Protection Scheme for a Wavelength-Division-Multiplexed Passive Optical Network Based on Reconfigurable Optical Amplifiers
Abstract
:1. Introduction
2. Proposed Protection Scheme for WDM-PONs
3. Operation Principles and Reconfigurable Optical Amplifier Scheme
4. Implementation of ROA3
4.1. Characteristics of Key Components in ROA3
4.2. Optimum Design of the Bidirectional EDFA
4.2.1. Backup Optical Amplifier for ROA1
4.2.2. Backup Optical Amplifier for ROA2
5. Simulation of a 40-Channel WDM-PON
5.1. Protection Scheme for ROA1
5.2. Protection Scheme for ROA2
5.3. System Margin for ROA3
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.H.; Sorin, W.V.; Kim, B.Y. Fiber to the home using a PON infrastructure. J. Lightwave Technol. 2006, 24, 4568–4583. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, C.H.; Jeong, K.T.; Park, H.J.; Ahn, J.G.; Song, K.H. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J. Lightwave Technol. 2004, 22, 2582–2591. [Google Scholar] [CrossRef]
- Hung, H.W.; Lee, Y.L.; Sung, C.W.; Hsu, C.H.; Lee, S.L. 10-Gb/S Bidirectional WDM-PON Transmission Using Spectrum-Sliced ASE Light Sources. J. Chin. Inst. Eng. 2017, 40, 93–99. [Google Scholar] [CrossRef]
- Eiselt, M.H.; Zou, J.; Lawin, M.; Wagner, C. Optical Transceivers for Mobile Front-Haul and PON Applications. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar]
- Super-PON: Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers. Available online: https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/18_0419/desanti_nea_01_180419.pdf (accessed on 7 July 2021).
- Finisar Corporation. Introduction to optical amplifiers. In White Paper; Finisar Corporation: Sunnyvale, CA, USA, 2010. [Google Scholar]
- Keiser, G. Optical Fiber Communications, 4th ed.; McGraw-Hill: New York, NY, USA, 2011; pp. 429–431. [Google Scholar]
- MRV Communications Inc. EDFA Optical Amplifiers Datasheet; MRV Communications Inc.: Chelmsford, MA, Canada, 2012. [Google Scholar]
- Dutta, A.K.; Dutta, N.K.; Fujiwara, M. WDM Technologies: Passive Optical Components, 1st ed.; Academic Press: San Diego, CA, USA, 2003; pp. 321–324. [Google Scholar]
- Yeh, C.H.; Luo, C.M.; Xie, Y.R.; Chow, C.W.; Chen, Y.W.; Hsu, T.A. Survivable and reliable WDM-PON system with self-protected mechanism against fiber fault. IEEE Access 2019, 7, 165088–165092. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, D.; Ye, Z.; Lin, H.; Liu, X. Real-time demonstration of 20 × 25 Gb/s WDM-PON for 5G fronthual with embedded OAM and type-B protection. In Proceedings of the 24th Optoelectronics and Communications Conference and 2019 International and Photonics Switching Computing, Fukuoka, Japan, 7–11 July 2019. [Google Scholar]
- Zhang, J.; Mukheriee, B. A review of fault management in WDM mesh networks: Basic concepts and research challenges. IEEE Netw. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, T.H.; Bae, J.H.; Kim, B.W.; Park, H.S. A novel protection architecture for WDM-PON. In Proceedings of the Joint International Conference on Optical Internet and Next Generation Network (COINNGNCON), Jeju, Korea, 9–13 July 2006; pp. 61–64. [Google Scholar]
- Yeh, C.H.; Chow, C.W.; Huang, S.P.; Sung, J.Y.; Liu, Y.L.; Pan, C.L. Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection. J. Lightwave Technol. 2012, 30, 3211–3217. [Google Scholar] [CrossRef]
- Zhu, M.; Zhong, W.D.; Xiao, S. A survivable colorless wavelength division multiplexed passive optical network with centrally controlled intelligent protection scheme. J. Opt. Commun. Netw. 2012, 4, 741–748. [Google Scholar] [CrossRef]
