INSPECTORMAP: A Spatial Data Infrastructure Applied to the Maintenance of Solar Plants Using Free Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Images to Monitor Earth Surface
2.2. Spatial Data Infrastructure
2.2.1. Geospatial Information Manager
2.2.2. Calendar
2.2.3. Results Viewer
3. Experimental Results
3.1. Study Cases
3.2. Results and Discussion
3.2.1. Mapping the Vigor of Vegetation at a Given Instant of Time
3.2.2. Multitemporal Analysis of the Vegetation Activity
3.2.3. Mapping the Water Bodies at a Given Instant of Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bakirtas, T.; Akpolat, A.G. The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries. Energy 2018, 147, 110–121. [Google Scholar] [CrossRef]
- Global Energy Statistical Yearbook. 2021. Available online: https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html (accessed on 8 November 2021).
- International Energy Agency. Global Energy Review. 2019. Available online: https://www.iea.org/reports/global-energy-review-2019 (accessed on 8 November 2021).
- International Energy Agency. Data and Statistics. Available online: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20consumption (accessed on 17 November 2021).
- IRENA. Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Balasubramanian, K.; Thanikanti, S.B.; Subramaniam, U.; Sudhakar, N.; Sichilalu, S. A novel review on Optimization Techniques used in Wind Farm Modelling. Renew. Energy Focus 2020, 35, 84–96. [Google Scholar] [CrossRef]
- Honrubia-Escribano, A.; Ramirez, F.J.; Gómez-Lázaro, E.; García-Villaverde, P.M.; Ruiz-Ortega, M.J.; Parra-Requena, G. Influence of solar technology in the economic performance of PV power plants in Europe. A comprehensive analysis. Renew. Sustain. Energy Rev. 2018, 82, 488–501. [Google Scholar] [CrossRef]
- Mercom India. Available online: https://mercomindia.com/world-largest-solar-park-bhadla/ (accessed on 13 October 2021).
- Saur Energy International. Available online: https://www.saurenergy.com/solar-energy-news/huawei-smart-pv-solution-highlights-role-in-worlds-largest-pv-plant (accessed on 13 October 2021).
- PV Magazine. Available online: https://pv-magazine-usa.com/2020/10/02/worlds-largest-solar-plant-goes-online-in-china/ (accessed on 13 October 2021).
- Nammatumkur. Available online: https://nammatumkur.com/worlds-largest-solar-power-park-at-karnataka-is-fully-operational/ (accessed on 26 October 2021).
- Mercom India. Available online: https://mercomindia.com/pavagada-solar-park-operational-december-2019/ (accessed on 25 October 2021).
- Hernández-Callejo, L.; Gallardo-Saavedra, S.; Alonso-Gómez, V. A review of photovoltaic systems: Design, operation, and maintenance. Sol. Energy 2019, 188, 426–440. [Google Scholar] [CrossRef]
- Gallardo-Saavedra, S.; Hernández-Callejo, L.; Duque-Pérez, O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants. Renew. Sustain. Energy Rev. 2018, 93, 566–579. [Google Scholar] [CrossRef]
- Catalano, A.P.; Scognamillo, C.; Guerriero, P.; Daliento, S.; d’Alessandro, V. Using EMPHASIS for the Thermography-Based Fault Detection in Photovoltaic Plants. Energies 2021, 14, 1559. [Google Scholar] [CrossRef]
- Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A. Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 138, 110512. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.R.; Akter, S. Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data. Remote Sens. Appl. Soc. Environ. 2017, 8, 168–181. [Google Scholar] [CrossRef]
- Piedelobo, L.; Ortega-Terol, D.; Del Pozo, S.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A.; Molina, J.L.; González-Aguilera, D. HidroMap: A new tool for irrigation monitoring and management using free satellite imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Hernández-López, D.; Piedelobo, L.; Moreno, M.A.; Chakhar, A.; Ortega-Terol, D.; González-Aguilera, D. Design of a Local Nested Grid for the Optimal Combined Use of Landsat 8 and Sentinel 2 Data. Remote Sens. 2021, 13, 1546. [Google Scholar] [CrossRef]
- Open Data Cube. Available online: https://www.opendatacube.org/ (accessed on 2 November 2021).
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V. Calibration and validation plan for the L2A processor and products of the Sentinel-2 mission. In Proceedings of the International Symposium on Remote Sensing of Environment (ISRSE), Berlin, Germany, 11–15 May 2015; Volume 40, pp. 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef] [Green Version]
- USGS Search and Download Service. Available online: https://ers.cr.usgs.gov (accessed on 27 September 2021).
