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Slovenia; simon.muhic@inoveks.si
* Correspondence: mbosnjakovic@unisb.hr

Abstract: In some engineering applications, it is very desirable that the heat exchanger is as light as
possible while maintaining the heat transfer rate at an acceptable level. In this context, the possibility
of reducing the weight of the heat exchanger with the star-shaped fins by cutting off the thermally
least efficient part of the fin was investigated. For this purpose, the rear part of the fins was trimmed
to Ø28, Ø31 and Ø34 mm. Numerical analysis was used to determine the influence of each variant
on the flow characteristics in the air–water heat exchanger and on heat transfer for the range of
2300 < Re < 16,000. The best results were obtained by trimming the rear part of the fin to Ø28 mm.
With a 5.53% reduction in fin weight, heat transfer can be increased by up to 8.12% compared to the
star-shaped fins without trimming. The pressure drop can be reduced by up to 0.92%. The trimmed
fins were also compared with perforated star-shaped fins (perforation Ø2). At approximately the
same weight, the trimmed fins increase the heat transfer coefficient by up to 5.75% with a reduction
in pressure drop of up to 0.76% compared to the perforated fins.

Keywords: star-shaped fin; trimmed fins; heat exchanger; computational fluid dynamics

1. Introduction

Finned surfaces are often used for efficient heat exchange between liquids and gases.
They are placed on the gas-side to increase the heat exchange area. In heat exchanger
design, a common requirement is to have as little weight as possible, i.e., as little heat
transfer area as possible. To meet this requirement, various geometric shapes of fins have
been studied, based on analytical models of heat transfer on the extended surfaces and on
numerical analysis and experimental studies.

Marcinkowski and Taler [1] presented a method for calculating the efficiency of fins
of arbitrary shape mounted on tubes of arbitrary shape using the finite element method.
The paper also analyses the accuracy of calculating the efficiency of fins with complex
shape using analytical and approximated methods: equivalent circular fin methods and
sector methods. Djeffal et al. [2] examined eight configurations of finned oval and flat
tubes and compared them with conventional circular tubes. The configuration was tested
in the interval 2600 < Re < 10,200. The analysis of the effects of the flatness of the tubes
and the axial ratio of the oval tubes on the heat flow properties showed that tubes with
higher flatness gave a better result. Nemati et al. [3] attempted to optimize the shape of
the ring fins in a heat exchanger with multiple rows to improve thermal performance.
They performed a numerical analysis and concluded that a local approach to optimize
the fin shape is a good technique to further improve the performance of finned tube heat
exchangers while reducing their cost.

Sundar et al. [4] numerically and experimentally tested serrated fins of 1 mm thickness
with circular perforations under natural convection and radiation. They varied the fin
width (4 to 7 mm), the number of perforations (0 to 3), and the size of the perforation (Ø2

Appl. Sci. 2022, 12, 4857. https://doi.org/10.3390/app12104857 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104857
https://doi.org/10.3390/app12104857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9882-585X
https://orcid.org/0000-0001-6351-6379
https://doi.org/10.3390/app12104857
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104857?type=check_update&version=1


Appl. Sci. 2022, 12, 4857 2 of 14

to Ø4 mm). The results showed that the variant with perforated surfaces had about 7% to
12% lower thermal resistance than the nonperforated surfaces.

Tahrour et al. [5] analyzed the position of the tube in an annular fin that maximizes
heat transfer and minimizes pressure drop. They used computational fluid dynamics (CFD)
and the analysis was performed for the range 4500 ≤ Re ≤ 22,500. For small fin spacing, an
eccentrically placed tube in the fin is more efficient than a concentric one.

Petrik et al. [6] analyzed the cooling efficiency of a heat exchanger for cars using
numerical analysis. The aim was to find the optimal shape of the heat exchanger that would
reduce the coolant temperature to the required value and have the lowest weight.

