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Abstract: A 2D numerical simulation was conducted to investigate the effect of an extended rigid
trailing edge fringe with a flapping motion on the S833 airfoil and its wake flow field, as an analogy
of an owl’s wing. This study aims to characterize the influence of the extended flapping fringe on
the aerodynamic performance and the wake flow characteristics downstream of the airfoil. The
length (Le) and flapping frequencies (fe) of the fringe are the key parameters that dominate the impact
on the airfoil and the flow field, given that the oscillation angular amplitude is fixed at 5◦. The
simulation results demonstrated that the airfoil with an extended fringe of 10% of the chord at a
flapping frequency of fe = 110 Hz showed a substantial effect on the pressure distribution on the
airfoil and the flow characteristics downstream of the airfoil. An irregular vortex street was predicted
downstream, thus causing attenuations of the vorticities, and shorter streamwise gaps between each
pair of vortices. The extended flapping fringe at a lower frequency than the natural shedding vortex
frequency can effectively break the large vortex structure up into smaller scales, thus leading to an
accelerated attenuation of vorticities in the wake.

Keywords: flapping fringe; CFD simulation; vortex attenuation; aerodynamics enhancement

1. Introduction

For decades, the quiet flight of owls has drawn interest from researchers in the aerody-
namic and aeroacoustics fields. Owl-wing-inspired modifications on either leading-edge
or trailing-edge designs have attracted plenty of research interest aiming to improve the
aerodynamic performance and/or, in the meanwhile, suppress the aerodynamic noise from
airfoils or turbine/fan blades. Multiple bio-inspired airfoil designs have been evaluated, in-
cluding the trailing-edge or leading-edge serrations, trailing-edge flaplets, flapping wings,
the compliant surface, and the flexible trailing-edge fringe, etc. [1–9]. It has been found
that the soft trailing edge fringe can attenuate the primary noise source generated from the
trailing edge through the modification of the coherent scattering mechanism. Consequently,
aeroacoustic noise above 2 kHz can be effectively attenuated by the compliant surface
covered by the down feathers through a bypass dissipation mechanism [10,11]. In the
last decade, the use of an owl-wing-inspired trailing edge design as a passive control
approach for an airfoil model to minimize drag and improve lift coefficients has gained
attention [12–16].

The brush-like trailing edge has been utilized as the trailing edge extension to reduce
both the narrowband bluntness noise and broadband turbulent boundary-layer trailing-
edge noise, as it contains the characteristics of both porosity and flexibility as the natural
fringe [17–21]. A remarkable noise reduction was observed for an airfoil with a flexible
trailing edge equipped to the suction side of the airfoil experimentally [21]. The attachment
of flaplets on the trailing edge of an airfoil has clearly shown reductions in tonal noise,
primarily resulting from the generation of small-scale vortices by the flaplets [22].

Recently, Murayama et al. (2021) carried out an experiment to study the effects of
flexible flaps with various gaps on the aerodynamic characteristics of a fixed-wing [23].
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The results indicated that the adjustable flaps enabled the suppression of the large-scale
vortex shedding, and thus, reduced the fluctuation of aerodynamic forces. This finding
is consistent with our experimental findings of an airfoil with soft feathers installed on
the trailing edge [24]. Our previous experiment demonstrated that the real bird feather
enabled the large-scale vortex to break up into small-scale turbulence. It is illustrated that
the vibrating porous feather fringe produces a significant vertical velocity in the flow field
around the trailing edge. As a result, it suppressed the leading-edge vortices approaching
the flexible tail, and accelerated the shedding vortices’ dissipation. Additionally, Yu et al.
(2020) performed computational fluid dynamics (CFD) simulations on an airfoil with an
extended trailing-edge fringe [25]. The effects of the fringe lengths and flapping frequencies
on shedding vortices have been investigated. The flapping behavior with a certain length
and frequency can attenuate the strength of the vortices, and improve the aerodynamics in
terms of reducing the drag coefficients, and increasing the lift coefficients. The abovemen-
tioned studies aimed at improving the aerodynamics of an airfoil, and reducing the noise.
The flapping trailing edge fringe can be applied to wind turbine blades and airplanes to
improve noise reduction from the aerodynamic perspective.

