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Abstract: The stable operation of the Francis turbine unit (FTU) determines the safety of the hy-
dropower plant and the energy grid. The traditional FTU performance evaluation methods with a
fixed threshold cannot avoid the influence of variable operating conditions. Meanwhile, anomaly
samples and missing values in the low-quality on-site data distort the monitoring signals, which
greatly affects the evaluation and prediction accuracy of the FTU. Therefore, an approach to the
performance evaluation and prediction of the FTU considering low-quality data and variable op-
erating conditions is proposed in this study. First, taking the variable operating conditions into
consideration, a FTU on-site data-cleaning method based on DBSCAN is constructed to adaptively
identify the anomaly samples. Second, the gate recurrent unit with decay mechanism (GRUD) and the
Wasserstein generative adversarial network (WGAN) are combined to propose the GRUD-WGAN
model for missing data imputation. Third, to reduce the impact of data randomness, the healthy-state
probability model of the FTU is established based on the GPR. Fourth, the prediction model based
on the temporal pattern attention-long short-term memory (TPA-LSTM) is constructed for accurate
degradation trend forecasting. Ultimately, validity experiments were conducted with the on-site
data set of a large FTU in production. The comparison experiments indicate that the proposed
GRUD-WGAN has the highest accuracy at each data missing rate. In addition, since the cleaning
and imputation improve the data quality, the TPA-LSTM-based performance indicator prediction
model has great accuracy and generalization performance.

Keywords: Francis turbine unit; performance state evaluation; degradation trend prediction; data
imputation; healthy-state model

1. Introduction

Hydropower is an important renewable and clean energy. With the increasingly
severe energy and climate challenges, it is imperative to develop hydropower energy safely
and efficiently. As a critical equipment for hydropower energy utilization, the Francis
turbine unit (FTU) also undertakes essential tasks such as peak frequency modulation
and emergency standby in the power grid system. Therefore, ensuring the safe and
stable operation of the FTU is of great significance in promoting the development of
the national economy and ensuring the stability of the energy system [1]. Currently, the
maintenance strategy of the FTU is mainly routine maintenance and reparation after failures,
which has a high cost and makes it difficult to recognize the early signs of fault in time.
Therefore, the performance evaluation and the degradation trend prediction of the FTU
have attracted more and more attention [2—4]. Although the studies of general rotating
machinery prognostics are relatively mature [5,6], there are still two practical difficulties in
the field of engineering applications of the FTU: (1) The quality of the on-site measured data
is usually too low, characterized by low sampling frequency, missing data and anomaly
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data. (2) The drastic variation in operating conditions makes it difficult to evaluate and
predict the performance of FTU accurately.

The working environment of the FTU is hostile, including external interferences such
as moisture, dust, vibration and electromagnetic disturbance. The supporting monitoring
and data acquisition system of the FTU often involves multiple distributed modules with
complex data transmission link structures and long physical distances. Hence, there are
often many anomaly samples and missing values in the on-site raw data of FTUs, caused
by sensor failure, short-term router failure or electromagnetic interference [7]. Meanwhile,
the storage space of the data acquisition system is limited, and the short-term variation
trend of each monitored quantity is not evident during the long-term working period of the
FTU, so the storage frequency of the on-site data is often relatively low. Some studies about
the performance evaluation and the remaining useful life prediction of rotating machinery
have achieved excellent results in laboratory environments. However, these approaches
often rely on high-quality data and are difficult to directly apply to the engineering practice
of the FTU [8-10]. Focusing on the anomaly data, some current research has adopted
denoising methods based on frequency domain analysis or energy spectrum analysis,
which are effective while the sampling frequency is high and consistent [11-13]. However,
the missing values and the variable condition significantly affect their effectiveness. The
clustering method has been proved to have significant performance in the recognition
of outliers of high-dimensional data [14-16]. As a density-based clustering method, the
density-based spatial clustering of applications with noise (DBSCAN) algorithm is widely
used in anomaly data detection due to its simple structure and good adaptability to high-
dimensional data [17-20]. Hence, the DBSCAN is adopted to clean the raw monitoring
data in this paper.

Except for the missing samples in the raw data set, data cleaning also increases the
amount of missing data. If these missing values were simply deleted, the potentially impor-
tant information might be discarded. In order to evaluate and predict the performance of
the FTU more effectively, it is necessary to fill in the missing data appropriately. Traditional
filling methods based on statistics, such as mean filling and median filling, mostly ignore
the time sequence information between data. With the rapid development of machine
learning theory and technology, more and more studies are processing sequences with
missing values based on improved recurrent neural networks (RNN) [21-23]. Che et al. in-
troduced a decay mechanism to the typical gate recurrent unit model (GRU) to construct the
GRUD model. It was proved that the decay mechanism enables GRUD to effectively learn
potential patterns in sequences with missing values [24]. GRUD has achieved good results
in the prediction of incomplete sequences. However, these supervised regression methods
cannot be directly used to generate complete sequences because the training targets cannot
be set for the missing values. As one of the most promising models in unsupervised
learning on complex distribution, the generative adversarial network (GAN) model has
made outstanding achievements in nonlinear model analysis and image generation [25-27].
Based on the competitive learning between the generator and the discriminator, this model
can adaptively learn the expression paradigm in the input data [28-30]. The classic GAN
model has problems such as training difficulties and mode collapse. Martin introduced
the Wasserstein distance to guide the training process, which significantly improved the
performance of the GAN model [31,32]. At present, the time series data-generating ability
of the WGAN remains to be studied. Therefore, in this paper, the GRUD-WGAN model is
proposed to realize the missing data imputation of the on-site data.