Tahrour and Ahmad [7] studied the characteristics of five fin designs in tubular heat
exchangers: a concentric annular fin, an eccentric annular fin, a perforated annular fin, a
serrated fin and a star-shaped fin. The Reynolds number ranged from 4300 to 15,000, and
the conventional concentric circular fins gave the lowest performance criterion, while the
serrated fins gave the highest performance evaluation criterion. According to the criterion
of weight performance, star-shaped fins achieved the best result.

Numerous researchers [8–16] have published papers in which they studied the effect of
fin perforation on the flow characteristics in a heat exchanger. In general, all researchers con-
cluded that perforation increases the degree of turbulence and thus improves heat transfer.

One of the proposals to reduce the weight of heat exchangers while improving heat
transfer is to use star-shaped fins [17–20]. The authors designed a tubular heat exchanger
with star-shaped fins and analyzed it using CFD simulation. The results were compared
with the equivalent case of solid annular fins. With a 43.4% lower weight of the star-shaped
fins compared to standard annular fins, the heat transfer coefficient of the star-shaped fins
was 10% to 15% higher in the range 2300 < Re < 11,500.

Recently, many other researchers have used CFD to study heat transfer properties [21–24].

2. Materials and Methods

The object of research is star-shaped fins mounted on tubes through which hot water
flows. Cold air flows around the tubes and fins. In this work, the possibility of further
reducing the weight of this type of heat exchanger and improving heat transfer by cutting off
the least efficient part of the fin was investigated. A numerical analysis using computational
fluid dynamics software was performed to analyze the flow characteristics in a modeled
heat exchanger.

2.1. Geometric Description

The geometry of the heat exchanger is defined in [17–20]. Stainless steel was chosen
as the material for the tubes and fins. Star-shaped fins with an outer diameter of 40 mm,
a thickness of 0.5 mm and a height of 10 mm were attached to the Ø20 tube as reference
geometry. The star arm on the back-side of the fin (as seen in the flow direction) is trimmed
to a specific radius. Three trim radii were selected for analysis: Ø28, Ø31 and Ø34 mm.
Figure 1 shows the case with Ø28 mm trim radius.
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2.2. Numerical Analysis

The numerical analysis was performed analogously to that described in [17,18]. The
same basic settings and boundary conditions were used. The computational domain is
shown in Figure 2.
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In the mathematical description of the thermal phenomena in the heat exchangers,
certain assumptions and simplifications were made. The usual assumptions used in defin-
ing fluid flow are continuity, homogeneity and isotropy of the fluid. The heat exchanger
analyzed is of such a size that the conditions of the continuity hypothesis can be considered
satisfied. The working medium, air, is considered as a single-component fluid that has the
same physical properties at all points. Thus, the homogeneity condition is satisfied. The
assumption of equal thermal conductivity of the fins in all directions (isotropy) was also
adopted. The next assumption is that no medium escapes through the walls of the heat
exchanger and that no heat is released to the environment. It is also assumed that there is
no contact resistance between the tube and the surface at the base of the fin. A steady state
analysis was performed.

The following assumptions were made for the boundary and initial conditions:

• The air entering the heat exchanger had a uniform velocity across the cross section.
The turbulence intensity at inlet was set at 5%.

• The temperature of the air entering the heat exchanger was 288 K.
• Since water has a high heat capacity, the temperature of the inner wall of the tube was

assumed to be constant and equal to the water temperature.
• The symmetry condition was set on the sides of the calculation area.
• Additionally, the symmetry condition was set for the left, right, bottom and top sides

of the calculation area.
• The normal velocity component on the symmetry plane was zero; i.e., there was no

convective flow through the symmetry plane. Therefore, the temperature gradients
and the tangential components of the velocity gradients in the normal direction were
set to zero.

Tables 1 and 2 contain the dimensional data and the boundary conditions for the heat
transfer analysis.
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Table 1. Data of the tube and the star-shaped fin.

Item Variable Unit Value

Material - - stainless steel

Tube data

d0 mm 20
- - staggered
st mm 50
sl mm 40
Nl - 5

Fin data
tf mm 0.5
sf mm 4.5

Trimming diameter - mm 28, 31 and 34

Table 2. Boundary conditions.

