact specification of spring quantities is
still unknown to a certain extent. Even though spring theory and accumulated practical
knowledge have developed over the years, the range of materials, sizes and shapes is so
great that the design process represents a severe engineering challenge. Even with the
assistance of a computer, designers often need to oversimplify the spring design proce-
dure [14–16]. Computer assistance provides various types of engineering analyses used
for design verification. FEM analysis, incorporated in the CAD system, is the most used
numerical analysis in practice, as it has reached a high level of sophistication in the calcula-
tion capabilities [17,18]. The design verification process relies on a valid 3D representation
of a product, which can be parametrized in order to achieve variable geometry, i.e., various
design solutions. The parametrization procedure interlinks the geometrical sizes of a 3D
model with a functional approach. Computer assistance is also reflected in the prototype
preparation modules, used for product prototyping which comes in handy for gaining an
answer to a specific problem or testing hypothesis [19].

The effect of the spring geometry and corresponding behavior under the applied
load is quite an interesting thematic in many branches of science, as many researches
consider various factors which can be influenced for the purpose of achieving better spring
design [20–22]. However, the spring design process itself requires an establishment of a
knowledge-based and intelligent approach which will help engineers not only in a design
process but also in decision making. Considering that, a system with an intelligent approach
for the spring design is created. This research presents the novel method for spring design
via the developed Springs IICAD system.

2. Materials and Methods
2.1. Problem Identification

Modern product design is defined as a complex creative process. With ever-growing
information flow and a level of knowledge needed for solving design problems, a high
degree of specialization is required. Computer technologies, having constantly developed
and changed from the past up to the present, have become an important and indispensable
part in every area of daily life. Used in the mechanical engineering field, computers
are also utilized in the design process for various purposes. Contemporary designers
need to be trained to work with new tools that meet the high requirements of the design
agency, where the application of computers is necessary at all stages. Design stages usually
involve two types of tasks: symbolic reasoning (synthesis) and numerical computation
(analysis). The current CAD technology is very efficient for the mentioned tasks, especially
for graphical presentation, but it lacks when it comes to providing support to the designer.
Synthesis has the greatest impact on the production cost and the product quality. Therefore,
automatization of the synthesis can improve efficiency and quality of the design process.
With the implementation of the object-oriented programming techniques, appropriate
support system architecture can be made, for the areas of the design process which are not
sufficiently developed [23]. The structure of the Springs IICAD system, developed for the
purposes of the spring calculation, design, FEM analysis and prototyping is explained in
this article. The system is based on a modular principle, so that designer in interaction
with the computer can automatically perform multiple activities. The basic geometry of
compression and torsion springs is shown on Figure 1.

Development of the Springs IICAD system required proper knowledge of spring the-
ory [24–26]. Although a mathematical model expresses what is happening inside the spring,
there are still many unknowns in this field, so that the spring design problem often relies on
the subjectivity of a designer. Although theory has been refined over the years, and many
factors have changed as the experience increased, the range of sizes, shapes and materials
is so great that theory is stretched to the extremes. Deployment of AI (artificial intelligence)
technologies into the existing CAD systems is a very efficient way of implementing an
intelligent design workspace that is mainly featured on creativity. The developed Springs
IICAD system represents one of the AI techniques called KBS (knowledge-based system),
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meaning ES (expert system), based on knowledge [27–29]. A designer, in an interaction
with a computer, can simultaneously conduct multiple activities during the design process
of the spring. The architecture of the Springs IICAD system is shown on Figure 2.
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2.2. Design of the Springs IICAD System

The system was designed and developed in the Microsoft’s programming environ-
ment Visual Studio with the Windows Forms Application module, where background
programming was realized with the C# programming language. The Springs IICAD system
was designed through multiple panels used to create a side menu from where four main
forms may be accessed. Main forms represent the modules which include compression
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spring computation, compression spring trial and error method, torsion spring computation
and torsion spring trial and error method. All of the system modules require input data,
but there are slight differences in the manner of their use. Computing modules calculate
the parameters for the new spring design, which are interlinked with the parametric 3D
models, structural analysis files and prototype preparation environment through a set of
specific buttons. Trial and error methods are used to check if the existing spring design
will satisfy the working conditions. Standard spring arrangements are built-in into these
modules, and with a few input parameters, a computation scan can be performed [30–32].
Trial and error modules are featured with the condition logs which prompt users if existing
spring design is safe or not. Figure 3 shows the layout of the Springs IICAD system.
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The standard built-in spring arrangements only consider the constant pitch values.
The Springs IICAD system is built with a classic spring’s requirements assumption, and it
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does not include the calculation of the unpredicted loads and dynamic conditions that may
occur in the exploitation of the mechanism or the machine in which the springs are built in.