- Chen, J.; Wosinska, L.; Chughtai, M.N.; Forzati, M. Scalable passive optical network architecture for reliable service delivery. J. Opt. Commun. Netw. 2011, 3, 667–673. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Z.; Chan, C.K. A centrally controlled survivable WDM-PON based on optical carrier suppression technique. IEEE Photonics Technol. Lett. 2011, 23, 386–388. [Google Scholar] [CrossRef]
- Shukla, P.; Kaur, K.P. Performance analysis of EDFA for different pumping configurations at high data rate. Int. J. Eng. Adv. Technol. 2013, 2, 487–490. [Google Scholar]
- Yang, C.L.; Hsu, D.Z.; Lee, S.L.; Hong, J.T. Reconfigurable Optical Amplifier, Reversible Optical Circulator, and Optical Signal Transmission System. U.S. Patent 8077385, 13 December 2011. [Google Scholar]
- Ivanovs, G.; Bobrovs, V.; Olonkins, S.; Alsevska, A.; Gegere, L.; Parts, R.; Gavars, P.; Lauks, G. Application of the erbium-doped fiber amplifier (EDFA) in wavelength division multiplexing transmission systems. Int. J. Phys. Sci. 2014, 9, 91–101. [Google Scholar]
- Semmalar, S.; Malarkkan, S. Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques. ISRN Electron. 2013, 2013, 312707. [Google Scholar] [CrossRef] [Green Version]
Components | Failure Rate (FIT 1) | MTTR 2 (Hour) |
---|---|---|
Fiber | 11,000 (per 10 km) | 12 |
Optical Transmitter | 10,867 | 2 |
Optical Receiver | 4311 | 2 |
Passive Equipment | 1000 | 2 |
EDFA | 5,000,000 | 2 |
Components | States | Insertion Loss (Port m → n 1) |
---|---|---|
Switch | Bar | 0.61 dB (Port 1 → 2) 0.66 dB (Port 3 → 4) |
Cross | 0.72 dB (Port 1 → 4) 0.65 dB (Port 3 → 2) | |
Circulator | Clockwise | 1.02 dB (Port 1 → 2) 0.97 dB (Port 2 → 3) 0.89 dB (Port 3 → 4) |
Counterclockwise | 0.97 dB (Port 2 → 1) 0.88 dB (Port 3 → 2) 0.92 dB (Port 4 → 3) |
Model Parameter | Value |
---|---|
Er3+ Core Radius of EDF | 3 μm |
Length of EDF | 2.5 to 20 m |
Pumping Power | 50, 100, 150, & 200 mW |
Pumping Wavelength | 1480 nm |
Er3+ Concentration of EDF | 1.25 × 1025 m−3 |
Pumping Configuration | Forward and Backward |
Model Parameter | Value |
---|---|
Er3+ Core Radius of EDF | 3 μm |
Length of EDF | 7.5 m |
Pumping Power | 50 or 200 mW |
Pumping Wavelength | 1480 nm |
Er3+ Concentration of EDF | 1.25 × 1025 m−3 |
Pumping Configuration | Forward or Backward |
Channel Power (Channel No.) | Link Loss | Minimum ROP for a BER of 10−9 | System Margin |
---|---|---|---|
2.96 dBm (CH1) | 1.54 dB (OC + OS) + 10 dB (50 Km SSMF) + 5 dB (AWG) = 16.54 dB | −21.92 dBm | 8.34 dB |
7.708 dBm (CH20) | −22.06 dBm | 13.228 dB | |
1.335 dBm (CH40) | −22.19 dBm | 6.985 dB |
Channel Power (Channel No.) | Link Loss | Minimum ROP for a BER of 10−9 | System Margin |
---|---|---|---|
−3 dBm (CH1) | 5 dB (AWG) + 10 dB (50 Km SSMF) + 1.54 dB (OC + OS) = 16.54 dB | −31.817 dBm | 12.277 dB |
−3 dBm(CH20) | −35.91 dBm | 16.37 dB | |
−3 dBm(CH40) | −35.09 dBm | 15.55 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Yang, C.-L.; Chou, C.-H. Protection Scheme for a Wavelength-Division-Multiplexed Passive Optical Network Based on Reconfigurable Optical Amplifiers. Appl. Sci. 2022, 12, 365. https://doi.org/10.3390/app12010365
Lee H-S, Yang C-L, Chou C-H. Protection Scheme for a Wavelength-Division-Multiplexed Passive Optical Network Based on Reconfigurable Optical Amplifiers. Applied Sciences. 2022; 12(1):365. https://doi.org/10.3390/app12010365
Chicago/Turabian StyleLee, Hong-Sing, Chun-Liang Yang, and Chien-Hsiang Chou. 2022. "Protection Scheme for a Wavelength-Division-Multiplexed Passive Optical Network Based on Reconfigurable Optical Amplifiers" Applied Sciences 12, no. 1: 365. https://doi.org/10.3390/app12010365
APA StyleLee, H. -S., Yang, C. -L., & Chou, C. -H. (2022). Protection Scheme for a Wavelength-Division-Multiplexed Passive Optical Network Based on Reconfigurable Optical Amplifiers. Applied Sciences, 12(1), 365. https://doi.org/10.3390/app12010365