Boundary Condition Variable Unit Value

Temperature of air at the inlet Tin K 288

Air velocity at the inlet uin m/s 1, 2, 3, 5 and 7

Temperature of the tube internal wall Tw K 353

Gauge air pressure at the outlet of the
heat exchanger pout Pa 0

Condition at the air-side tube wall Hydraulically smooth wall

2.3. Governing Equations

The applied mathematical model consists of a set of differential equations and consti-
tutive relations, together with boundary and initial conditions. Conservation law of mass:

∂ρ

∂t
+

∂(ρ uj)

∂xj
= 0 (1)

Conservation low of momentum:

∂(ρ uj)

∂t
+

∂(ρ uj ui)

∂xj
= ρ fi +

∂σji

∂xj
(2)

Conservation low of energy:

∂(ρ e)
∂t

+
∂(ρ e uj )

∂xj
= −ρ fi ui +

∂(σji ui)

∂xj
−

∂qj

∂xj
(3)

The finite volume method is commonly used to solve a defined mathematical model.
The computational domain was meshed using ANSYS Meshing software, version 17.2. A
hybrid mesh approach was used. This means that the larger part of the volume is meshed
with a structured mesh, while the remaining volume is meshed with an unstructured mesh.
Eight inflation layers were defined in the area of convective heat transfer from tubes and
fins to the air. Figure 3 shows a 3D view of the reference geometry (a) and detail of the
mesh (b).
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Mesh independence analysis was performed, focused mainly on Nu and Eu. The
results are shown in Figures 4 and 5.
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For this analysis, we chose a 14.5 million volume mesh and the k-ω SST turbulence
model described in detail in [17].

3. Results and Discussion

An important aspect of numerical simulations is to assess whether or not the simu-
lation is complete and convergent. The most commonly used method to check this is to
examine the residuals for each variable to be solved. The default convergence criterion in
ANSYS Fluent states that the residuals for all equations solved must be reduced to 10−3,
except for the energy equation, for which the criterion is set at 10−6. In our case, more
stringent criteria of 10−4 and 10−9, respectively, were chosen. The convergence error is
compared with the amount of heat released from the inner wall of the tube through the
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outer surface of the tube and the fins, and with the amount of heat absorbed by the air. The
maximum deviation is about 0.08%.

The results of the CFD simulations are shown in Tables 3–6.

Table 3. Output data for the trimming diameter of 28 mm.

Velocity of Air
at Inlet uin (m/s)

Temperature of
Air at Outlet

Tout (K)

Pressure Drop
in the Tube

Bundle
∆p (Pa)

Mean Fins
Surface

Temperature
(K)

Mean
Temperature of
the Tubes Outer

Surface (K)

1.0 322.25 10.24 342.20 352.44
2.0 313.09 35.49 338.22 352.19
3.0 308.75 75.31 335.62 352.00
5.0 304.27 195.80 331.87 351.70
7.0 301.88 368.51 329.07 351.46

Table 4. Output data for the trimming diameter of 31 mm.

Velocity of Air
at Inlet uin (m/s)

Temperature of
Air at Outlet

Tout (K)

Pressure Drop
in the Tube

Bundle
∆p (Pa)

Mean Fins
Surface

Temperature
(K)

Mean
Temperature of
the Tubes Outer

Surface (K)

1.0 322.25 10.24 342.37 352.44
2.0 313.30 35.61 338.39 352.18
3.0 308.79 75.26 335.79 352.00
5.0 304.31 195.72 332.03 351.70
7.0 301.91 368.33 329.21 351.46

Table 5. Output data for the trimming diameter of 34 mm.

