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Abstract: Fatty liver disease is considered a critical illness that should be diagnosed and detected at an
early stage. In advanced stages, liver cancer or cirrhosis arise, and to identify this disease, radiologists
commonly use ultrasound images. However, because of their low quality, radiologists found it
challenging to recognize this disease using ultrasonic images. To avoid this problem, a Computer-
Aided Diagnosis technique is developed in the current study, using Machine Learning Algorithms
and a voting-based classifier to categorize liver tissues as being fatty or normal, based on extracting
ultrasound image features and a voting-based classifier. Four main contributions are provided by our
developed method: firstly, the classification of liver images is achieved as normal or fatty without a
segmentation phase. Secondly, compared to our proposed work, the dataset in previous works was
insufficient. A combination of 26 features is the third contribution. Based on the proposed methods,
the extracted features are Gray-Level Co-Occurrence Matrix (GLCM) and First-Order Statistics (FOS).
The fourth contribution is the voting classifier used to determine the liver tissue type. Several trials
have been performed by examining the voting-based classifier and J48 algorithm on a dataset. The
obtained TP, TN, FP, and FN were 94.28%, 97.14%, 5.71%, and 2.85%, respectively. The achieved
precision, sensitivity, specificity, and F1-score were 94.28%, 97.05%, 94.44%, and 95.64%, respectively.
The achieved classification accuracy using a voting-based classifier was 95.71% and in the case of
using the J48 algorithm was 93.12%. The proposed work achieved a high performance compared
with the research works.

Keywords: Computer-Aided Diagnosis; diffuse liver; fatty liver; feature extraction; region of interest;
voting-based classifier; learning algorithms; ultrasound

1. Introduction

Diffuse liver conditions, including fatty liver, are the world’s leading cause of death [1],
and Fatty Liver Disease (FLD) has a prevalence of 25 percent worldwide. Nonalcoholic
Liver Fatty Disease (NALFD) and its subtype, nonalcoholic steatohepatitis, affect 30 percent
and 5 percent of people in the USA, respectively [2]. Asia and Africa were found to have
the most observed prevalence of FLD [3]. There are several categories of hepatic disorders;
those caused by poisons, too much alcohol, or drugs. Other kinds of diseases are caused by
viruses, such as hepatitis B and C.

Liver diseases can be caused by many other factors, including high blood sugar, insulin
resistance, and obesity. Fatty liver can be treated if it is possibly identified at an early stage,
a changeable condition, which is categorized by the accumulation of liver fat, and this
deposition can be due to nonalcoholic origin or excessive consumption of alcohol. FLD is
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associated with several features such as insulin resistance, diabetes, hyperlipidemia, and
viral hepatitis [4].

2. Background

FLD may progress to advanced liver diseases, such as hepatic transaminases, cryp-
togenic hepatocellular disease, and cirrhosis, which may eventually result in death [5,6].
Table 1 shows the ultrasound (US) findings and specific causes of liver disease. Despite the
accurate results of liver biopsy for FLD detection and diagnosis; however, it has certain
associated weaknesses. Those weaknesses consist of bleeding until death, penetration of
the skin, and some complications, e.g., increased abdominal pain, chills, dizziness, difficulty
of breathing, abdominal pains, and chest, fever, and redness or severe pain at the posi-
tion of the biopsy [7–10]. Different noninvasive methods are used to reduce unnecessary
liver biopsy cases and to observe FLD, mainly imaging techniques, such as ultrasound
imaging analysis.

Table 1. Main types of diffused liver diseases and ultrasound findings.

Diseases Causes Ultrasound Findings

Fatty liver Drug misuse, contaminants,
metabolic illness, and obesity

Fine parenchymal texture,
decreased number of

vessels, hepatomegaly, and
increased echogenicity

Hepatitis Infections from
viruses/bacteria or parasites.

