Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Assumption
- (1)
- Drones will not fail during the entire delivery process.
- (2)
- Each drone can only execute one delivery task after each take-off.
- (3)
- Each customer is visited only once by a drone or a truck.
- (4)
- All trucks have the same service time at each customer point, and all drones also have the same service time at each customer point.
3.2. Notation and Problem Statement
3.3. Formulation of the Problem
4. Model Solution
4.1. Initial Solution
- (1)
- Generation of pure-truck delivery route
- (2)
- Generation of drone delivery route
- (3)
- Route update
4.2. Variable Neighborhood Structure Design
- (1)
- Point exchange.
- (2)
- Link exchange.
4.3. Tabu List and Termination Conditions
4.4. Algorithm Flow
5. Numerical Experiment
5.1. Testing Delivery Network
5.2. Results
5.3. Sensitivity Analysis
5.3.1. Number of Truck–drones
5.3.2. Truck Speed and Drone Speed
6. Conclusions
- (1)
- Compared with traditional truck delivery, truck–drone delivery can save delivery time by 20.1% in the numerical experiment, which can guide logistics enterprises to complete the delivery tasks in less time.
- (2)
- More trucks and drones can effectively reduce the total delivery time, but the marginal benefit gradually decreases. Only increasing either the truck speed or drone speed cannot minimize the delivery time, and only when the truck speed and drone speed increase synchronously can the delivery time be significantly reduced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavone, G.; Carli, R.; Troccoli, G.; Tresca, G.; Dotoli, M. A MILP approach for the multi-drop container loading problem resolution in logistics 4.0. In Proceedings of the 2021 Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 687–692. [Google Scholar]
- Hu, K.Y.; Chang, T.S. An innovative automated storage and retrieval system for B2C e-commerce logistics. Int. J. Adv. Manuf. Technol. 2010, 48, 297–305. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Montemanni, R.; Novellani, S. Drone-assisted deliveries: New formulations for the flying sidekick traveling salesman problem. Optim. Lett. 2019, 15, 1617–1648. [Google Scholar] [CrossRef] [Green Version]
- Poikonen, S.; Campbell, J.F. Future directions in drone routing research. Networks 2021, 77, 116–126. [Google Scholar] [CrossRef]
- Ha, Q.M.; Deville, Y.; Pham, Q.D.; Ha, M.H. On the min-cost traveling salesman problem with drone. Transp. Res. 2018, 86, 597–621. [Google Scholar] [CrossRef] [Green Version]
- Poikonen, S.; Golden, B.; Wasil, E.A. A branch-and-bound approach to the traveling salesman problem with a drone. Inf. J. Comput. 2019, 31, 335–346. [Google Scholar] [CrossRef]
- Gonzalez-R, P.L.; Canca, D.; Andrade-Pineda, J.L.; Calle, M.; Leon-Blanco, J.M. Truck-drone team logistics: A heuristic approach to multi-drop route planning. Transp. Res. Part C Emerg. Technol. 2020, 114, 657–680. [Google Scholar] [CrossRef]
- Ham, A.M. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming. Transp. Res. Part C Emerg. Technol. 2018, 91, 1–14. [Google Scholar] [CrossRef]
- Kim, S.; Moon, I. Traveling salesman problem with a drone station. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 42–52. [Google Scholar] [CrossRef]
- Chauhan, D.; Unnikrishnan, A.; Figliozzi, M. Maximum coverage capacitated facility location problem with range constrained drones. Transp. Res. Part C Emerg. Technol. 2019, 99, 1–18. [Google Scholar] [CrossRef]
- Mathew, N.; Smith, S.L.; Waslander, S.L. Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1298–1308. [Google Scholar] [CrossRef]
