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Abstract: Photovoltaic solar plants are one of the main facilities away from urban centers for the
generation of clean energy. Since its appropriate maintenance ensures its suitable operation, op-
timizing their maintenance tasks in a preventive way is key. This article presents a spatial data
infrastructure called INSPECTORMAP that, based on the analysis of free satellite images within the
optical spectrum, can detect unusual vegetation and bodies of water in the vicinity of photovoltaic
plants that can affect their correct operation. Thanks to the implementation of a monitoring and
alert system, it is possible to know and map the status of the photovoltaic plant in terms of unusual
coverages appearing, both natural and artificial, at any moment. Thus, maintenance workers would
travel to the solar plant to carry out their maintenance tasks in this regard only when the system
detects a risk.

Keywords: spatial data infrastructure; landsat-8; sentinel-2; risks; unattended maintenance; solar plants

1. Introduction

In the last decades, there has been an increase in world energy consumption motivated
by population growth [1]. The data collected by The Global Energy Statistical Yearbook [2]
indicate an average annual energy consumption growth of 2% during the 2000–2018 period.
The annual forecast from the International Energy Agency (IEA) indicates that this trend
will continue to increase. According to the 2019 IEA report [3], by the year 2040 there, will be
an increase in global energy demand of 24% due to the increase in the world population and
the improvement of living standards of the newly industrialized and developing nations.
Within energy consumption, electricity has grown the most. Based on data collected by the
IEA in 2018, the total world electricity consumption is 24,738.9 TWh [4]. Current world
energy policies are focused on increasing renewable resources for energy generation to
combat climate change and its impacts [5]. To date, only 27% of all electrical energy comes
from renewable energy sources [2]. Given the significant cost reduction associated with
renewable energy generation technologies, wind and sun are currently the main renewable
energy sources used for large-scale electricity generation [6,7].

In recent years, photovoltaic solar plants have experienced significant growth, largely
motivated by the greater accessibility to solar resources throughout the world geography.
This type of facilities can reach high powers, so they require large surface areas for their
suitable installation. Bhadla Solar Park, located in India, is the largest solar park in the
world occupying 57 km2 with a total electrical capacity of 2245 MW [8]. Above 2000 MW,
there are only the Huanghe hydroelectric park in Hainan (China) [9,10], as well as the
Pavagada photovoltaic solar park located in India [11,12].

Since these facilities cover large surfaces, their maintenance plays a key role for
their correct operation and efficiency [13]. In this sense, remote sensing is a very useful
technique. In recent years, many researchers have made use of drones to acquire thermal
images of photovoltaic plants, mainly to know the status of the solar panels [14,15]. Li et al.
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showed how the application of artificial intelligence networks allows for automating
this process [16]. Another important aspect regarding the maintenance of photovoltaic
installations is the conditions of their surroundings. The earth’s surface is subject to
continuous changes of both natural and artificial origin. Regarding the changes caused
naturally, the presence of small or large masses of vegetation or the accumulation of water
in the vicinity of these facilities can negatively affect their proper operation. These are
changes that require continuous monitoring. Although drones allow capturing images
with high spatial resolution, they turn out to be an expensive alternative due to the need
for an expert pilot and frequent flights. In addition, these devices have other weaknesses:
(i) impossibility of flying with extreme weather conditions such as strong winds, large
episodes of rain, or high temperatures; (ii) limitation when flying large areas due to the
autonomy of their batteries; (iii) the need to have an expert drone flight operator who
oversees planning and executing the flight, which increases costs. As an alternative to
this robotic technology, there are earth observation satellites capable of monitoring the
surroundings of photovoltaic facilities over time. Currently, large space agencies such
as NASA (National Aeronautics and Space Administration) and ESA (European Space
Agency) have different Earth observation missions that capture images of the Earth’s
surface [17]. These are images that not only stand out for their free nature but also for
their temporal and spectral resolution. This type of satellite captures images every few
days, within several regions of the electromagnetic spectrum, which allows the detection of
different elements of the Earth’s surface by means of different spectral indices [18].