In this study, to leverage the influence of the extended flapping trailing edge fringe
on the aerodynamic performance of the airfoil, CFD simulations are performed for the
S833 airfoil with an extended flapping trailing edge fringe. This numerical simulation
model is different from our previous experimental study. First, the experimental model
was equipped with real feathers at the trailing edge of the airfoil as a passive flow control
without any controlled flapping motion. Due to the complexity of the real feather struc-
ture, the porosity, and the biological material properties, such numerical studies haven’t
been conducted yet. In this work, a simplified bare fringe without any porosity in a 2D
fashion, together with specific flapping motions working as an active control, is adopted
in the numerical modeling. In the simulation, three fringe lengths (Le) at four different
flapping frequencies (fe) are evaluated thoroughly. The analysis focuses on the flapping-
induced changes on the Q-criterion and velocity distributions within the flow field, and the
aerodynamic pressure distributions over the airfoil.

2. Materials and Methods
2.1. Computational Model

The NREL’s S833 airfoil has been extensively used to design wind turbine blades [26].
However, with the rapid development of wind farms, noise emission has become a signifi-
cant issue. The ultimate goal of this study is to explore a novel airfoil design to reduce the
noise generation associated with the shedding vortices from wind turbine blades. Thus, the
S833 airfoil is selected to investigate the aerodynamic interactions between the vortex shed-
ding in the wake and the flapping fringe installed at the trailing edge. Two-dimensional
CFD simulations are performed for the airfoil model. The dimensions and boundary
conditions applied in simulations are shown schematically in Figure 1.

The rectangular area of the outside domain is 20C by 10C (C: the chord length of
the airfoil), with 5C from the inlet to the leading-edge of the airfoil. The flow boundary
conditions applied in the simulation are adopted from the parameters in our previous
experimental study [24]. The upstream velocity is set at 6 m/s, and the density and viscosity
of the air are assumed as 1.23 kg/m3 and 1.84 × 10−5 Pa s, respectively, to match the air
property at room temperature. This boundary condition corresponds to a Reynolds number
(Re) of 40,000, which is the same as the Re number evaluated in the experiment. This
Re number falls within the range of the Re number of owls’ flight. The outlet boundary
condition is defined as zero static pressure, and surfaces on the airfoil, as well as the top
and bottom walls, are defined as non-slip wall conditions. The airfoil’s angle of attack
is set at 9 degrees, which is also consistent with the experimental study [24]. The fringe
length (Le) ranges from 8% to 12% of the chord, with a step increment of 2%. The flapping
frequency (fe) ranges from 80 Hz to 170 Hz, with a step increment of 30 Hz. The initial
fe is determined as the shedding vortex frequency (f ) of the baseline bare airfoil model,
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which is 140 Hz, obtained via the power spectral density analysis of the velocity in the
downstream wake [25]. The dynamic motion of the trailing edge fringe can be expressed as
θ = Asin(2πft), where A is the amplitude flapping angle (A = 5◦). The connection point of
the flapping motion is fixed at the tip of the trailing edge.
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Figure 1. The 2-dimensional computational domain and boundary conditions for the CFD simulation.
C: chord length of the airfoil; u: velocity in the x-direction; v: velocity in the y-direction; ρ: density
of the fluid; µ: viscosity of the fluid; P: pressure; θ: dynamic motion of the trailing edge fringe;
A: amplitude of the flapping angle and set at 5 degrees; f : frequency of the flapping motion.

2.2. CFD Simulations

In this work, three fringe lengths at four different flapping frequencies of the extended
fringe were evaluated. These variables resulted in 12 simulation cases, and a bare airfoil
model was also simulated as the baseline case. Simulations were performed using the CFD
software Cradle SC/Tetra 2021 (Dayton, OH, USA). The computational software solves
the N–S equations by using the finite volume method with hybrid computational grids,
wherein hexahedral grids were generated as prism layers around the airfoil to capture the
boundary layer behavior, and tetrahedral grids were generated in the rest of the region. A
local mesh refinement technique (grids become coarser along the downstream direction)
was adopted to resolve the flow around the flapping fringes installed at the trailing edge to
save computational effort.