2.3. Spring Materials

The springs IICAD system has an incorporated database of the most extensively used
materials for spring manufacturing as shown with the drop-down menus on Figure 3.
One of those materials is a high-carbon drawn spring steel often referred to as a patented
steel wire which has four grades. The selection of a certain material grade depends on the
exploitation of the designed spring, i.e., a spring can be subjected to various load conditions,
such as static, moderate, highly stress or dynamic loads. The second most commonly used
material for the spring wires is unalloyed, oil-hardened spring wire with two grades, SW
and VW, whose application is directed for fluctuating stress conditions. A drop-down
menu for each of these materials and their grades contains the ultimate tensile strengths
for these wires. The modulus of rigidity for these wire materials amounts to 81370 MPa,
as shown in one of the input labels on Figure 3. Figure 4 shows the C# code snippet used
for the database programming.
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2.4. Mathematical Models of Compression and Torsion Springs

In a compression spring, the external force tends to shorten the spring, i.e., the spring
is compressed. The external force acts along the axis of the spring and induces torsional
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shear stress in the spring wire. Although the spring is under compression, the wire of the
spring is not subjected to compressive stress. Resultant stress, which includes direct shear
stress, torsional shear stress and stress concentration due to curvature is given by:

τ =
8KPD

πd3 (1)

whereas:
K—stress factor or Wahl factor;
P (N)—external force;
D (mm)—mean coil diameter;
d (mm)—spring wire diameter. Wahl factor is given by:

K =
4C − 1
4C − 4

+
0.615

C
(2)

whereas:
C = D/d—spring index.
Torsion springs transmit torque to a specific part in the mechanism in which they are

applied. The torsion spring resists the bending moment, which tends to wind up the spring.
Similar to the compression springs, the main term is misleading, because the spring wire is
subjected to bending stresses. Induced bending stress is calculated as:

σb =
32Ki Mb

πd3 (3)

whereas:
Ki—stress concentration factor at the inner fibers of the spring coil;
Mb (Nmm)—bending moment;
d (mm)—wire diameter.
With known material properties and housing dimensions in which the springs will op-

erate, spring wire diameter can be expressed from the Equations (1) and (2). These equations
are implemented into modules for computation of new spring design.

2.5. Trial and Error Method

In practice, springs are designed with the trial-and-error method. The trial-and-error
method has several steps:

– Assume the spring dimensions (primarily wire diameter d);
– Acquire ultimate tensile strength of the spring material and calculate permissible stress;
– Calculate induced stresses with the Equations (1) and (2);
– Examine if the permissible stress is greater than induced stress. If not, above steps

should be repeated with the greater wire diameter;
– The procedure needs to be repeated until the value of induced stress is less than the

value of the permissible stress.

The abovementioned procedure is built-in into trial-and-error modules for the com-
pression and torsion springs. Once the input parameters are set, trial and error conditions
are checked. For the compression springs, the trial-and-error method is based on calculating
the value of required condition value:

KC3 =

(
πD2τ

)
8P

(4)

whereas:
C = D/d—spring index.
It is noticeable that Equation (3) is a different form of Equation (1), just expressed via

the spring index. The value of KC3 is calculated on the basis of material properties, i.e.,
permissible stress. This value is then compared with actual spring parameters, where the
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real KC3 condition is computed. As long as the real condition value is lower than the
required value, the spring design is not safe. For the torsion springs, the trial-and-error
method uses a bit of a different approach. In this case, the trial-and-error method compares
induced bending stress σb with the permissible stress σt. The spring design will be safe if:

σb < σt (5)

Apart from the mentioned conditions, the Springs IICAD system checks the values
of the spring indexes. A spring index in a range of 4 to 12 is considered to be best for
manufacturing purposes. When the spring index is low (C < 4), stresses in the spring
wire will increase excessively due to the effect of curvature. When the spring index is high
(C > 12), the spring may buckle and tangle during work operations. The trial-and-error
modules of the developed Springs IICAD system have three condition logs which include
spring index log, trial-and-error log and spring design log. The spring design log informs
the user if the spring design is safe or not, based on outputs of two other condition logs.
The spring design is safe if both of the conditional logs are satisfied. Figure 5 shows a
flowchart of the spring design condition log.
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2.6. Parametrization and Generation of the 3D Models

The parametric modeling enables the creation of new design solutions based on
previous designs. Because these modeling tools offer interoperability in a parametric
manner, no model re-creation is necessary, giving the designer more time to explore a
wider range of design alternatives [33–36]. The generated 3D models of the compression
and torsion springs are completely parametrized and support automatic modification
for all dimensions. Once the Springs IICAD modules for new spring design perform
computations, the system is interlinked with CATIA software in which 3D models were
made. This way parameters are automatically updated with output data values obtained
from the developed system. Parameters which are formed both for compression and torsion
springs include spring diameter, wire diameter, pitch value and number of revolutions.
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The torsion spring model has one additional parameter—length of free ends, as shown
in Table 1.