To efficiently manage this information, given its type and quantity, systems with a
great capacity both to process and display satellite images, as well as to store them, are
required. Although common Geographic Information System (GIS) tools are of great help
in this regard, the use of a spatial data infrastructure (SDI) is a great alternative [19]. These
are easy-to-use web tools that allow to automate the download, storage, and processing
of data without the need for a computer with a large graphic and storage capacity, since
everything is done through the cloud. Likewise, the latest advances in the Open Data Cube
(ODC) standards [20,21] allow the integration and fusion of different satellite platforms
and missions, improving and enhancing the analysis of different satellite products together.

Based on the above, this article shows how, thanks to the development of an SDI that
feeds on free satellite images from the main world space agencies and under the ODC
standard, the presence of water masses and the growth of vegetation in solar plants can
be detected. After this introductory section, Section 2 presents the materials and methods
used for the correct development of the application. Section 3 shows the experimental
results, and finally, Section 4 will show the most significant conclusions of the study.

2. Materials and Methods

The SDI tool developed for the detection of water masses and vegetation changes in
the vicinity of photovoltaic solar plants is based on Landat-8 and Sentinel-2 satellite images,
as well as their integration according to a Local Nested Grid (LNG) [21].

2.1. Satellite Images to Monitor Earth Surface

To continuously monitor the phenomena and changes that occur on the Earth’s surface,
space agencies have satellites in orbit that carry different sensors on board to acquire data
in this regard. Regarding the physical-mathematical model that underlies the acquisition
of satellite images, it should be noted that it encompasses the conjunction of several
phases, considering the Earth/atmosphere interaction of radiation and the internal physical
behavior of the sensors. Sentinel-2 and Landat-8 images used in this paper are Level-2
products so that they are calibrated images with reflectance values at the bottom of the
atmosphere [22,23]. Specifically, NASA and the United States Geological Survey (USGS),
since 1972, has launched different Earth observation satellites under the name Landsat.
Although Landsat-9 is the last satellite put into orbit (on 27 September 2021), Landsat-8 is
the last to offer its products to date. Landsat-9 will start offering its products in early 2022.
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Of the two instruments that Landsat-8 has on board, the OLI (Operational Land Imager)
sensor captures images in different parts of the optical spectrum (Table 1) with a 16-day
temporal resolution and a 12-bit radiometric resolution. Once Landsat-9 data begin to be
offered, the temporal resolution offered by this constellation of satellites will be 8 days
instead of 16 days.

Table 1. Main characteristics of the Landsat-8 OLI sensor.

Bands Wavelength Range (µm) Spatial Resolution (m)

B1—Coastal aerosol 0.43–0.45 30
B2—Blue 0.45–0.51 30

B3—Green 0.53–0.59 30
B4—Red 0.64–0.67 30
B5—NIR 0.85–0.88 30

B6—SWIR 1 1.57–1.65 30
B7—SWIR 2 2.11–2.29 30

B8—Panchromatic 0.50–0.68 15
B9—Cirrus 1.36–1.38 30

In recent years, the European Space Agency (ESA) has become a reference space agency
thanks to the Copernicus earth observation program, in which satellite data are the main
source of information. With a total of six families of satellites, under the name Sentinel,
ESA is able to monitor different important parameters to improve the environmental
management. Specifically, the constellation Sentinel-2 (2A and 2B), thanks to its MSI sensor,
captures data within the optical spectrum (Table 2) with a 5-day temporal and a 12-bit
radiometric resolution.

Table 2. Main characteristics of the Sentinel-2 MSI sensor.

Bands Wavelength Range (µm) Spatial Resolution (m)

B1—Coastal aerosol 0.43–0.45 60
B2—Blue 0.45–0.52 10

B3—Green 0.54–0.57 10
B4—Red 0.65–0.68 10

B5—Red Edge 1 0.68–0.71 20
B6—Red Edge 2 0.73–0.74 20
B7—Red Edge 3 0.77–0.79 20

B8—NIR 1 0.78–0.90 10
B8A—NIR 2 0.85–0.87 20

B9—Water Vapor 0.93–0.95 60
B10—Cirrus 1.36–1.39 60
B11—SWIR 1 1.56–1.65 20
B12—SWIR 2 2.10–2.28 20

Regarding the physical-mathematical model that underlies the acquisition of satellite
images, it should be noted that it encompasses the conjunction of several phases, consider-
ing the Earth/atmosphere interaction of radiation and the internal physical behavior of the
sensors. Sentinel-2 and Landat-8 images used in this paper are Level-2 products so that
they are calibrated images with reflectance values at the bottom of atmosphere [22,23].