Diffusely decreased
echogenicity and

hepatomegaly

Fibrosis

Hepatic venous obstruction,
chronic hepatitis, metabolic

disorder, prolonged
cholestasis, and immune

disorder

Healthy appearance of liver, a
slight increase in echogenicity,

and coarse echo-texture

Cirrhosis

Cystic fibrosis, hepatitis,
Wilson’s disease, alpha

1-antitrypsin deficiency, and
immune disorder

Shrunken liver, rounded
contours, small right lobe with

enlarged left and caudate
lobes, (volume redistribution),

regenerative nodules, and
nodularity resulted in portal
hypertension manifestations

of surface irregularity.
Decreased number of vessels.

Ultrasound is preferred by radiologists because it is nonexpensive, noninvasive, easy
to operate, and radiation-free. In addition, it provides higher average specificity and
sensitivity for detecting fatty liver when compared to other kinds of noninvasive imaging
techniques such as (1) Magnetic Resonance (MR) imaging and (2) Computed Tomography
(CT). CT is limited by the standardization required for the different scanners and the
inter-observer variability. In radiomics [11,12], the standardization of feature extraction
methodology is significant for second and higher-order texture features. Furthermore, MR
techniques can be technically challenging. A functional MR of the liver diagnosis requires
stability adequate for the elimination of patient motion [13–16]; a brief description of these
diagnosis approaches is shown in Table 2.

One of the major limitations of using ultrasound is the low quality of the acquired
images compared to those of MRI and CT. This means that the classification task is extremely
difficult and is one of the challenges addressed in this research.

One method to reduce the limitations of an ultrasound is to improve a Computer-
Aided Diagnosis (CAD) system. CAD offers a promising solution to reduce variation in
colonoscopy performance [17]. Many of the CAD systems have been developed using
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medical liver images for the diagnosis of liver diseases [18,19]. The usage of a CAD method
reduces the user’s intervention and helps experts and physicians to detect FLD through
analyzing ultrasound images.

Table 2. Invasive and noninvasive test methodology for evaluation of FLD overview.

Diagnosis Methods Weaknesses and Drawbacks
of These Methods

Drawbacks of Those
Methods

Liver Biopsy

Examination with prognostic
value.

Links with the level of liver
injury.

It is a technique of
invasiveness.

Complications such as
bleeding and discomfort are

likely.
Operator dependent.

Blood tests

The leading supporter in the
assessment of essential liver

function.
High sensitivity with

improved standards of ALT
and AST.

Low specificity.
No relationship with the level
of diffused liver tissue injury.

MRI

Possibility of analysis of
spectroscopy.

Proper quantification of the
fat content of the human liver.

The high expense of the test.
The fat quantification

mistakes (or inaccuracies) in
the presence of high iron

concentration.
Unsuitable for patients with

planted electronic devices, for
example, pacemakers.

CT

Characterize fatty or
(steatosis) by the lower liver

intensity.
Quantitative measurement.

Low sensitivity for early-stage
fatty (or steatosis).

Use of ionizing radiation.
Interequipment variability.

Ultrasound

Advised for initial diagnosis.
The high specificity of fat.

Accumulation is greater than
33%.

Effective, low cost, and
noninvasive.

Inappropriate for cases with
high Body Mass Index (BMI).

Intraoperator variability.
Operator dependent.

The CAD introduced by Yeh et al. [20], developed a procedure to make nonsteatosis
(healthy liver) distinguished. Nonsteatosis and steatosis (fatty) specials of the liver are
imaged by ultrasonography of high frequency. The authors retrieved and used two charac-
teristics, Support Vector Machine (SVM), as a classifier to obtain an accuracy of up to 90%.
A CAD system was developed by Ribeiro et al. [21] for classifying steatosis and nonsteatosis
using Radio Frequency (RF), the signal made by the ultrasound examination was employed
to extract only two images. The first one is a speckle-only image, and the second is a
despeckled image with descriptions and anatomical characteristics. The intensity features
were calculated from the despeckled image and the speckle image, associated with two
texture features extracted. The classification process was performed on two categories, ten
steatosis liver images and ten nonsteatosis ultrasonic liver images; the Bayes classifier was
used in this study and obtained an accuracy of 95%.