The turbulence model LKE K-KL-ω was adopted to evaluate the turbulence region
over the airfoil. This model is one of the Reynolds-Averaged Navier–Stokes (RANS)-based
approaches to predict the transitional flow [25,27,28]. In the LKE model, the energy of the
disturbances in the pre-transitional region of a boundary layer is expressed as “Laminar
Kinetic Energy”, whereas the turbulence energy is defined as k, and the transport equation
of KL is solved with two equations of the fully turbulent model. The flow over the airfoil is
governed by the Navier–Stokes equation for two-dimensional, viscous, incompressible flow.
The continuity equation and the Reynolds-averaged N–S equations can be expressed as:

∂(ρui)

∂(xi)
= 0 (1)

ρ
D(ρui)

Dt
=

∂
(

P
)

∂(xi)
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∂

∂(xi)
(µ

(
∂(ui)

∂
(
xj
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)
− ρu′iu

′
j (2)

where i and j are coordinate indices; u is the velocity; x is the flow direction; ρ is the density
of the fluid; µ is the dynamic viscosity of the fluid.

The dynamic motion of the fringe was fulfilled using the stretching mesh technique, as
it enables the expansion and shrinking of the mesh elements to accommodate the movement
of the solid boundary, which can avoid the pressure or velocity discontinuity/fluctuations
at interfaces [25]. The CFD simulation, in terms of the turbulence model, grid sensitivity,
and the dynamic moving mesh technique, has been validated statically by comparing
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static lift and drag coefficients with experiments, and dynamically, by comparing pressure
contours for an oscillatory plunging motion of an airfoil with the literature reported in our
previous study [25].

The numerical simulations were performed on a computational cluster containing
3.4 GHz AMD Phenom II X4 965 Quad-cores and 8 GB RAMs. Each case was run with
32 processors. In the current study, a total physical time period of 1.5 s of the flow was
simulated with a time step of 5 × 10−5 s. The mean computational time for each simulation
case was about 23 h.

3. Results and Discussion

The impact of the extended flapping fringe on the airfoil’s aerodynamics were studied
primarily through the alterations in the distribution of the Q-criterion, velocities in the flow
field, and pressure coefficients over the airfoil model. The variable Q-criterion quantifying
the swirling vortex strength is defined as

Q =
1
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
− ∂u

∂y
∂v
∂x

(3)

where u is the instantaneous velocity in the x-direction, and v is the instantaneous velocity
in the y-direction.

3.1. Effect of the Flapping Motion on the Q-Criterion and Velocity Distributions

The instantaneous (at t = 1 s) and time-averaged Q-criterion and velocity distributions
with streamlines of the bare airfoil model (baseline) are presented in Figure 2. The quasi-
steady-state of the simulation was reached by checking the periodicity of the flow field.
The vortices were shed evenly in the wake, with an identical magnitude of the Q-criterion
for each pair, indicating typical Karman vortex street characteristics. The time-averaged
Q-criterion shows very weak vortices downstream in the wake. It implies that the rotational
direction of two vortices for each pair was opposite, and thus, after averaging, the opposite
vorticities counteracts the magnitude of the Q-criterion. A separation bubble was predicted
around the middle section on the upper surface of the airfoil, as shown in the instantaneous
velocity distribution panel in Figure 2. In the time-averaged flow field, the detachment and
reattachment point for the separation bubble can be clearly identified by the streamlines
surrounding the circulation region. The separation bubble has a length of about 25% of
the chord. In fact, the shedding vortices downstream of the airfoil were initiated by the
separation bubble.

The Q-criterion (around the airfoil and in the wake) and velocity distributions for the
airfoil model with the fringe length of 8% of the chord at four different fe are presented
in Figures 3–5. The large-scale vortices initiated over the upper surface of the airfoil were
broken up into smaller scale vortices compared to the shed vortices of the bare airfoil model.
The flapping motion at the flapping frequency of 80 Hz creates an irregular pattern of
vortices compared to the cases with higher frequencies (110–170 Hz), as shown in Figure 3.
The time-averaged Q-criterion distributions demonstrate an accelerated decay of vortices by
the extended fringe with a low flapping frequency (80 Hz), resulting from the unstructured
small-scale vortices being shed irregularly. This observation might be induced by the
velocity “offset effect” between induced vortices and the shed vortices from upstream. With
the increased flapping frequency, the vortices decayed slowly. This might be attributed
to the fact that the contribution from the flapping fringe to the overall swirling strength
becomes more dominant with the increased flapping frequency.
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distributions with streamline of the bare airfoil model.