- Savuran, H.; Karakaya, M. Efficient route planning for an unmanned air vehicle deployed on a moving carrier. Soft Comput. 2016, 20, 2905–2920. [Google Scholar] [CrossRef]
- Othman, M.; Shurbevski, A.; Karuno, Y.; Nagamochi, H. Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle. J. Inf. Processing 2017, 25, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Dayarian, I.; Savelsbergh, M.; Clarke, J.P. Same-day delivery with drone resupply. Transp. Sci. 2020, 54, 229–249. [Google Scholar] [CrossRef]
- Murray, C.C.; Chu, A.G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Luo, Z.; Zhong, L.; Shi, J. A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 2017, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Agatz, N.; Bouman, P.; Schmidt, M. Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 2018, 52, 965–981. [Google Scholar] [CrossRef]
- Sacramento, D.; Pisinger, D.; Ropke, S. An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transp. Res. 2019, 102, 289–315. [Google Scholar] [CrossRef]
- Bouman, P.C.; Agatz, N.A.H.; Schmidt, M.E. Dynamic programming approaches for the traveling salesman problem with drone. Networks 2018, 72, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Schermer, D.; Moeini, M.; Wendt, O. A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part C Emerg. Technol. 2019, 106, 166–204. [Google Scholar] [CrossRef]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Ha, Q.M.; Deville, Y.; Pham, Q.D.; Hà, M. Heuristic methods for the traveling salesman problem with drone. J. Heuristics 2020, 26, 219–247. [Google Scholar] [CrossRef] [Green Version]
- Yurek, E.E.; Ozmutlu, H.C. A decomposition-based iterative optimization algorithm for traveling salesman problem with drone. Transp. Res. 2018, 91, 249–262. [Google Scholar] [CrossRef]
- Chang, Y.; Sik, L.; Hyun, J. Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Syst. Appl. 2018, 104, 307–317. [Google Scholar] [CrossRef]
- Guturu, P.; Dantu, R. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of Some NP-hard problems in graph and set theory via clique finding. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 645–666. [Google Scholar] [CrossRef] [Green Version]
- Ramfrez-Rosado, I.J.; Dommguez-Navarro, J.A. New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems. IEEE Trans. Power Syst. 2006, 21, 224–233. [Google Scholar] [CrossRef]
- Lai, X.; Hao, J.K.; Fu, Z.H.; Yue, D. Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping. Eur. J. Oper. Res. 2020, 289, 1067–1086. [Google Scholar] [CrossRef]
- Andre, M. A variable neighborhood search algorithm for assigning cells to switches in wireless networks. J. Comput. Sci. 2005, 1, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, J.G.; Song, S. Coordinated logistics with a truck and a drone. Manag. Sci. 2017, 64, 4052–4069. [Google Scholar] [CrossRef] [Green Version]
Nodes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 15 | 16 | 13 | 16 | 14 | 18 | 21 | 31 | 29 | 30 | 19 | 26 | 21 | 20 | 29 | 35 | 37 | 36 | 42 | 41 | 39 | 35 | 37 |
1 | 15 | 0 | 17 | 19 | 31 | 32 | 14 | 13 | 16 | 15 | 33 | 33 | 36 | 37 | 32 | 33 | 22 | 23 | 28 | 38 | 39 | 37 | 37 | 41 |
2 | 16 | 17 | 0 | 7 | 28 | 26 | 29 | 27 | 23 | 10 | 18 | 13 | 28 | 30 | 41 | 45 | 23 | 15 | 25 | 34 | 39 | 40 | 41 | 44 |
3 | 13 | 19 | 7 | 0 | 25 | 26 | 29 | 29 | 34 | 18 | 11 | 14 | 18 | 20 | 32 | 43 | 31 | 18 | 29 | 34 | 35 | 35 | 42 | 46 |
4 | 16 | 31 | 28 | 25 | 0 | 16 | 28 | 31 | 44 | 35 | 32 | 30 | 20 | 15 | 23 | 36 | 47 | 41 | 38 | 43 | 36 | 19 | 14 | 32 |
5 | 14 | 32 | 26 | 26 | 16 | 0 | 29 | 34 | 42 | 39 | 37 | 36 | 36 | 33 | 15 | 29 | 45 | 46 | 42 | 45 | 43 | 36 | 20 | 21 |
6 | 18 | 14 | 29 | 29 | 28 | 29 | 0 | 9 | 29 | 32 | 39 | 38 | 40 | 40 | 19 | 12 | 36 | 44 | 47 | 51 | 51 | 48 | 43 | 41 |
