Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Microgel
2.3. Apparatus—HPLC Determination of Bisphenols
2.4. Solid-Phase Extraction Procedure
2.5. Analysis of Food Samples
2.6. Comparison of Microgel with Commercial SPE Cartridges
3. Results
3.1. Characterization of Microgel Sorbent
3.2. Effect of the Amount of Microgel
3.3. Desorption
3.4. Extraction of Bisphenols from Food Samples
3.5. Comparison of Microgel with SPE Cartridges
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- González, N.; Cunha, S.C.; Ferreira, R.; Fernandes, J.O.; Marquès, M.; Nadal, M.; Domingo, J.L. Concentrations of nine bisphenol analogues in food purchased from Catalonia (Spain): Comparison of canned and non-canned foodstuffs. Food Chem. Toxicol. 2020, 136, 110992. [Google Scholar] [CrossRef]
- Munguia-Lopez, E.M.; Peralta, E.; Gonzalez-Leon, A.; Vargas-Requena, C.; Soto-Valdez, H. Migration of bisphenol A (BPA) from epoxy can coatings to jalapeño peppers and an acid food simulant. J. Agric. Food Chem. 2002, 50, 7299–7302. [Google Scholar] [CrossRef]
- Pedersen, G.A.; Hvilste, S.; Petersen, J.H. Migration of Bisphenol A from Polycarbonate Plastic of Different Qualities; Environmental Project No. 1710; Danish Ministry of the Environment: Copenhagen, Denmark, 2015. [Google Scholar]
- Schug, T.T.; Birnbaum, L.S. Toxicants in Food Packaging and Household Plastics; Snedeker, S.M., Ed.; Springer: London, UK, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- Cuvillier-Hot, V.; Lenoir, A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol. Cell. Endocrinol. 2020, 504, 110712. [Google Scholar] [CrossRef] [PubMed]
- Donato, M. Di; Cernera, G.; Giovannelli, P.; Galasso, G.; Bilancio, A.; Migliaccio, A.; Castoria, G.; Di Donato, M. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol. Cell. Endocrinol. 2017, 457, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Rezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B. Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ. Int. 2014, 64, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Shan, C.; Wang, Y.; Qian, L.L.; Jia, D.D.; Zhang, Y.F.; Hao, X.D.; Xu, H.M. Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S. Sci. Total Environ. 2020, 723, 137952. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Anastopoulos, I. Chemosphere Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere 2017, 168, 885–902. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Li, Y.; Jin, J.; Zhang, B.; Shah, S.M.; Wang, X.; Chen, J. Highly selective dummy molecularly imprinted polymer as a solid-phase extraction sorbent for five bisphenols in tap and river water. J. Chromatogr. A 2014, 1343, 33–41. [Google Scholar] [CrossRef] [PubMed]
- García-Córcoles, M.T.; Cipa, M.; Rodríguez-Gómez, R.; Rivas, A.; Olea-Serrano, F.; Vílchez, J.L.; Zafra-Gómez, A. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta 2018, 178, 441–448. [Google Scholar] [CrossRef]
- Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett. 2019, 312, 222–227. [Google Scholar] [CrossRef]
- Qiu, W.; Zhan, H.; Hu, J.; Zhang, T.; Xu, H.; Wong, M.; Xu, B.; Zheng, C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicol. Environ. Saf. 2019, 173, 192–202. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol a substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 2009, 1216, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, A.; Biesaga, M. Application of Molecularly Imprinted Polymers for Bisphenols Extraction from Food Samples—A Review. Crit. Rev. Anal. Chem. 2020, 50, 311–321. [Google Scholar] [CrossRef]
- Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 6913–6927. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Casero, N.; Lunar, L.; Rubio, S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review. Anal. Chim. Acta 2016, 908, 22–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhao, W.; Zhai, M.; Wei, F.; Cai, Z.; Sheng, N.; Hu, Q. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples. Anal. Chim. Acta 2010, 658, 209–216. [Google Scholar] [CrossRef]
- Salgueiro-Gonz Alez, N.; Castiglioni, S.; Zuccato, E.; Turnes-Carou, I.; Opez-Mahía, P.L.; Muniategui-Lorenzo, S.; Acta, A.C. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review. Anal. Chim. Acta 2018, 1024, 39–51. [Google Scholar] [CrossRef]
- Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. J. Environ. Chem. Eng. 2016, 4, 4062–4071. [Google Scholar] [CrossRef]
- Zhou, A.; Wu, X.; Chen, W.; Liao, L.; Xie, P. Fabrication of hydrophobic/hydrophilic bifunctional adsorbent for the removal of sulfamethoxazole and bisphenol A in Water. J. Environ. Chem. Eng. 2020, 8, 104161. [Google Scholar] [CrossRef]
- Hou, N.; Wang, R.; Geng, R.; Wang, F.; Jiao, T.; Zhang, L.; Zhou, J.; Bai, Z.; Peng, Q. Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 2019, 15, 6097–6106. [Google Scholar] [CrossRef]
- Naseem, K.; Hussain Farooqi, Z.; Zia Ur Rehman, M.; Atiq Ur Rehman, M.; Ghufran, M. Microgels as efficient adsorbents for the removal of pollutants from aqueous medium. Rev. Chem. Eng. 2019, 35, 285–309. [Google Scholar] [CrossRef]
- Du, H.; Piao, M. Facile preparation of microscale hydrogel particles for high efficiency adsorption of bisphenol A from aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 28562–28571. [Google Scholar] [CrossRef]
- Kubiak, A.; Maćkiewicz, M.; Biesaga, M.; Karbarz, M. Highly efficient removal of bisphenols from aqueous solution using environmental-sensitive microgel. J. Environ. Chem. Eng. 2021, 9, 104947. [Google Scholar] [CrossRef]
- Gallo, P.; Di Marco Pisciottano, I.; Esposito, F.; Fasano, E.; Scognamiglio, G.; Mita, G.D.; Cirillo, T. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem. 2017, 220, 406–412. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Manthorpe, J.M.; Lai, E.P.C. Selective extraction of BPA in milk analysis by capillary electrophoresis using a chemically modified molecularly imprinted polymer. Food Control 2015, 50, 778–783. [Google Scholar] [CrossRef]
- Sungur, Ş.; Koroǧlu, M.; Özkan, A. Determination of bisphenol a migrating from canned food and beverages in markets. Food Chem. 2014, 142, 87–91. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Carabias-Martínez, R.; Rodríguez-Gonzalo, E. Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection. Anal. Chim. Acta 2009, 650, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Grumetto, L.; Montesano, D.; Seccia, S.; Albrizio, S.; Barbato, F. Determination of Bisphenol A and Bisphenol B Residues in Canned Peeled Tomatoes by Reversed-Phase Liquid Chromatography. J. Agric. Food Chem. 2008, 56, 10633–10637. [Google Scholar] [CrossRef] [PubMed]