Mittal et al. implement the CAD system in [22], which specialists combined to analyze
and diagnose liver focal lesions from 2D-mode ultrasound images. The authors used four
different types of focal liver lesions and associated them with the normal human liver.
In the ultrasound image, the noise was decreased by filtration, and then they divided
the ROIs into 800 segmented sections. Afterward, based on the texture, near 208 texture-
based features were extracted from separate ROI. The achieved accuracy of the use of the
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ANN approach was about 86%. Acharya et al. [23] suggested a classification manner to
discriminate steatosis and a normal human liver. In this study, the authors extracted a
combination of image texture features from the diffused liver. Applying this classification
technique, the authors obtained an accuracy of about 93%.

Ribeiro et al. proposed a CAD system in [24] for FLD analysis and classification. In
total, 36 features were extracted from each selected ROI from the ultrasound image. Then,
based on three different classifiers: k-Nearest Neighbor (k-NN), Bayes, and Support Vector
Machine (SVM), the obtained accuracy was recorded at 85.71%. Li et al. [25], utilizing an
SVM classifier based on liver ultrasound images. The extracted features were from GLCM,
Near-Far-Field Greyscale Ratio (NFFGR), and Neighborhood Grey-Tone Difference Matrix
(NGTDM). As a consequence of using a previous technique, the total accuracy recorded
was 90.55%. Singh et al. [19] proposed a technique based on the fusion information for
the hepatic classification by operating an ultrasonic image texture examination. Based on
texture examination, a set of texture features are applied in the classification technique. A
combination of the best-selected features associated with their weights is suggested. The
total accuracy of this technique was 95%.

The common phases of the CAD system based on feature extraction and classification
stage were [6]: (1) feature extraction phase, numerous texture features were selected and
extracted using the desired and significant features from the ultrasound images of the hu-
man liver tissues such as entropy [6], (GLCM) [18,19,26–29], Grey Level Run Length Matrix
(GLRLM) [18], FOS [18,19,30], Grey Level Difference Statistics (GLDS) [19,31], Fourier Anal-
ysis (FA) [19,27,28], and Statistical Feature Matrix (SEM) [19,27]; (2) Classification stage:
many classifiers are proposed in the classification phase, for example, k-NN [27,32], Naive
Bayes (NB) [28], Decision Tree (DT) [29,30], AdaBoost [31], Random Forest (RF) [33,34],
Fuzzy [35,36] (SVM) [32,37–39], Multilayered Perceptron (MLP) [29,40], Probabilistic Neu-
ral Network (PNN) [41], Quadratic Discriminant Analysis (QDA), and Linear Discriminant
Analysis (LDA) [6]. The most important purpose of this study is to achieve high recognition
accuracy to discriminate between fatty/normal liver.

Unlike the classical machine learning techniques that are used in this study, deep
learning was proposed in [42]. Deep learning [43,44] was not feasible to apply in our
research work due to the limitation of the dataset.

In our proposed work, there are four main contributions. Firstly, the ultrasound liver
images were classified as fatty or normal without the segmentation stage. Secondly, the
available dataset in previous works was insufficient compared to our proposed work.
Thirdly, decreasing the total number of extracted features to only 26 features turned out
to have low computational complexity. Fourthly, the achieved recognition accuracy of the
voting-based classifier was better than other classifiers.

The current paper is organized as follows. First, the technique of image acquisition
used is described briefly in Section 2, and then Section 3 sets out the proposed work. After
that, the experimental results and discussion are described in Section 4. As a final point,
the conclusion is set out in Section 5.