In the downstream wake, the airfoil model with fe = 110, 140, or 170 Hz shows evenly
shed vortices, as shown in Figure 4. The increased flapping frequency seems to shorten the
gap between each pair of vortices, which is directly correlated to the flapping frequency of
the fringe. From the comparison of the four flapping frequencies, it is suggested that when
the flapping frequency fe is 60 Hz (40%) lower than f (natural vortex shedding frequency of
the bare airfoil model, 140 Hz), the regular vortex shedding is interfered with, and results
in an irregular vortex distribution with non-uniform scales and shorter gaps between each
pair. As can be observed, the flapping trailing edge fringe with fe = 80 and 100 Hz alters the
coherent structure of the large-scale vortices in the wake, and at the same time, reduces the
vorticity in the flow field (Figure 4).

However, it is difficult to differentiate the influence of the fringe tip position (fringe tip
at the top or bottom positions) on the distribution of the Q-criterion. Thus, the instantaneous
and time-averaged flow fields around the airfoil were plotted to illustrate the effects of
the flapping fringe on the flow field, as shown in Figure 5. The flapping motion induces
movement of the separation bubble towards the leading edge of the airfoil for all cases
(Figure 5). The existence of the separation bubble caused fluctuated pressure forces on
the upper surface, reflecting the unstable pressure distribution over the airfoil model, as
shown in Figure 6. Higher flapping frequencies tend to increase the velocity over the top
surface of the airfoil, and, as a consequence, it results in a decrease in the aerodynamic
pressure. Subsequently, the pressure drop could lead to an increase in the lift coefficient,
and a decrease in drag coefficient. It is indicated that the pressure acting on the top surface
tends to be small when the flapping fringe tip is at the bottom position, in contrast to that
when the fringe tip is at the top position.
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The pressure coefficient distributions over the airfoil model with the fringe length of
8%C at four flapping frequencies are compared, as shown in Figure 6. The instantaneous
pressure coefficient distribution shows a significant fluctuation corresponding to the shed-
ding vortex over the upper surface as compared to the averaged pressure distribution over
the baseline airfoil model. An obvious phase difference of the pressure oscillations can
be observed between the case with the fringe tip at the bottom position and that with the
fringe tip at the top position. The phase difference is more complicated in the region of
the separation bubble compared to the region downstream of the separation bubble. By
comparing the time-averaged pressure distributions, one can observe that higher flapping
frequencies tend to move the separation bubble forward (towards the leading ledge). The
distance from the leading edge to the take-off point of the separation bubble decreases from
33%C to 24%C as the flapping frequency increases from 80 Hz to 170 Hz. The separation
bubble length is about 22%C, 25%C, 20%C, and 20%C for the case of fe = 80 Hz, fe = 110 Hz,
fe = 140 Hz, and fe = 170 Hz, respectively. Overall, higher flapping frequencies tend to
generate a lower time-averaged pressure coefficient over the upper surface, which would
result in an increase in the lift coefficient.

Figures 7–10 present the instantaneous Q-criterion distribution over the airfoil, the Q-
criterion distribution in the wake, the velocity, and the pressure coefficient distributions over
the airfoil model, respectively, with the fringe length of 10% at different flapping frequencies.
Figures 11–14 present the instantaneous Q-criterion distribution over the airfoil, the Q-
criterion in the wake, the velocity, and the pressure coefficient distributions over the airfoil
model, respectively, with the fringe length of 12% chord at various flapping frequencies.
Similarly, the vortex shedding characteristics are similar to the airfoil model with the
fringe length of 8% chord. The flapping motion with a relatively lower fe (<140 Hz) can
break the large-scale vortex into small-scale vortices at the trailing edge, and, subsequently,
alter the coherent structure of the vortex shedding. The irregularly shed vortices and
the increased gap between each pair of vortices for cases with a lower fe accelerated the
vortex decay compared to those with a higher fe. As the flapping frequency goes up to
170 Hz, the shedding frequency of the vortex is dominated by the flapping motion, which
results in a regulated pattern of the shedding vortices. The time-averaged Q-criterion
distributions show that the resultant time-averaged vortex strength has been elevated by
the flapping fringe. It is indicated that the extended flapping fringe did not always facilitate
the reduction of vorticity; conversely, it could promote the vortex domination in the wake,
its interaction with the blunt trailing edge, and, possibly, the consequent noise emission
from the trailing edge of the airfoil.

With the increased fringe length, the scale of the vortex became smaller, as shown in
Figures 7 and 11. Correspondingly, the overall Q-criterion distribution over the top surface
of the airfoil is decreased, as presented in Figures 8 and 12. These alterations in the flow
field around the airfoil led to a decrease in the pressure coefficient over the upper surface
of the airfoil model, as shown in Figures 10 and 14. Compared with the flapping frequency,
the effect of the fringe length is less significant in terms of slight changes in both the vortex
strength and the pressure distribution.