- Fattore, M.; Russo, G.; Barbato, F.; Grumetto, L.; Albrizio, S. Monitoring of bisphenols in canned tuna from Italian markets. Food Chem. Toxicol. 2015, 83, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Tzatzarakis, M.N.; Vasiliki, K.; Vakonaki, E.; Goumenou, M.; Kavvalakis, M.; Stivaktakis, P.; Tsitsimpikou, C.; Tsakiris, I.; Rizos, A.; Tsatsakis, A.M. Bisphenol A in Soft Drinks and Canned Foods and Data Evaluation. Food Addit. Contam. Part B 2017, 10, 85–90. [Google Scholar] [CrossRef] [PubMed]
Sample | Packaging Type | pH of the Sample | BPF | BPE | BPA | BPB |
---|---|---|---|---|---|---|
Recovery [%] ± RSD | ||||||
Tap water | - | 6.9 | 75.2 ± 1.76 | 84.6 ± 0.66 | 106 ± 0.91 | 109 ± 2.06 |
Mineral water | Polycarbonatebottle | 5.2 | 81.0 ± 2.34 | 86.8 ± 4.34 | 85.8 ± 3.21 | 90.9 ± 4.54 |
Sour cabbage | Package no 7 | 3.4 | 77.1 ± 5.01 | 88.5 ± 0.83 | 90.0 ± 1.11 | 102 ± 0.21 |
Energy drink | Can | 3.5 | 80.9 ± 1.23 | 75.2 ± 4.36 | 73.2 ± 3.74 | 95.4 ± 4.22 |
Pineapple | Can | 3.6 | 75.4 ± 3.09 | 84.9 ± 3.41 | 109 ± 0.76 | 104 ± 1.17 |
Figs | Can | 3.7 | 70.5 ± 0.54 | 77.5 ± 0.95 | 101 ± 1.48 | 83.8 ± 1.66 |
Fruits in syrup | Can | 3.8 | 71.2 ± 1.71 | 72.4 ± 1.22 | 101 ± 1.91 | 108 ± 1.54 |
Analyte | Pineapple | Mandarin | Mushroom | Peach | Pickles |
---|---|---|---|---|---|
C [µg·L−1] | |||||
BPA | 6.2 ± 0.9 | 8.5 ± 0.4 | 11 ± 0.4 | 22 ± 2.0 | 12 ± 1.2 |
Sorbent | Microgel (5 mg) | ENVI-18 (500 mg) | Affinimip® (100 mg) |
---|---|---|---|
Conditioning | - | 5 mL of MeOH 1 5 mL of H2O | 3 mL of 2% FA 2/MeOH 3 mL ACN 3 3 mL H2O |
Loading | 1 mL of fruits in syrup spiked with 50 µg·L−1 | 10 mL of fruits in syrup spiked with 50 µg·L−1 | 10 mL of fruits in syrup spiked with 50 µg·L−1 |
Cleaning | 0.5 mL of H2O | 5 mL of 5/95 ACN/H2O | 5 mL of 5/95 ACN/H2O |
Elution | 0.2 mL of 80% MeOH | 2 mL of 80% MeOH | 2 mL of 80% MeOH |
Analyte(s) | Sample | Sample Preparation | Determination | LOD [µg·L−1] | Ref. |
---|---|---|---|---|---|
BPF, BPA | honey | MIP | LC-DAD | BPF, BPA 2.0 | [32] |
BPB, BPA | peeled canned tomatoes | (I). Strata C18 (II). Florisil SPE cartridges | LC-UV/FLD | BPB 0.7 BPA 1.1 | [33] |
BPB, BPA | tuna | LLE | LC-FLD | BPA 1.3 BPB 3.0 | [34] |
BPB, BPE BPF, BPA BPS | plastic packed baby food | (I). LLE (II). C18 and PSA SPE cartridges | GC-MS/MS | BPF 0.1 BPB, BPE, BPA, BPS 0.3 | [12] |
BPF, BPA, BPB | canned energy drinks | Affinimip® cartridge | UHPLC-FLD | BPB, BPF, BPA 0.2 | [29] |
BPF, BPE, BPA, BPB | energy drink, liquid from can (pineapple, mandarin, figs) | Microgel | LC-FLD | BPF, BPA 0.9 BPE 2.3 BPB 2.9 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, A.; Maćkiewicz, M.; Karbarz, M.; Biesaga, M. Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples. Appl. Sci. 2022, 12, 441. https://doi.org/10.3390/app12010441
Kubiak A, Maćkiewicz M, Karbarz M, Biesaga M. Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples. Applied Sciences. 2022; 12(1):441. https://doi.org/10.3390/app12010441
Chicago/Turabian StyleKubiak, Anna, Marcin Maćkiewicz, Marcin Karbarz, and Magdalena Biesaga. 2022. "Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples" Applied Sciences 12, no. 1: 441. https://doi.org/10.3390/app12010441
APA StyleKubiak, A., Maćkiewicz, M., Karbarz, M., & Biesaga, M. (2022). Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples. Applied Sciences, 12(1), 441. https://doi.org/10.3390/app12010441