Both NASA and ESA have their own online platforms for downloading data captured
by the corresponding satellite instrument. Due to the need for up-to-date images to carry
out suitable monitoring of the appearance of water bodies or anomalous vegetation surfaces
in the plant surroundings, a continuous download of data is required. This results in a large
amount of information to be managed. For this reason, a Python script has been developed
so that it allows: (i) reporting the available Landast-8 and Sentinel-2 Level-2 products
along the photovoltaic plants by a proper query [24,25] to the downloading platforms,
(ii) the automatic download of such information, (iii) the registration of the downloaded
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products in the system catalog, (iv) the automatic calculation of various spectral indexes
for monitoring the status of the photovoltaic plants, (v) the registration of these spectral
indexes in the system catalog, and finally (vi) the publication of the spectral indexes in the
SDI viewer through a map server. Likewise, the integration of Landsat-8 and Sentinel-2
images has been carried out according to an LNG developed by the authors [20].

There is a great variety of spectral indices that are applicable to different areas of
knowledge such as agriculture, hydrology, and forestry, among others [26–28]. For studies
on vegetation in general, the Normalized Difference Vegetation Index (NDVI) is the most
widely used since it allows estimating the quantity, quality, and growth of vegetation,
thanks to the amount of radiation reflected by vegetation in the red and near infrared
electromagnetic spectrum (Equation (1)) [29].

NDVI =
(NIR − Red)
(NIR + Red)

, (1)

representing NIR and Red the surface reflectance values at the near infrared and red
bands, respectively.

This index takes values between −1 and 1, where values close to zero indicate absence
of vegetation or existence of dead vegetation, while values close to 1 indicate the existence
of abundant and vigorous vegetation.

Regarding identifying water masses, the Normalized Differential Water Index (NDWI)
is the most widely used spectral index [30]. Within the NDWI, there are different variants,
although the most widely used, defined by the “McFeeters Method”, considers the green
and the near infrared bands (Equation (2)) [31].

NDWI =
(Green − NIR)
(Green + NIR)

, (2)

representing Green and NIR the surface reflectance values at the green and near infrared
bands respectively.

The NDWI is a variant of the NDVI, in which the equation reverses the order of the
NIR, and the red band is replaced by the green one. This relationship makes it possible to
maximize the reflectance of the water when working with green wavelengths, minimizing
the NIR reflectance of the water and maximizing the NIR reflectance of the vegetation. With
this, it is possible to correctly delimit the water masses, as well as to analyze the degree of
humidity of the vegetation. Such as the NDVI, the values that NDWI can take are between
−1 and 1, where values greater than 0 indicate bodies of water or areas with the presence
of moisture.

Finally, it should be mentioned that satellite images may contain inaccuracies, mainly
due to the resolution limitation of the capture sensors. While this type of uncertainty can
be minimized using fuzzy image pre-processors [32], in this case, it is admissible since the
target is the detection of significant changes in vegetation and bodies of water.

2.2. Spatial Data Infrastructure

Any SDI is made up of data, metadata, processes to transform and query the data, and
standardized web services for interacting between them. These software components are
distributed according to a client-server architecture model (Figure 1). Specifically, the SDI
INSPECTORMAP is developed under the language of Php and JavaScript using “Laravel”
as a framework.