- OpenSearch Protocol. Available online: http://www.opensearch.org/Home (accessed on 14 September 2021).
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Ryu, J.H.; Han, K.S.; Hong, S.; Park, N.W.; Lee, Y.W.; Cho, J. Satellite-based evaluation of the post-fire recovery process from the worst forest fire case in South Korea. Remote Sens. 2018, 10, 918. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 2017, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Versaci, M.; Calcagno, S.; Morabito, F.C. Image contrast enhancement by distances among points in fuzzy hyper-cubes. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Valletta, Malta, 2–4 September 2015; Springer: Cham, Switzerland, 2015; pp. 494–505. [Google Scholar] [CrossRef]
- Arozarena, A.; Villa, G.; Valcárcel, N. The National Aerial Ortophoto Program in Spain (PNOA). In Proceedings of the International Cartographic Conference, La Coruña, Spain, 9–16 July 2005. [Google Scholar]
- Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Instituto Geográfico Nacional. Available online: https://www.ign.es/web/cbg-area-cartografia (accessed on 13 October 2021).
- Jiang, W.; Ni, Y.; Pang, Z.; He, G.; Fu, J.; Lu, J.; Yang, K.; Long, T.; Lei, T. A new index for identifying water body from SENTINEL-2 satellite remote sensing imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 33–38. [Google Scholar] [CrossRef]
Bands | Wavelength Range (µm) | Spatial Resolution (m) |
---|---|---|
B1—Coastal aerosol | 0.43–0.45 | 30 |
B2—Blue | 0.45–0.51 | 30 |
B3—Green | 0.53–0.59 | 30 |
B4—Red | 0.64–0.67 | 30 |
B5—NIR | 0.85–0.88 | 30 |
B6—SWIR 1 | 1.57–1.65 | 30 |
B7—SWIR 2 | 2.11–2.29 | 30 |
B8—Panchromatic | 0.50–0.68 | 15 |
B9—Cirrus | 1.36–1.38 | 30 |
Bands | Wavelength Range (µm) | Spatial Resolution (m) |
---|---|---|
B1—Coastal aerosol | 0.43–0.45 | 60 |
B2—Blue | 0.45–0.52 | 10 |
B3—Green | 0.54–0.57 | 10 |
B4—Red | 0.65–0.68 | 10 |
B5—Red Edge 1 | 0.68–0.71 | 20 |
B6—Red Edge 2 | 0.73–0.74 | 20 |
B7—Red Edge 3 | 0.77–0.79 | 20 |
B8—NIR 1 | 0.78–0.90 | 10 |
B8A—NIR 2 | 0.85–0.87 | 20 |
B9—Water Vapor | 0.93–0.95 | 60 |
B10—Cirrus | 1.36–1.39 | 60 |
B11—SWIR 1 | 1.56–1.65 | 20 |
B12—SWIR 2 | 2.10–2.28 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz de Oña, E.; Sánchez-Aparicio, M.; Del Pozo, S.; González-Aguilera, D. INSPECTORMAP: A Spatial Data Infrastructure Applied to the Maintenance of Solar Plants Using Free Satellite Imagery. Appl. Sci. 2022, 12, 70. https://doi.org/10.3390/app12010070
Ruiz de Oña E, Sánchez-Aparicio M, Del Pozo S, González-Aguilera D. INSPECTORMAP: A Spatial Data Infrastructure Applied to the Maintenance of Solar Plants Using Free Satellite Imagery. Applied Sciences. 2022; 12(1):70. https://doi.org/10.3390/app12010070
Chicago/Turabian StyleRuiz de Oña, Esteban, María Sánchez-Aparicio, Susana Del Pozo, and Diego González-Aguilera. 2022. "INSPECTORMAP: A Spatial Data Infrastructure Applied to the Maintenance of Solar Plants Using Free Satellite Imagery" Applied Sciences 12, no. 1: 70. https://doi.org/10.3390/app12010070
APA StyleRuiz de Oña, E., Sánchez-Aparicio, M., Del Pozo, S., & González-Aguilera, D. (2022). INSPECTORMAP: A Spatial Data Infrastructure Applied to the Maintenance of Solar Plants Using Free Satellite Imagery. Applied Sciences, 12(1), 70. https://doi.org/10.3390/app12010070