3. Materials and Methods
3.1. Image Acquisition

In the current paper, GE Logiq p5 [45] equipment was used for image acquisition.
Elroowad Radiography Center, Menouf City, Egypt supplied us with images to be used in
this study, by three professional medical radiologists. The transmitting frequency of the
ultrasound was (2 to 3) MHz with a convex probe. The resolution of the acquired color
image was 684 × 552 pixels. There were 300 images; one image was acquired from each
patient. An experienced radiologist determined the ROI. Corresponding to the decisions of
the three experienced radiologists, 155 US images were manually considered as normal
liver, and 145 images as fatty liver. This research work focuses on normal/fatty liver images.
Figure 1 shows one of the normal and fatty images.
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Figure 1. An acquired image from an ultrasound scan machine (a) normal liver and (b) fatty liver.

3.2. Methodology

The main objectives of the present CAD system were 1- To analyze the consequence of
a dynamic size of ROI extracted from each ultrasound liver image; 2-To categorize the USA
liver images as fatty or normal without the segmentation stage, a voting-based classifier
was applied. In this research work, multiple ROIs (nine ROIs) were selected within the liver
tissue. This was also automatically determined by the Genetic Algorithm (GA). GA is an
adaptive investigative search algorithm [41]. In GA, firstly, an initial population was created.
The population consisted of 100 chromosomes. Separately, a chromosome was composed
of concatenated thresholds or candidate solutions. The chromosome construction is shown
in Figure 2. Secondly, each pair of parent chromosomes was carefully chosen, and then
the crossover process was performed at the random crossover point. Thirdly, the mutation
operation was executed on every chromosome at a random point. Then, the offspring was
generated. Finally, an optimization using an objective function was performed for offspring
and the parent chromosomes.
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Figure 2. The chromosome structure, note: F1→Feature1, etc.

The objective function was used to exploit the accurately classified US images or to
minimize the number of wrongly classified images. The fitness function was reciprocal
of the Penalty Value (PV), or precisely the number of incorrectly categorized images.
Ultimately, the fitness function was the number of correct categorized images.

The position was initially determined by three experienced physicians. As a conse-
quence of labeling ROIs, the fixed positions were then used for newly acquired images. To
make the process faster, only ROIs in the selected images were converted from RGB to a
grey level [46], according to the following equation:

I = 0.2989 ∗ R + 0.5870 ∗ G + 0.1140 ∗ B (1)
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where I is a transformed image; then, the 26 features of each ROI were extracted, as
in Figure 3. Finally, the voting-based classifier was used to categorize the kind of liver
tissue normal/fatty [46]. In a Voting-based classifier, the key concept was to perform
multi-independent Extreme Learning Machine (ELM) training in place of one single ELM
training, and then a final decision was taken depending on the majority voting method [47].
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3.2.1. Feature Extraction

Twenty-six texture features were then extracted from the ultrasonic images of each
selected ROI of human liver tissues such as: (A)-FOS which include: (1) Mean, (2) Skewness,
(3) Variance, and (4) Kurtosis; (B)-GLCM including (1) Standard deviations, (3) Contrast,
(4) Mean, (5) Autocorrelation, (6) Dissimilarity energy, (7) Correlation, (8) Cluster shade,
(9) Cluster Prominence, (10) Information measure of correlation, (11) Sum average, (12)
Difference variance, (13) Entropy, (14) Sum variance, (15) Sum-of-squares, (16) Sum entropy,
(17) maximum probability, (18) Inverse Difference Normalized, (19) Difference entropy, (20)
Homogeneity, and (21) Inverse difference moment normalized. These texture features were
extracted as in [16].

3.2.2. Classification

For all selected “ROIs,” there were 26 decisions made. This process was repeated for all
other ROIs. The number of decisions made for the normal tissue were counted accordingly.
Then, this count was compared to a specific threshold, i.e., the voting threshold, as a
consequence of the number of ROIs categorized as fatty liver to the number of ROIs
categorized as normal liver, a voting-based classifier was used to identify the class of the
liver type. The final vote was “normal liver” if the count was greater than the threshold
for voting. Otherwise “fatty liver” as the final decision, as shown below in Algorithm 1.
Furthermore, to diagnose diffuse liver disease in an accurate manner, dynamic-sized ROIs
(row × column) were proposed. In this study, to prevent manually selected threshold
parameters; the GA was used.