Table 1. Compression and torsion spring design parameters.

Developed
Parameters/
Spring Type

Number of
Revolutions

(-)

Pitch Value
(mm)

Spring
Diameter

(mm)

Wire
Diameter

(mm)

Length of
Free Ends

(mm)

Compression X X X X 7

Torsion X X X X X

2.7. Spring Model Configurations

In addition to the manipulation of the basic geometric parameters, Springs IICAD
system enables the user to choose between multiple spring type configurations, i.e., styles
of end.

There are four common methods, both for compression and torsion springs, in which
the ends can be formed. For the compression springs, the end styles are: plain, plain and
ground, square, square and ground. Torsion springs have the following end styles: 90◦,
180◦, 270◦ and 360◦. Accordingly, eight models were developed, all with the mentioned
parameters, just with differences in the end styles. Once the user selects the preferred end
style from the offered drop-down list and performs the calculation, the Springs IICAD
system will change the parameters of the model. Standard-end style arrangements for
compression and torsion springs are shown on Figure 6.
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3. Results
3.1. FEM Analysis Results

The finite element method simulates a physical part or assembly’s behavior by dividing
the geometry of the part into a number of elements of standard shapes, applying loads and
constrains, then calculating variables of interest [37–40]. Numerical methods, such as the
finite element method, have been applied in various researches in order of achieving such
a spring design that eliminates the limitations of the theoretical and experimental methods
in the calculation and measurement of the maximum stress in the different sections of
the spring [41]. Springs IICAD modules support the FEM analysis. With the purposely
made buttons, the user can easily access FEM analysis files of the computed/ designed
spring. Boundary conditions of the compression spring FEM models are predefined in the
CATIA software, with a clamp applied on the bottom surface of the spring and user defined
restrain which simulates only the vertical spring movement. This way, the spring housing is
simulated. For the torsion spring, similarly, one of the free ends is clamped, while the other
end is loaded with the distributive force. The parametric approach of 3D modeling was
interlinked with the Springs IICAD system, so with an input of any geometric parameter,
material property and force, changes are made in the specific files. When input parameters
are set in the Springs IICAD system and the calculation button is activated, spring geometry
is updated in the 3D model file, based on the input of geometric parameters. An FEM
analysis file follows these geometric updates and includes a specified load and material
property defined in the Spring IICAD system. This way, a spring FEM model is processed
where it originates from its initial state, and under specified force, geometry and mechanical
properties, a load state occurs followed with the stress and deflection images. Meshing is
performed via a uniform grid with the parabolic tetrahedron finite elements (TE10) since
they are more accommodating for the curved surfaces. The mesh size and absolute sag,
for both types of springs, amount to 0.2 mm and 0.1 mm, respectively. The number of
finite elements and nodes used for discretization of a spring model depends on the spring
parameters, since the parametric approach can result in many design solutions. Table 2
shows the number of finite elements and nodes generated for specific spring design, with
the following sizes for the compression spring: number of revolutions—10, pitch—4 mm,
mean coil diameter—20 mm, wire diameter—2 mm; and for the torsion spring: number
of revolutions—25, pitch—2 mm, mean coil diameter—28 mm, wire diameter—1.8 mm,
and length of free ends—50 mm. Figure 7 shows the Von Mises stress distribution and
displacement for the specific set of parameters of a compression spring.

Table 2. Number of finite elements and nodes for specific spring design.