3.2. Effect of the Extended Flapping Fringe on the Lift and Drag Coefficients

The extended flapping trailing edge fringe not only reduced the swirling strength in the
wake of the airfoil, but also decreased the drag coefficient, and increased the lift coefficient,
surprisingly, as shown in Figure 15. It should be noted that in the integration calculation
of the lift and drag, only the pressure distribution over the airfoil surface, excluding the
trailing edge fringe, was considered. The drag coefficient essentially decreased with the
increase in fringe length, and always decreased with the increase in flapping frequency,
whereas the lift coefficient was essentially proportional to these two factors. The airfoil
model with Le = 12%C and fe = 170 Hz generated the minimum drag coefficient, i.e., 22.5%
lower than the baseline, and the maximum lift coefficient, i.e., 63.2% higher than the
baseline, as can be observed in Figure 15. However, this combination would not alleviate
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the swirling strength of vortices shedding in the wake. For this case, the flapping fringe
serves more like a propeller tail, such as the tail of a fish, and thus, reduces the drag, and
improves the lift. The drag coefficients of the models with fe = 80 Hz are slightly lower
than that of the baseline model, whereas the lift coefficients are elevated dramatically. An
fe = 140 Hz, which is the natural shedding frequency for the bare airfoil, did not generate
drastically different results. The difference in the lift and drag generation due to the fringe
length is the minimum for this case.
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In summary, the effects of the fringe length and flapping frequency on the vortex wake
and aerodynamic performance are investigated numerically. It is found that a favorable
fe should be determined according to the nature shedding frequency, f, of the bare airfoil
model. The structure of the shedding vortices or their strength would be either maintained
or elevated by the vibration of the fringe at a higher fe (>f ). A higher flapping frequency
(fe) tends to serve as a booster, rather than a disturber, to increase the local velocity at the
trailing edge, resulting in the elevation of the swirling strength, and a shrinking of the
dimension of vortices. However, most importantly, a lower fe was able to destruct the
shedding vortices’ coherent structure due to the disruption of the fringe on the original
shedding pattern from the bare airfoil. Consequently, the swirling strength of vortices
became weak, and the irregular distribution made it easy to dissipate.

3.3. Limitation of the Current Study

There are several limitations of this study. First, a RANS turbulence model was used to
conduct the simulation. This would cause less accurate simulation results on the structure
of shedding vortices. Due to the lack of comparable experimental data, direct validation of
the simulation results could not be made, but, qualitatively, the predicted vortex reduction
is similar to what we observed in our previous experiment [24]. In addition, to simplify
the computational effort, a 2D model geometry was used, and thus, the span-wise porosity
effect of feather fringes, as used in the experiment, could not be studied. To improve the
understanding, 3D simulations on porous fringes attached at the trailing edge will be
investigated in future work. To better mimic the feather fringe of an owl’s wing, a soft
material with a biological property should be adopted as well. The flapping motion will
then be determined by the fluid-structure interaction as a passive flow control.

4. Conclusions

The airfoil S833 equipped with an extended flapping fringe is used to investigate the
effects of two factors, i.e., the trailing fringe length and the flapping frequency, on the
vortex shedding characteristics and the aerodynamic performance of the airfoil. The ex-
tended fringe with a flapping frequency significantly below the natural shedding frequency
(~140 Hz), such as 80 Hz, can alter the coherence structure. Likewise, an irregular vortex
structure in the wake can be generated, and thus, cause decrements in the swirling strength,
and faster decay of the vortices. The flapping motion can decrease the pressure coefficient
over the upper surface of the airfoil, leading to increases in the lift coefficient about 40%
relative to the bare airfoil model. Out of the cases in the present study, the model with
Le = 0.01 m (10% of the airfoil chord) at a flapping frequency of fe = 110 Hz outperforms
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other cases, and shows an overall substantially better aerodynamic performance of the
airfoil, as well as more favorable vortex characteristics downstream of the airfoil. In spite of
the limitations of the study, we can observe the aerodynamic benefits of using an extended
flapping fringe at the trailing edge. The pressure alteration around the airfoil would poten-
tially reduce the noise generation for wind turbines especially, which will be studied in our
future work as well.
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