Figure 4 shows the general process and the training and the testing phases of the
dataset for optimizing a grey ROI selection by using the GA. In the training phase stage,
each image of the normal/fatty liver in the training set was employed for the planned work.
Then, the thresholds and parameters were automatically selected and optimized by GA,
such that this image was identified as a normal or fatty item, respectively. In the testing
part, a whole image of the testing set was utilized in the suggested work. Then, according
to the voting function, liver tissue was classified as normal/fatty liver.
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Algorithm 1: Optimization of the number of ROIs, ROI size selection, and voting threshold

1. For iteration number = 1, 2, 3, . . . . . . , number of iteration do
2. For every chromosome do

Number of incorrectly classified images = 0
For every training image do

voting = 0
For every ROI of size, m x n do

Convert ROI into gray level using the equation:
I = 0.2989 ∗ R + 0.5870 ∗ G + 0.1140 ∗ B

Compute all 26 features
End for

If voting > voting_threshold
If training image = abnormal

Number of incorrectly classified image +1→
Number of incorrectly classified image

End if
Else

If training image = normal
Number of incorrectly classified image +1→

Number of incorrectly classified image
End if

End if
End for

Assign fitness score to the chromosome
End for

End for
3. For every testing image do

voting = 0
For every ROI do
Convert ROI into gray level
Compute all 26 features

4. If voting > voting_threshold
Liver case = normal

Else
Liver case = Abnormal

End if
End for



Appl. Sci. 2022, 12, 521 8 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 14 
 

       For every ROI do 
       Convert ROI into gray level  
       Compute all 26 features 
4. If voting > voting_threshold 
        Liver case = normal 
     Else 
         Liver case = Abnormal 
     End if 
End for 

Figure 4 shows the general process and the training and the testing phases of the 
dataset for optimizing a grey ROI selection by using the GA. In the training phase stage, 
each image of the normal/fatty liver in the training set was employed for the planned 
work. Then, the thresholds and parameters were automatically selected and optimized by 
GA, such that this image was identified as a normal or fatty item, respectively. In the test-
ing part, a whole image of the testing set was utilized in the suggested work. Then, ac-
cording to the voting function, liver tissue was classified as normal/fatty liver. 

 
Figure 4. Elevating parameters using a GA and overall process, note: #→Number. 

4. Results 
This study developed a Computer-Aided Diagnosis technique using the Genetic Al-

gorithm and machine learning algorithms (supervised learning), for the classification of 

Figure 4. Elevating parameters using a GA and overall process, note: #→Number.

4. Results

This study developed a Computer-Aided Diagnosis technique using the Genetic
Algorithm and machine learning algorithms (supervised learning), for the classification of
liver skins as being fatty or natural, based on obtaining ultrasound image features and a
voting-based classifier, based on a combination of 26 features.

4.1. Genetic Algorithm

In this study, 300 images were collected from 300 patients of 155 normal and 145 fatty
cases. Every acquired image was processed as presented in Figure 5a; then, it was converted
to a grey level image (by using Equation (1)), as shown in Figure 5b. As a consequence,
a number of ROIs were carefully chosen within the liver tissue from the training set, as
shown in Figure 5c. These suggested regions covered the tissue of the liver, as indicated by
the specialized physician and experts.
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The collected data set was categorized into testing and training sets. The training
images included 110 fatty images and 120 normal images. Whereas, the testing images
involved 35 fatty images and 35 natural images.

The generation increased as “false negatives” or the number of wrongly classified
US images decreased in the following figure “Best: 2” meant that only two images in the
training set were mistakenly categorized, as presented in Figure 6.
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Table 3 exhibits the number of US images that were classified correctly or incorrectly.
It also presents the evaluated classification percentages in the case of the training and
testing images.

Table 3. Classification percentages of the liver images.

(a) Classification percentages for the training images.

Case True Images False Images Total

Training images 228 2 230
Accuracy 99.13% 0.87% 100%

(b) Classification calculations for the testing US images.