Velocity of Air
at Inlet uin (m/s)

Temperature of
Air at Outlet

Tout (K)

Pressure Drop
in the Tube

Bundle
∆p (Pa)

Mean Fins
Surface

Temperature
(K)

Mean
Temperature of
the Tubes Outer

Surface (K)

1.0 322.18 10.24 342.48 352.44
2.0 313.30 35.60 338.47 352.18
3.0 308.82 75.29 335.86 352.00
5.0 304.33 195.86 332.07 351.70
7.0 301.94 368.95 329.21 351.45

Table 6. Output data for the star-shaped fins without trimming.

Velocity of Air
at Inlet uin (m/s)

Temperature of
Air at Outlet

Tout (K)

Pressure Drop
in the Tube

Bundle
∆p (Pa)

Mean Fins
Surface

Temperature
(K)

Mean
Temperature of
the Tubes Outer

Surface (K)

1.0 321.97 10.27 342.59 352.45
2.0 313.28 35.82 338.52 352.19
3.0 308.92 75.86 335.85 352.00
5.0 304.40 197.11 332.02 351.70
7.0 301.98 371.33 329.13 351.45

The results of CFD simulations for star-shaped fins with perforation are presented
in [12].
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3.1. Data Reduction and Interpretation

The calculation of the dimensionless numbers Nu, Pr and Eu is based on the physical
properties of the working fluid, which depend on the temperature and pressure. For an
accurate calculation of the dimensionless characteristics, it is necessary to determine the
exact temperature at which the physical properties of the working medium are measured.
This temperature is the boundary layer temperature, which is defined as follows:

Tbl = (Tw + Tav)/2 (4)

The average temperature of the free air flow is considered at

Tav = (Tin + Tout)/2 (5)

For the calculation of the Re number, the density and the dynamic viscosity are
applied to the average air temperature Tav. The outer diameter of the tube is taken as the
characteristic dimension (L). The characteristic air velocity (uff) is the air velocity through
the narrowest flow section within the tube bundle.

Re =
ρav · uff · L

µav
(6)

The narrowest area of free flow is between the tubes in the transverse direction and
can be expressed as follows:

Aff = sf · (sl − d0)− 2 · hf · tf (7)

The dimensionless Nusselt number is defined as follows:

Nu =
α0 · d0

λbl
(8)

where α0 is the actual average heat transfer coefficient on the air-side. The expression for
the dimensionless Eu number is:

Eu =
∆p

Nl · ρav · u2
ff

(9)

Thermal performance is calculated based on mass air flow and total temperature
change.

.
m = ρin · Atot · uin (10)

Qair =
.

m · cp,av · (Tout − Tiu) (11)

The total heat transfer coefficient (U) is calculated using the log average method
(LMTD).

∆Tln =
Tin − Tout

ln Tin−Tw
Tout−Tw

(12)

Tw is the temperature of the inner wall of the tube, i.e., the water in the tube. The total
heat transfer coefficient can be calculated as follows:

U =
Qair

A · ∆Tln
(13)

The heat transfer coefficient on air-side can be calculated as follows:

αe =
1(

1
U − Atot

ln d0
di

2 π Lt λ − Atot
Ai αi

) (14)
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The effective heat transfer coefficient in Equation (14) is the apparent heat transfer
coefficient and includes the fin efficiency. To calculate the actual average heat transfer
coefficient (α0), the efficiency of the fin ηf must first be calculated.

It was assumed that the heat transfer coefficient on the tube-side is large enough
(several thousand W/(m2K)) so that the last term in the denominator is approximately zero.

α0 =
αe · Atot

(At + ηf · Af)
(15)

Fin efficiency is calculated using the average fin surface temperature from the numeri-
cal analysis (see Tables 3–6).

ηf = 1 −
(TW − Tf,av) · αe

U · (TW − Tav)
(16)

The pressure drop in the tube bundle is calculated using the following formula:

∆p = pin − pout (17)

where pin and pout are the mass-weighted average pressures at the inlet and outlet of the
tube bundle, respectively, obtained from the numerical analysis.

