Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Hyperspectral Imaging Acquisition
2.3. Hyperspectral Image Processing
2.4. Study of the Variability and Development of Classification Models
2.5. Pixel-by-Pixel Classification
3. Results and Discussion
3.1. Spectral Analysis
3.2. Classification Models of Almonds by Bitterness
3.3. Identification of Bitter Almonds in Adulterated Sweet Almond Batches
3.4. Data Reduction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ros, E. Review: Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildirim, A.N.; Yildirim, F.; Şan, B.; Polat, M.; Sesli, Y. Variability of phenolic composition and tocopherol content of some commercial almond cultivars. J. Appl. Bot. Food Qual. 2016, 89, 163–170. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agriculture Research Service. FoodData Central. 2019. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170567/nutrients (accessed on 23 March 2022).
- International Nut and Dried Fruit Council Foundation (INC). Nuts & Dried Fruits Statistical Yearbook 2019/2020; Technical Report INC; 2020; pp. 6–7. Available online: https://www.iranpistachio.org/fa/images/INC/INC_Statistical_Yearbook_2019-2020.pdf?msclkid=89309733d05511ec99551a66d22f0de1 (accessed on 8 May 2022).
- Cortés, V.; Talens, P.; Barat, J.M.; Lerma-García, M.J. Potential of NIR spectroscopy to predict amygdalin content established by HPLC in intact almonds and classification based on almond bitterness. Food Control 2018, 91, 68–75. [Google Scholar] [CrossRef]
- Mouaffak, Y.; Zegzouti, F.; Boutbaoucht, M.; Najib, M.; El Adib, A.G.; Sbihi, M.; Younous, S. Cyanide poisoning after bitter almond ingestion. Ann. Trop. Med. Public Health 2013, 6, 679–681. [Google Scholar] [CrossRef]
- Vega-Castellote, M.; Pérez-Marín, D.; Torres, I.; Moreno-Rojas, J.M.; Sánchez, M.T. Exploring the potential of NIRS technology for the in situ prediction of amygdalin content and classification by bitterness of in-shell and shelled intact almonds. J. Food Eng. 2021, 294, 110406. [Google Scholar] [CrossRef]
- Torres, I.; Sánchez, M.T.; Vega-Castellote, M.; Pérez-Marín, D. Fraud detection in batches of sweet almonds by portable near infrared spectral sensors. Foods 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Vega-Castellote, M.; Sánchez, M.T.; Torres, I.; Pérez-Marín, D. An innovative non-targeted control system based on NIR spectral information for detecting non-compliant batches of sweet almonds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119407. [Google Scholar] [CrossRef] [PubMed]
- Nakariyakul, S.; Casasent, D. Classification of internally damaged almond nuts using hyperspectral imagery. J. Food Eng. 2011, 103, 62–67. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Perez, M.; Lohumi, S.; Lee, H.; Kim, G.; Wakholi, C.; Joshi, R.; Cho, B.K. Online application of a hyperspectral imaging system for the sorting of adulterated almonds. Appl. Sci. 2020, 10, 6569. [Google Scholar] [CrossRef]
- Torres, I.; Pérez-Marín, D.; Vega-Castellote, M.; Sánchez, M.T. Mapping of fatty acids composition in shelled almonds analysed in bulk using a Hyperspectral Imaging system. LWT—Food Sci. Technol. 2021, 138, 110678. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Application of SWIR hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of Aflatoxin B1 in single kernel almonds. LWT—Food Sci. Technol. 2022, 155, 112954. [Google Scholar] [CrossRef]
- Panda, B.K.; Mishra, G.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Rancidity and moisture estimation in shelled almond kernels using NIR hyperspectral imaging and chemometric analysis. J. Food Eng. 2022, 318, 110889. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef] [PubMed]
- ISI. The Complete Software Solution Using a Single Screen for Routine Analysis, Robust Calibrations, and Networking; Manual, FOSS NIRSystems/TECATOR; Infrasoft International: Silver Spring, MD, USA, 2000. [Google Scholar]
- Kim, M.S.; Chen, Y.R.; Mehl, P.M. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. Am. Soc. Agric. Eng. 2011, 44, 721–729. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy; Monograph, NIRSystems, Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-trending of near infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Routine Operation, Calibration, Development and Network System Management Manual; NIRSystems, Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 1991, 31, 1548–1555. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.M.; Windig, W.; Koch, R.S. PLS-ToolBox 4.0. Manual for Use with MATLAB™ [Computer Software]; Eigenvector Research, Inc.: Wenatchee, WA, USA, 2006. [Google Scholar]
- Shenk, J.S.; Workman, J.; Westerhaus, M. Application of NIR spectroscopy to agricultural products. In Handbook of Near Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczac, E.W., Eds.; Marcel Dekker: New York, NY, USA, 2008; pp. 347–386. [Google Scholar]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC/Taylor & Francis: Boca Raton, FL, USA, 2008. [Google Scholar]
- Kuiper, H.A.; Paoletti, C. Food and feed safety assessment: The importance of proper sampling. J. AOAC Int. 2015, 98, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Mayer, M.N.; León-Cárdenas, M.G.; Quintanilla-Casas, B.; Tres, A.; Guardiola, F.; Batlle, I.; Romero, A. Chemical markers to distinguish the homo- and heterozygous bitter genotype in sweet almond kernels. Foods 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Barbedo, J.G.A.; Tibola, C.S.; Fernandes, J.M.C. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2015, 131, 65–76. [Google Scholar] [CrossRef]
Set | Category | Sensibility | Specificity | NER | ||
---|---|---|---|---|---|---|
Sweet | Bitter | Global | ||||
Training | 71/72 | 45/45 | 116/117 | 0.99 | 1.00 | 0.99 |
Validation | 24/24 | 16/16 | 40/40 | 1.00 | 1.00 | 1.00 |
Global | 95/96 | 61/61 | 156/157 | 0.99 | 1.00 | 0.99 |
Actual Category | Classified as | Samples Correctly Classified | |
---|---|---|---|
Sweet | Bitter | ||
Sweet | 95 | 1 | 99% |
Bitter | 0 | 61 | 100% |
Sensitivity = 0.99 | Specificity = 1.00 | NER = 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Rodríguez, I.; Sánchez, M.-T.; Entrenas, J.-A.; Vega-Castellote, M.; Garrido-Varo, A.; Pérez-Marín, D. Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches. Appl. Sci. 2022, 12, 4842. https://doi.org/10.3390/app12104842
Torres-Rodríguez I, Sánchez M-T, Entrenas J-A, Vega-Castellote M, Garrido-Varo A, Pérez-Marín D. Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches. Applied Sciences. 2022; 12(10):4842. https://doi.org/10.3390/app12104842
Chicago/Turabian StyleTorres-Rodríguez, Irina, María-Teresa Sánchez, José-Antonio Entrenas, Miguel Vega-Castellote, Ana Garrido-Varo, and Dolores Pérez-Marín. 2022. "Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches" Applied Sciences 12, no. 10: 4842. https://doi.org/10.3390/app12104842
APA StyleTorres-Rodríguez, I., Sánchez, M. -T., Entrenas, J. -A., Vega-Castellote, M., Garrido-Varo, A., & Pérez-Marín, D. (2022). Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches. Applied Sciences, 12(10), 4842. https://doi.org/10.3390/app12104842