Case True Images False Images Total

Testing images 67 3 70
Accuracy 95.71% 4.29% 100%

4.2. Performance Evaluation Metrics

In our case, the number of testing images was 70 (35 + 35) for the two groups (fatty and
natural). When no disease was found, True Negatives (TN) were observed, and the test was
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negative, while it was classified as false positive (FP) if the test was positive. Instead, if the
disease was present, a positive or negative test indicated the observations were classified
as True Positive (TP) or False Negative (FN) situations, respectively [17,48,49]. Subsequent
performance measures are displayed in Table 4.

Table 4. The values of TN, TP, FP, and FN.

Case: Normal/Fatty (70 Test Images) 35
Normal and 35 Fatty

TP 33 (94.28%)
TN 34 (97.14%)
FP 2 (5.71%)
FN 1 (2.85%)

Total 70

Table 5 presents the robust widely used performance measures: sensitivity, accuracy,
precision, specificity, and F1-score. Accuracy is an intuitive measure of accuracy and is simply
the ratio of properly expected observations to total observations. Precision is a calculation
of correctly expected real observations to total predicted real observations. The sensitivity
(recall) is a ratio of the relevant instances that were regained. Specificity is a proportion of
healthy persons who were correctly reported as not having the illness. Finally, the F1-Score
is the average of sensitivity and precision. Consequently, the aforementioned score takes
both FP and FN into account [48,49] These performance metrics are known by:

Accuracy =
(TN + TP)

(TN + TP + FN + FP)
(2)

Precision =
TP

(FP + TP)
(3)

Sensitivity =
TP

(FN + TP)
(4)

Speci f icity =
TN

(FP + TN)
(5)

F1−measure = 2 ∗ (Sensitivity ∗ Precision)
(Sensitivity + Precision)

(6)

Table 5. Evaluation of some performance metrics.

Performance Metrics Percentage

Accuracy 95.71%

Precision 94.28%

Sensitivity 97.05%

Specificity 94.44%

F1-score 95.64%

Table 6 introduces a comparison of the recognition rate of our proposed technique with
that in [18,23,26,50]. Our proposed technique produced more accurate results than those in
the referred references. The suggested method achieved better accuracy compared to other
research. It should be noted that the work by other researchers used an ultrasound imaging
system, which was better than the proposed image acquisition system. Our acquisition
system was a very popular product in the field of medical equipment, because it was so
inexpensive compared to other acquisition systems. The range of the transmitting frequency
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of the ultrasound in our device was the same with other devices. The resolution of 684
× 552 pixels in our device was lower than the resolution of other devices, e.g., 767 × 572
pixels and 1024 × 1024 pixels. Moreover, the research work by [18,23,26,50] used a greater
number of extracted features, which required high computation complexity. The use of a
smaller number of features allowed us to avoid the use of GPU as in [51,52].

Table 6. Comparison between the suggested method and other systems.

Authors Classes (No. of
Patients) Features/Classifier Performance

Acharya et al. [23] 42 Natural, 58 Fatty
Texture, wavelet
transform, and

DT/HOS and FSC
An accuracy: 93.3%

Andrade et al. [18]

Natural, Fatty. 177
echographic

ultrasonic images
were acquired from

36 patients

GLRLM, law’s texture
energy, FOS, GLCM,

and fractal
dimension/ANN,

SVM&KNN

76.92%
79.77%

74.05% respectively

Kalyan et al. [26]
Natural (30), Fatty
(10), Cirrhotic (10),

Hep. (10)

GLRLM, Invariant
moments, Intensity

histogram,
GLCM/BPNN

92.5%

Santos et al. [50] Natural (68), Fatty
(52)

FOS, GLCM, GLRLM,
Gabor filter, Laws’
filter, lacunarity,

fractal dimension,
hepatorenal
coefficient,

attenuation/ ANN,
SVM, k-NN, Bayes,

DT

classifiers fusion:79%

Sharma et al. [16] 45 Natural, 45 Fatty
FOS, GLCM, GLRLM,

Law’s TEM, FPS,
Fractal

Accuracy: 95.55%,

The current work Natural (155), Fatty
(145)