3.2. Flow Characteristics

Flow characteristics were analyzed for a tube bundle with five staggered rows of tubes.
The material of the tubes and fins is stainless steel with a thermal conductivity of 16 W
(m2K). All figures below show the flow characteristics for the star-shaped fins and the
trimmed star-shaped fins at a diameter of 28 mm. Cases for other trimming diameters are
not shown because they were similar to the case shown.

The global temperature, velocity, kinetic turbulence energy and pressure distribution
in the heat exchanger bundle are important for the comprehension of the local flow and
heat transfer processes. The thermal conductivity of the fin material strongly affects the
temperature distribution along the fin. In our case, the fin is thin and the temperature
differences in the transverse direction within the fin are small compared to the temperature
differences between the fin and the environment.

Figure 6 presents the local feature of the temperature fields for analyzed fins. The
temperature field over the fin area is not uniform and the temperature of the fin tip is
different for each needle. The temperature profile for both variants is almost the same. The
average temperature of the trimmed fins is lower by less than 1 K.
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The velocity fields, turbulence kinetic energy fields, pressure-drop fields, and y+ fields
for star-shaped fins and trimmed fins are almost identical (Figures 7–10).
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Figure 10. The y+ fields for star-shaped fins and trimmed fins.

The fluid particles on the middle plane hit the tube at the stagnation point, bringing the
fluid to a standstill and thus increasing the pressure at that point. The pressure decreases
in the direction of flow while the velocity of the liquid increases.

A wake region is formed behind the tubes, and vortex formation is particularly evident
after the fifth row of the tube. In this region, the pressure is much lower than the pressure
at the stagnation point. Owing to the lower air velocity in the wake regions, heat exchange
is lower and temperatures are higher.
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The degree of turbulence and thus the difference in heat transfer coefficient increases
with the number of rows due to the combined effects of the upstream rows.

Figure 11 shows the dependence of the Nu number on the Re number for the star-
shaped fins, the perforated star-shaped fins (see [12]) and for the fins cut to diameters of 28,
31 and 34 mm. From the figure, it can be seen that the worst results are obtained with the
ordinary star-shaped fins, while the best results are obtained with the perforated fins and
the fins with a cut diameter of 28 mm.
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Figure 11. Nu number versus Re.

Figure 12 shows the efficiency of the fins. From the figure, it can be seen that in the
range of small Re numbers there is a small difference in efficiency between the studied
fins. At higher Re numbers, the perforated fins are the least efficient, and the ordinary
star-shaped fins have the highest efficiency. The efficiency of the trimmed fins is very
similar to the efficiency of the ordinary star-shaped fins.
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Figure 13 shows the dependence of the heat transfer coefficient on the Re number.
The results are similar to those in Figure 11. It can be seen from Figure 13 that the worst
results are obtained by the ordinary star-shaped fins, while the best results come from the
perforated fins and the fins with a trim diameter of 28 mm.
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Figure 13. Heat transfer coefficient versus Re number.

Figure 14 shows the dependence of the heat transfer coefficient on the efficiency of
the fins. From this figure, it can be seen that the best heat transfer results are obtained
with trimmed fins. The fin trimmed to a diameter of 28 mm achieves the best result
because the part that has the lowest heat transfer efficiency has been removed. This
difference is particularly noticeable in the lower fin efficiencies obtained at higher airflow
velocities through the heat exchanger. The heat transfer coefficient can be increased by up
to 8.12% compared to the star-shaped fins without trim and by up to 5.75% compared to
the perforated star-shaped fins.
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Figure 14. Heat transfer coefficient versus fin efficiency.

Figure 15 shows the dependence of the heat flux on the Re number. From this figure,
it can be seen that the best heat transfer results are obtained with trimmed fins, and
specifically with fins trimmed to a diameter of 28 mm. Ordinary star-shaped fins have the
worst result. This is consistent with the results shown in Figures 11 and 13.
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Figure 15. Heat flux versus Re number.