Behind the server-side of INSPECTORMAP (Back End, Figure 1) there is a Python
script that, in combination with a PostgreSQL database, allows characterizing the areas to
be studied as well as downloading and processing on a GeoServer the corresponding set of
Landsat-8 and Sentinel-2 images. Furthermore, this script integrates an LNG [20] to ensure
a more efficient integration of both data sets. From the downloaded images, the script
automatically calculates the NDVI and NDWI spectral indices to analyze the presence of
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vegetation and water bodies, as explained in the previous section. The result is stored on
the server and consumed as Web Map Services (WMSs) to map the affected areas with
different color scales and, as Web Feature Services (WFSs), to quantify the affected areas
in m2.
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The graphical interface of INSPECTORMAP (Front End, Figure 1) shows the results
obtained in the server-side. It is a graphical interface that is mainly composed of three
elements (Figure 2): (i) a geospatial information manager, (ii) a calendar, and (iii) a re-
sults viewer.
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2.2.1. Geospatial Information Manager

Given the large amount of geospatial information INSPECTORMAP manages, its
interface allows, through the menu on the left, the user to select the type of reference base
layer, the spectral index image, and the photovoltaic plant that he or she wishes to view
(Figure 3). From among the reference base layers, the user can choose between: ortophotos
from PNOA (Plan Nacional de Ortofotografía Aérea in Spanish, National Plan for Aerial
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Orthophotography in English) [33], Open Street Map products [34], or a base map of the
National Geographic Institute [35]. For a quick location of the study areas, the tool offers a
list of all monitored photovoltaic plants in such a way that the user can supervise each one
with just one click.
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2.2.2. Calendar

At the bottom of the interface, in the form of a calendar, the user can view the dates
for which the spectral index images are available for the pre-selected photovoltaic plant
(Figure 4). Furthermore, by clicking on each date, the product is automatically displayed in
the results viewer.
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2.2.3. Results Viewer

Located in the central part of the graphical interface is the results viewer. This space
is destinated to display both the reference base layers and the spectral index images of
the pre-selected photovoltaic plant. Thanks to this visualization, the user can qualitatively
check the state of the vegetation and the existence of bodies of water in the vicinity of the
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photovoltaic plant for a specific date, as well as (2) quantify the possible risk derived from
their existence (Figure 5). The NDVI and NDWI images are represented in a color scale bar
to aid in the interpretation of the associated risk.
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Figure 5. NDVI image display example of a photovoltaic solar plant for a given specific moment and
the corresponding graph showing the NDVI variation over time for the selected pixel.

Thanks to an alert system implemented, the user can quickly detect if any of the
photovoltaic plants included in the system have an atypical growth of vegetation or water
surface in the vicinity by visualizing the affected areas as well as quantifying their surface
in m2 (Figure 6). In addition, this system allows for generating a report in pdf format with
the most relevant information on the risk detected and the suggestions for the maintenance
operator (Figure 7).
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3. Experimental Results

Since the maintenance of photovoltaic solar plants does not require the daily presence
of an operator, in many cases, these facilities are neglected, operating in a non-optimal
way. In this sense, INSPECTORMAP allows for detecting risks that may negatively affect
the operation of the photovoltaic installation, which allows for optimizing the movements
of maintenance workers. Thus, the operator in charge of checking the state of the solar
plant surroundings will only appear before a real risk due to the growth of vegetation
or the presence of water masses. The presence of large bodies of water or high levels of
humidity in the soil can negatively affect the foundations of the facilities. In addition, the
presence of water bodies can make accessibility to the plant difficult. This problem also
occurs due to the existence of large vegetation in the vicinity. However, the presence of
vegetation not only affects the accessibility, but also the performance of the installation
itself. Large vegetation creates shadows on the solar panels, preventing solar radiation from
striking the photovoltaic panels. In addition, the presence of vegetation is an attraction
for animals and insects, which increases the presence of excrement on the solar panels,
reducing their performance.

To verify the correct operation of the SDI INSPECTORMAP and to corroborate its
usefulness, six photovoltaic plants located in Spain subjected to different conditions have
been analyzed (Figure 8).

3.1. Study Cases

The first plant analyzed (Figure 8a) is a photovoltaic plant located in an area catego-
rized as grassland, where the solar panels are grouped in two areas separated by a building
occupying an area of 62,808 m2. The adjacent plots are lands with the presence of trees.

The second plant (Figure 8b) has an area of 13,254 m2. It is a photovoltaic plant that is
characterized by the proximity between their solar panels. Regarding the vegetation, the
adjoining plots are characterized by being grasslands.