26 features/Voting
Function Accuracy: 95.71%

4.3. Machine Learning Algorithms

Supervised learning algorithms were employed in this investigation to classify the
liver tissues into fatty and normal using the same data set that was used before in the
genetic algorithm. Several algorithms were applied to construct the classifier model, but we
reported the greatest classifier decision tree (J48), that given the high accuracy, it achieved
accuracy reaching up to 93.12%, according to the main parameters, the Kappa statistic was
0.85, mean absolute error was 0.069, root mean squared error was 0.26, relative absolute
error was 0.1451, and root relative squared error was 0.5383.

This classifier was tested using the cross-validation (10 folds) method; in this method,
the dataset was divided randomly into 10 folds, each fold was held out once to test the
classifier, and the classifier was trained on the remaining (10-1) to build the classifier as
shown in Figure 7 [44]. Each fold represented one iteration, in each iteration, the accuracy
of the model was calculated, and the overall accuracy was calculated using the mean; this
method was the best to evaluate the performance of the model, based on different measures
mainly: TP rate, FP rate, Precision, recall, and F1-measure as shown in Table 7 and also
presented in Figure 8. The Experimental Results were developed and evaluated using
WEKA software version 3.6.11.
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5. Conclusions

Early diagnosis of FLD is important to avoid advanced stages. Due to its low cost and
availability, radiologists commonly use US imaging. However, it has problems in detecting
this disease due to its low quality. The current study provided a technique to accurately
distinguish between fatty/normal livers using ultrasound liver images. Ultrasound, as a
noninvasive method, was known for diagnosing diffused liver diseases. In this work, multi
ROIs were selected to reduce the required computations. From each ROI, 26 features were
extracted. The acquired image of fatty tissue was characterized by bright echogenicity with
high contrast and high variance. All thresholds and parameters were automatically selected
via GA. The final result depended on the number of normal/fatty ROIs. The obtained TP
was 94.28%, TN was 97.14%, FP was 5.71%, and FN was 2.85%. The achieved precision
was 94.28%, sensitivity was 97.05%, specificity was 94.44%, and F1-score was 95.64%. The
proposed work provided a high recognition percentage of 95.71% compared to previous
research work, which achieved lower recognition accuracies 76.92%, 79.77%, 74.05%, 92.5%,
79%, 95.55%, and 93.3%. Moreover, it should be declared that the number of extracted
features in the current study was lower than that found in the literature, which significantly
achieved lower computational time in classifying the liver.
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The limitation of our technique is a deficiency of available databases. Moreover, the
low quality of acquisition ultrasound devices leads to a requirement for improved methods
including more efficient functionality without degrading the ultrasound image content.

As future research, the accuracy of recognition of the proposed method could be
improved by reducing the rate of False-Negative (FN) cases to allow us to better distinguish
between closely resembling diseases. Future work would be on increasing the size of patient
datasets to improve and increase the classification accuracy of the system and generalizing
the proposed method to deal with US images. Class imbalance is also challenging. For
instance, liver cirrhosis is usually so limited compared to other classes; e.g., liver steatosis,
liver cancer, and liver fibrosis. Additionally, more specific classes can be added, e.g., stages
of fibrosis; F1, F2, F3, and F4. It is should be mentioned that these classes of fibrosis are
so difficult to be recognized by specialists radiologist. This is because some details are
invisible to human eyes.

Before CAD technology and artificial intelligence are incorporated into routine clinical
practice, several challenges must be overcome. For clinical use, if there are concerns about
unreliable predictions, a CAD system must be able to justify its analysis.

The possibility that CAD will replace completely human decision making is unlikely
in the meantime. Should CAD technology be used as the strategy of resect-and-discard for
benign tumors then photo-documentation with high-resolution images marked with CAD
decisions will be needed for medical-legal reasons.
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