Mesh Property/
Spring Type Number of Finite Elements Number of Nodes

Compression 17,213 34,414
Torsion 60,428 12,0947

Maximum Von Mises stress according to colormap shown in Figure 7 is located at the
“crossing zone“ between the plain end and the first coil of the spring. This stress spike
is caused with the stress concentration. However, maximum working stresses occur on
the inner side of the spring coil, which is a result of the uneven stress distribution due
to a wire twist. The maximum deflection of a compression spring is located at the top
coil, i.e., the load zone of the spring. Figure 8 shows the Von Mises stress distribution
and displacement for the specific set of parameters of a torsion spring. Maximum Von
Mises stress is located at the fixed end of the torsion spring. This stress is also caused
with the stress concentration. Maximum working stresses occur in a different location of a
spring wire due to complex stress conditions, i.e., the simultaneous effect of the bending
moment and the spring wind. Maximum deflection is located at the loaded end of the
spring. Alongside the fast manipulation of geometric parameters and easy insight into
stress and deflection conditions, the significance of FEM analysis is best reflected in the
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determination of the strength criterium for the developed spring, meaning a compression
spring needs to satisfy the permissible shear stress condition and a torsion spring needs to
satisfy the permissible bending stress condition.
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3.2. Physical Prototypes

The prototype model is an important tool and achievement in model designing,
producing and testing, as it shows and reflects the quality of many aspects concurrently,
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such as materials, processing technology, functionality, performance and modeling, so the
planning of the prototype model which almost collects all the design results and goals
is very important for validation, evaluation, and decision value on product testing and
development [42–44]. During the development of the Springs IICAD system, one of
the focuses was to link system with the RP (rapid prototyping) devices. The system is
interlinked with the Cura software, where 3D models of the springs are prepared for 3D
printing with the Ultimaker 3.0 printer. Physical prototypes of the springs were printed
with the PLA (polylactic acid) material. PLA spring prototypes are used for the additional
spring design check, i.e., visual inspection regarding only spring geometry, since PLA
prototypes have much lower mechanical properties compared to metal. Although the
developed system in its current form supports only the specified 3D printer, this feature
gives a projection to a future development of a manufacturing process which includes
metal 3D printing, whose implementation would be achieved in the same manner. Figure 9
shows a spring schematic representation of a prototyping procedure implemented via
developed system.
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3.3. Output Data Report Generation

Computation modules of the Springs IICAD system also enables users to generate re-
ports of the output data. Reports are generated in the form of the .docx files, where complete
set of input and corresponding output parameters are listed. In order to create such a
feature, it is necessary to add a Microsoft Word Object Library reference from the Visual
Studio settings. Once the reference is added, the function named “documentWritter“ is
created. A piece of the C# code for this function is shown on Figure 10. The values of
the input and output parameters, which the function will export are simply implemented
through a button click event.
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4. Conclusions

The implementation of the intelligent approach into a design process helps designers
and engineers to solve various problems faster and more efficiently. The developed Springs
IICAD system links the spring design modules directly with the parametric 3D models,
FEM analysis, prototype preparation and rapid prototyping. Unlike the traditional design
process, which can be exhausting and time consuming, the presented approach results
in better judgement of the design process. With usage of such an approach, the design
process is less affected by the subjectivity of a designer which can lead to a poor design
and lower product quality. With information provided by a developed system and data
obtained from the interlinked FEM analysis module, the designer is less susceptible to
errors due to design prompts integrated into the system, and easily accessible data and
graphical representation.

Alongside the proper knowledge of a specific thematic and programming logic neces-
sary to develop a functional system, it is vital to know the features of an IDE (integrated
development environment) which can be used to solve specific problem efficiently, as in
the case of data report. Although, much effort needs to be put into a development of the
described intelligent system, all of the mentioned positive effects and benefits give the
conclusion that the development of the described system is completely justified, especially
in the conditions of the high-rate productions, where the implementation of an integrated
intelligent CAD system would be a profitable investment in the long run.

There is a lot of scope for further research in this topic. First of all, an expanded
spring system which will support experimental study of specific spring characteristics.
Considering that current version of the developed system supports only compression and
torsion springs, further improvements should be directed to creating new modules for the
other classical spring forms and the unconventional forms which are in use. Additionally,
an expansion considering variable spring pitch should be included. Further research should
also consider developing an optimization process for spring geometry and correction factors
which would improve spring functionality under a certain load condition.