The influence of the studied variants on the pressure drop is shown in Figure 16. From
the figure, it can be seen that there is no significant influence on the amount of Eu number.
Trimmed fins lead to slightly better results in the range of higher Re numbers. The reduction
in pressure drop is up to 0.76% compared to the perforated fins and up to 0.92% compared
to the ordinary star-shaped fins in the observed range of Re numbers.
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4. Conclusions

In this study, another way to increase the heat exchange performance while reducing
the weight of the heat exchanger for the star-shaped fins was investigated. The previously
studied star-shaped fin with a diameter of 40 mm was selected as a reference case for
weight reduction. This innovative idea consists in reducing the weight by trimming the
star arm on the back-side of the fin. Three trim radii were analyzed in the study, Ø34,
Ø31 and Ø28 mm. Using this approach, we were able to reduce the weight of the fin by
1.6%, 3.3% and 5.5%, respectively. From the study it can be concluded that trimming the
rear part of the fin, which is the least efficient in heat exchange, can increase the average
heat transfer coefficient by up to 8.12% compared to the star-shaped fins without trimming
and by up to 5.75% compared to the perforated star-shaped fins. This is achieved with a
weight reduction of 5.5% compared to the heat exchanger with the star-shaped fins without
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trimming. The fin trimmed to a diameter of 28 mm performed better compared to other
analyzed cases with larger trim radius or compared to previously analyzed cases with
perforated fins.

Author Contributions: M.B.: conceptualization, methodology, writing—original draft preparation,
visualization, data curation; S.M.: software, visualization, supervision and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Af surface area m2

Ai tube inside surface area m2

Atot total heat transfer area on air-side m2

do outside tube diameter mm
cp,av air specific heat capacity for Tav J/(kg·K)
Eu Euler number -
f friction factor -
f i vector of the mass density of the external forces N/kg
hf fin height mm
j Colburn factor -
.

m air mass flow kg/s
Nl number of tube rows in the flow direction -
Nu Nusselt number -
∆p pressure drop Pa
pout mass-weighted average pressure outlet of the channel Pa
Q heat flow rate W
q heat flux vector W
Re Reynolds number -
sf fin pitch mm
sl longitudinal tube pitch mm
st transverse tube pitch mm
t time s
tf fin thickness mm
Tin air inlet temperature K
Tout air outlet temperature K
Tw tube wall temperature K
Tav mean air temperature in tube bundle K
U overall heat transfer coefficient W/(m2·K)
u air velocity m/s
uff air velocity at minimum flow area m/s
uin air velocity at the inlet of the heat exchanger m/s
α0 actual average gas-side heat transfer coefficient W/(m2·K)
αe effective heat transfer coefficient based on total fin-side surface area W/(m2·K)
αi tube-side heat transfer coefficient W/(m2·K)
ηf,th theoretical fin efficiency -
µav average air kinematic viscosity m2/s
ρav average air density (at mean air temperature in tube bundle) kg/m3

λbl thermal conductivity of boundary layer W/(m·K)
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12. Bošnjaković, M.; Muhič, S. Numerical Analysis of Tube Heat Exchanger with Perforated Star-Shaped Fins. Fluids 2020, 5, 242.
[CrossRef]

13. Chingulpitak, S.; Ahn, H.S.; Asirvatham, L.G.; Wongwises, S. Fluid flow and heat transfer characteristics of heat sinks with
laterally perforated plate fins. Int. J. Heat Mass Transf. 2019, 138, 293–303. [CrossRef]

14. Gupta, M.; Yadav, S.; Kumar, R. Assessment of Effect of Perforated Fins on the Performance of Single Cylinder Engine. Int. J. Res.
Appl. Sci. Eng. Technol. 2018, 6, 3051–3056. [CrossRef]

15. Lee, H.J.; Ryu, J.; Lee, S.H. Influence of perforated fin on flow characteristics and thermal performance in spiral finned-tube heat
exchanger. Energies 2019, 12, 556. [CrossRef]

16. Karami, R.; Kamkari, B. Experimental investigation of the effect of perforated fins on thermal performance enhancement of
vertical shell and tube latent heat energy storage systems. Energy Convers. Manag. 2020, 210, 112679. [CrossRef]
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