Regarding the third photovoltaic plant (Figure 8c), it occupies an area of 29,271 m2, in
which there are areas with great spacing between groups of panels. From the vegetation
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point of view, the area where the solar panels are installed is a grass area, while the plots
adjacent to the installation are arable plots.
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The fourth photovoltaic plant (Figure 8d) is the one with the largest surface area
(155,204 m2). Unlike the rest of the solar plants, this one is in an irrigated arable plot.
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For its part, the fifth photovoltaic plant (Figure 8e) occupies an area of 11,753 m2 and
it is located on an arable plot. The vegetation surrounding the plant is characterized by
wooded and arable areas.

Finally, the sixth photovoltaic plant analyzed (Figure 8f) occupies an area of 5303 m2

and it is characterized by being located on a plot of grass. The adjoining parcel on the left
has a wooded area with tall trees, while the adjoining parcel on the right corresponds with
an arable land.

3.2. Results and Discussion

This section shows the results produced by the SDI INSPECTORMAP, which allow for
the interpretation of the possible existing risks by a non-expert user. The user would be
able to identify, through two ways, those areas where vegetation can be a problem for the
operation of the solar installation: by means of (1) mapping the vigor of the vegetation at
a given instant of time and the computation of the plant surface that would require to be
eliminated, or through (2) the multitemporal analysis of the vegetation activity. Both ways
are based on the calculation of the NDVI. In addition, and thanks to the NDWI map, it will
allow to detect bodies of water that could affect the performance of the installations.

3.2.1. Mapping the Vigor of Vegetation at a Given Instant of Time

On the one hand, the tool displays, for a chosen date, the NDVI map the colors closer
to brown indicate the absence of vegetation while the blue colors indicate the existence
of vegetation with great vigor. Figure 9 shows the NDVI maps of the six plants analyzed
during the month of May.

As previously stated, the six photovoltaic plants have in common that they are sur-
rounded by grass. The maximum vigor of naturally grown grass (not watered) usually
occurs between the months of April and May in the northern hemisphere. As a generic
criterion, when the NDVI exceeds 0.70 [19], it is considered that the vegetation has suffi-
ciently high vigor. Thus, for this specific application, this will be indicative of the need for
maintenance tasks to eliminate it. In all cases (Figure 9), there is a percentage of vegetation
that should be removed. It should be noted that, in plant 6, unlike the rest of the solar
plants, the area where the solar panels are installed has a bluish-green hue while in the
rest of the solar plants it has a reddish hue. This is not due to the presence of vegetation
between panels, but to their great separation and the presence of vegetation with a notable
vigor in the surroundings.

According to the alert system implemented, plants 1, 3, 4, and 6 are the ones with
the largest area of vegetation to be removed: 54,418 m2, 4486 m2, 27,293 m2, and 5100 m2,
respectively (Figure 10). For these cases, the NDVI value of the areas in need of maintenance
have a mean value greater than 0.70; specifically, 0.76, 0.73, 0. 79, and 0.81, respectively.

3.2.2. Multitemporal Analysis of the Vegetation Activity

The NDVI graphs are the other option with which the INSPECTORMAP tool allows
to know the evolution of the vegetation. Unlike static NDVI maps, NDVI graphs allow
for knowing the activity and growth of vegetation over a period of time. It is a very
interesting alternative to know the behavior of the vegetation over time and plan the
possible maintenance tasks. As can be seen in Figure 11, for each of the photovoltaic plants
analyzed, a moment of maximum growth and vigor of the vegetation is always appreciated.
Depending on the type of plant, this behavior will vary throughout the year. It is worth
mentioning that the value of NDVI on cloudy days decreases sharply, hence all the sharp
drops in the charts. All those graphs that represent the vegetative activity of the existing
grass between the solar panels (Figure 11a,c,e) show a similar behavior, since during the
months of June, July, and August there is either no vegetation (Figure 11e) or it is dry
(Figure 11a,c). Although Figure 11b shows a totally different behavior, the vegetation on
the plot is also grass. On the contrary, in the case of Figure 11d, the behavior of a vegetation
characterized by being watered is represented where the NDVI presents a high value due
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to the vigor and humidity of the crop. Similarly, the plot to the left of the plant 6 exhibits
high NDVI from April to October due to the vigor of the vegetation and its humidity.
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Figure 11. Vegetative activity through time in the vicinity of the photovoltaic plants analyzed by
means of multitemporal NDVI graphs: (a) of the vegetation between the solar panels, (b) of the
vegetation present in the adjacent right plot, (c) of the area without the presence of solar panels within
the installation plot, (d) of the vegetation of the lower triangular plot, € of the vegetation surrounding
the solar installation, (f) of the vegetation of the plot located to the left of the installation.
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3.2.3. Mapping the Water Bodies at a Given Instant of Time