Author Contributions: Conceptualization, I.S.; methodology, A.M.; investigation, E.M. (Enis Mura-
tovi) and M.D.; data curation, N.P. and M.C.; software, E.M. (Enis Muratovic); visualization, E.M.
(Elmedin Mesic); writing—original draft preparation, E.M. (Enis Muratovic); writing—review and
editing, A.J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 353 13 of 14

Data Availability Statement: The data underlying this study will be available on reasonable request
to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, L.; Chen, L.; Fu, H.; Jiang, Q.; Wu, X.; Tang, Y. Carbon fiber composite multistrand helical springs with adjustable spring

constant: Design and mechanism studies. J. Mater. Res. Technol. 2020, 9, 5067–5076. [CrossRef]
2. Takahashi, T.; Zehnder, J.; Okuno, H.G.; Sugano, S.; Coros, S.; Thomaszewski, B. Computational Design of Statically Balanced

Planar Spring Mechanisms. IEEE Robot. Autom. Lett. 2019, 4, 4438–4444. [CrossRef]
3. Ke, J.; Wu, Z.Y.; Liu, Y.S.; Xiang, Z.; Hu, X.D. Design method, performance investigation and manufacturing process of composite

helical springs: A review. Compos. Struct. 2020, 252, 112747. [CrossRef]
4. Nazir, A.; Ali, M.; Hsieh, C.H.; Jeng, J.Y. Investigation of stiffness and energy absorption of variable dimension helical springs

fabricated using multijet fusion technology. Int. J. Adv. Manuf. Technol. 2020, 110, 2591–2602. [CrossRef]
5. Zebdi, O.; Boukhili, R.; Trochu, F. Optimum design of a composite helical spring by multi-criteria optimization. J. Reinf. Plast.

Compos. 2009, 28, 1713–1732. [CrossRef]
6. Kobelev, V. Elastic–plastic deformation and residual stresses in helical springs. Multidiscip. Model. Mater. Struct. 2020, 16, 448–475.

[CrossRef]
7. Wan, J.; Li, J.; Hua, Q.; Celesti, A.; Wang, Z. Intelligent equipment design assisted by Cognitive Internet of Things and industrial

big data. Neural Comput. Appl. 2020, 32, 4463–4472. [CrossRef]
8. Belman-Lopez, C.E.; Jiménez-García, J.A.; Hernández-González, S. Comprehensive analysis of design principles in the context of

Industry 4.0. Rev. Iberoam. Automática Inf. Ind. 2020, 17, 432–447. [CrossRef]
9. Patel, A.R.; Ramaiya, K.K.; Bhatia, C.V.; Shah, H.N.; Bhavsar, S.N. Artificial Intelligence: Prospect in Mechanical Engineer-

ing Field—A Review. In Data Science and Intelligent Applications; Lecture Notes on Data Engineering and Communications
Technologies; Springer: Singapore, 2021; Volume 52, pp. 267–282.

10. Saric, I.; Muminovic, A.; Colic, M.; Rahimic, S. Development of integrated intelligent computer-aided design system for
mechanical power-transmitting mechanism design. Adv. Mech. Eng. 2017, 9, 1687814017710389. [CrossRef]

11. Novak, M.; Dolšak, B. Intelligent FEA-based design improvement. Eng. Appl. Artif. Intell. 2008, 21, 1239–1254. [CrossRef]
12. Bulut Özek, M.; Akpolat, Z.H.; Orhan, A. A web-based intelligent tutoring system for a basic control course. Comput. Appl. Eng.

Educ. 2013, 21, 561–571. [CrossRef]
13. Saric, I.; Pervan, N.; Muminovic, A.; Colic, M. Development of integrated intelligent cad system for design of shafts. Teh. Vjesn.

2018, 25, 99–104.
14. Klancnik, S.; Brezocnik, M.; Balic, J. Intelligent CAD/CAM system for programming of CNC machine tools. Int. J. Simul. Model.

2016, 15, 109–120. [CrossRef]
15. Valles González, M.P.; García-Martínez, M.; Pastor Muro, A. Study of a torsion spring fracture. Eng. Fail. Anal. 2019, 98, 150–155.

[CrossRef]
16. Yang, C.J.; Zhang, W.H.; Ren, G.X.; Liu, X.Y. Modeling and dynamics analysis of helical spring under compression using a curved

beam element with consideration on contact between its coils. Meccanica 2014, 49, 907–917. [CrossRef]
17. Zhang, P.; Wang, D.; Guo, Y.; Cheng, P.; Shao, C.; Lang, N.; Liu, X.; Huang, J. Fatigue failure analysis and finite element assessment

of the twins torsion spring. Eng. Fail. Anal. 2021, 122, 105187. [CrossRef]
18. Kumar, K.; Aggarwal, M.L. Finite element analysis and optimization of a mono parabolic leaf spring using cae software. Eng.

Solid Mech. 2015, 3, 85–92. [CrossRef]
19. Song, X.; Li, B.H.; Chai, X. Research on key technologies of complex product virtual prototype lifecycle management (CPVPLM).

Simul. Model. Pract. Theory 2008, 16, 387–398. [CrossRef]
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