7 | 21 | 13 | 27 | 29 | 31 | 34 | 9 | 0 | 20 | 22 | 39 | 39 | 41 | 42 | 25 | 23 | 21 | 39 | 45 | 50 | 49 | 48 | 45 | 47 |
8 | 31 | 16 | 23 | 34 | 44 | 42 | 29 | 20 | 0 | 21 | 35 | 37 | 40 | 41 | 38 | 37 | 16 | 35 | 45 | 52 | 53 | 52 | 50 | 53 |
9 | 29 | 15 | 10 | 18 | 35 | 39 | 32 | 22 | 21 | 0 | 19 | 21 | 26 | 29 | 41 | 43 | 16 | 20 | 24 | 41 | 43 | 43 | 45 | 50 |
10 | 30 | 33 | 18 | 11 | 32 | 37 | 39 | 39 | 35 | 19 | 0 | 9 | 17 | 20 | 48 | 52 | 34 | 15 | 16 | 26 | 30 | 32 | 35 | 53 |
11 | 19 | 33 | 13 | 14 | 30 | 36 | 38 | 39 | 37 | 21 | 9 | 0 | 15 | 17 | 48 | 50 | 46 | 19 | 14 | 23 | 24 | 25 | 37 | 48 |
12 | 26 | 36 | 28 | 18 | 20 | 36 | 40 | 41 | 40 | 26 | 17 | 15 | 0 | 6 | 47 | 52 | 52 | 34 | 15 | 21 | 22 | 22 | 34 | 47 |
13 | 21 | 37 | 30 | 20 | 15 | 33 | 40 | 42 | 41 | 29 | 20 | 17 | 6 | 0 | 46 | 52 | 54 | 43 | 24 | 29 | 20 | 13 | 21 | 32 |
14 | 20 | 32 | 41 | 32 | 23 | 15 | 19 | 25 | 38 | 41 | 48 | 48 | 47 | 46 | 0 | 16 | 50 | 52 | 51 | 56 | 55 | 51 | 37 | 19 |
15 | 29 | 33 | 45 | 43 | 36 | 29 | 12 | 23 | 37 | 43 | 52 | 50 | 52 | 52 | 16 | 0 | 49 | 53 | 56 | 60 | 58 | 49 | 45 | 31 |
16 | 35 | 22 | 23 | 31 | 47 | 45 | 36 | 21 | 16 | 16 | 34 | 46 | 52 | 54 | 50 | 49 | 0 | 31 | 36 | 51 | 52 | 53 | 53 | 56 |
17 | 37 | 23 | 15 | 18 | 41 | 46 | 44 | 39 | 35 | 20 | 15 | 19 | 34 | 43 | 52 | 53 | 31 | 0 | 31 | 36 | 40 | 41 | 43 | 48 |
18 | 36 | 28 | 25 | 29 | 38 | 42 | 47 | 45 | 45 | 24 | 16 | 14 | 15 | 24 | 51 | 56 | 36 | 31 | 0 | 16 | 22 | 29 | 35 | 51 |
19 | 42 | 38 | 34 | 34 | 43 | 45 | 51 | 50 | 52 | 41 | 26 | 23 | 21 | 29 | 56 | 60 | 51 | 36 | 16 | 0 | 15 | 32 | 38 | 45 |
20 | 41 | 39 | 39 | 35 | 36 | 43 | 51 | 49 | 53 | 43 | 30 | 24 | 22 | 20 | 55 | 58 | 52 | 40 | 22 | 15 | 0 | 16 | 29 | 42 |
21 | 39 | 37 | 40 | 35 | 19 | 36 | 48 | 48 | 52 | 43 | 32 | 25 | 22 | 13 | 51 | 49 | 53 | 41 | 29 | 32 | 16 | 0 | 15 | 38 |
22 | 35 | 37 | 41 | 42 | 14 | 20 | 43 | 45 | 50 | 45 | 35 | 37 | 34 | 21 | 37 | 45 | 53 | 43 | 35 | 38 | 29 | 15 | 0 | 21 |
23 | 37 | 41 | 44 | 46 | 32 | 21 | 41 | 47 | 53 | 50 | 53 | 48 | 47 | 32 | 19 | 31 | 56 | 48 | 51 | 45 | 42 | 38 | 21 | 0 |
Route Code | Optimal Delivery Route | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 0 | 7 | 1 | 8 | 16 | 9 | 17 | 10 | 2 | 0 | 187 | |
5 | - | 28 | - | 76 | - | 127 | - | 153 | 192 | |||
5 | 26 | 41 | 59 | 77 | 95 | 117 | 146 | 166 | 192 | |||
- | - | 13 | - | 1 | - | 0 | - | 13 | - | |||
B | 0 | 3 | 11 | 12 | 18 | 19 | 20 | 21 | 13 | 0 | 167 | |
5 | - | 34 | - | 59 | - | 103 | - | 137 | 172 | |||
5 | 18 | 34 | 51 | 68 | 86 | 103 | 121 | 136 | 172 | |||
- | - | 0 | - | 10 | - | 0 | - | 0 | - | |||
C | 0 | 5 | 4 | 22 | 23 | 14 | 15 | 6 | 0 | - | 172 | |
5 | - | 29 | - | 87 | - | 140 | - | 177 | - | |||
5 | 19 | 37 | 53 | 80 | 101 | 119 | 154 | 176 | - | |||
- | - | 8 | - | 0 | - | 0 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, B.; Wang, J.; Wang, X.; Zhou, F.; Mao, X.; Zheng, W. Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm. Appl. Sci. 2022, 12, 529. https://doi.org/10.3390/app12010529
Tong B, Wang J, Wang X, Zhou F, Mao X, Zheng W. Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm. Applied Sciences. 2022; 12(1):529. https://doi.org/10.3390/app12010529
Chicago/Turabian StyleTong, Bao, Jianwei Wang, Xue Wang, Feihao Zhou, Xinhua Mao, and Wenlong Zheng. 2022. "Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm" Applied Sciences 12, no. 1: 529. https://doi.org/10.3390/app12010529
APA StyleTong, B., Wang, J., Wang, X., Zhou, F., Mao, X., & Zheng, W. (2022). Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm. Applied Sciences, 12(1), 529. https://doi.org/10.3390/app12010529