Solar installations are generally located in places away from large bodies of water such
as rivers, lakes, or reservoirs. Sometimes, they are in areas close to water ponds that do not
endanger the installation because they are far enough away (Figure 12).
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Figure 12. Water ponds detected with the NDWI index in the surroundings of (a) plant 1, and
(b) plant 4.

However, it is becoming more and more frequent to find episodes of heavy rains
that can cause the accumulation of water, which could endanger the correct operation of
this type of facility. An example of this occurred on plant 1 during a heavy rain episode
during October 2020. The alert system detected a body of water with an area of 2134 m2

that not only limited the accessibility to the plant but could have put the installation in
risk (Figure 13).
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of heavy rain.

Although the NDWI is the most widely used spectral index for the detection of water
masses, many authors are working on the development of new spectral indices. An example
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of this is [36], who developed an SWI index for the detection of water masses using different
spectral bands of Sentinel-2 (Equation (3)).

SWI =
Rededge 1 − SWIR 1
Rededge 1 + SWIR 1

, (3)

While in the case of NDWI all the pixels are part of the water body, in the case of
SWI there are “false positive” pixels (Figure 14c). When quantifying the area affected by
the water body using the NDWI on plant 4, it is obtained that with a 10-m resolution
image the value is 31,166 m2 and with a 20-m resolution the value drops to 27,171 m2. The
area affected by water when applying the SWI index almost doubles, obtaining a value of
43,154 m2.
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4. Conclusions

The maintenance of photovoltaic solar plants plays a key role in terms of their per-
formance and useful life. The INSPECTORMAP tool presented in this article allows for
the maintenance of both small and large photovoltaic solar plants without the need for
periodic on-site inspections.
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Thanks to the revisit period of the satellites, different spectral indices can be calcu-
lated periodically and free of charge to detect those areas of the installation that require
maintenance due to the presence of water or vegetation. The process of downloading and
calculating these indexes is performed automatically thanks to a Python script implemented
in the proposed SDI. Likewise, the integration of Landsat-8 and Sentinel-2 data is based on
the Open Data Cube standard and the Local Nested Grid tool developed. This integration
allows for maximum use of these products in geometric, radiometric, and temporal terms.
In this way, the INSPECTORMAP user does not have to perform any calculations; they
only have to analyze the results offered by the tool and be aware of the warnings the tool
automatically generates when certain thresholds are exceeded.

Although the estimation of spectral indices for the detection of anomalous vegetation
and water bodies is very useful, it must be considered that, in some cases, the quantified
surfaces are not sufficiently precise. For this reason, the SDI INSPECTORMAP serves as a
support tool to aid the maintenance operators to know the vegetation activity and water
bodies growth in the surroundings of photovoltaic plants, which can be a potential risk for
the operation of these facilities. As has been demonstrated with the estimation of the areas
affected by vegetation, in most cases, the tool is very useful to know exactly the location
where the operator will proceed to withdrawal.

Although there are several indices for estimating water bodies by satellite images, this
contribution confirms that the NDWI index allows for a precise estimation of the affected
areas compared to other indices such as the SWI, which tends to overestimate the areas
with presence of water. As has been shown, the improved resolution of satellite imagery
allows a more precise quantification. This improvement in precision is key for sensitive
cases of large floods, in which a highly precise quantification of the affected area is required
without involving a large computational expense.
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