Because of the influence of natural inflow conditions and the adjustment requirements
of the power grid, the operating parameters of the FTU vary across a wide range and are
generally of a high frequency. The monitoring data are highly correlated with operating
conditions. Traditional performance evaluation methods of the FTU are primarily based
on the overage alarm strategy and the fixed threshold, ignoring the correlation between
monitoring data and working condition parameters [33]. To solve this problem, Shan
et al. adopted the backpropagation neural network to construct the nonlinear mapping
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relationship between operating parameters and the vibration amplitude of the lower
bracket [34]. This research realizes the evaluation of the FTU under variable operating
conditions. However, the definite numerical mapping relation is susceptible to the random
fluctuation of signals. Therefore, the Gaussian process regression (GPR) is introduced to
establish a probability mapping model between operating parameters and the probability
density distribution of monitored values, so as to improve the robustness of the performance
evaluation model against random noise.

After quantifying the abstract FTU performance into performance degradation in-
dicators (PDI), the degradation trend prediction problem is essentially transformed into
a time series forecasting task. Because RNNs, such as the GRU and the long short-term
memory (LSTM) network, can learn the potential timing information, they are widely used
in sequence prediction [35-38]. Shih et al. added the temporal pattern attention (TPA)
mechanism based on the LSTM structure to further improve the performance of the LSTM
model in mining temporal dependencies [39]. In this paper, the TPA-LSTM is adopted to
construct the prediction model for the performance degradation indicator of the FTU.

To sum up, in the field of the evaluation and performance prediction of the FTU, there
are few studies on the cleaning of low-quality on-site data. The data imputation method of
the incomplete data set of the FTU is not yet mature. Meanwhile, few studies have considered
the random fluctuation of data in establishing a healthy model of the FTU. In addition, there
is room for the further improvement of the accuracy of PDI prediction models.

In this paper, an approach for the performance evaluation and prediction of FTU
considering low-quality data and variable operating conditions is proposed. The main
contributions are highlighted as follows:

(1) Considering the variable operating conditions and the characteristics of the anomaly
samples, an on-site data-cleaning method based on DBSCAN is constructed to adap-
tively detect both singulars and outliers.

(2) Combining the incomplete sequence information mining ability of the GRUD and
the hidden pattern learning ability of the WGAN, the GRUD-WGAN-based missing
value imputation model is proposed to improve the low-quality data utilization value.

(3) Based on the GPR, the mapping relationship between the operating parameters and the
distribution of monitored data is established as the healthy-state probability model of
the FTU. The robustness of the healthy model to the random noise is improved because
the distribution probability, instead of a single value, is taken into consideration.

(4) The TPA-LSTM-based PDI prediction model is constructed to realize the accurate
degradation trend prediction as the basis for predictive maintenance of the FTU.

The rest of this article is organized as follows. The framework and procedures of the
proposed approach are explained in detail in Section 2. The proposed method is applied on
a large practical FTU, and the results are presented in Section 3. The performance of the
proposed data imputation model and the trend prediction model is emphatically compared
and discussed in Section 4. Finally, the conclusion is given in Section 5.

2. Proposed Method

In this paper, an approach for the performance evaluation and prediction of FTUs
considering low-quality data and variable operating conditions is proposed. The proposed
framework is illustrated in Figure 1. First, the DBSCAN algorithm is introduced to clean
the anomaly samples in the raw monitoring data set of the FTU, which includes the water
head (H), the active power (P) and the vibration amplitude (V) of the top cover. Second,
the GRUD-WGAN model is proposed to fill in the missing values in the raw data set or
those caused by data cleaning. Third, the healthy-state probabilistic model of the FTU
under complex operating conditions is established based on the complete data set and the
GPR algorithm. The negative log-likelihood probability (NLLP) between the data to be
evaluated and the healthy-state model is defined as the PDI of the FTU. Finally, to forecast
the degradation trend of the FTU, the PDI prediction model is constructed based on the
TPA-LSTM algorithm.
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Figure 1. The framework of the proposed method.

2.1. Data Cleaning

The condition monitoring systems of large FTUs usually have a huge scale and com-
plex structures. The state-monitoring data and operating condition parameters are usually
distributed and monitored by several different monitoring modules, and collected into the
computer monitoring system of the hydropower station through various data communica-
tion protocols and long-distance communication cables, which are prone to communication
packet loss or short-term failure. Moreover, FTUs work in a humid, high-electromagnetic-
interference and drastic-vibration environment. These factors lead to an apparent anomaly
or missing values in the on-site raw data. Traditional signal denoising methods are mainly
based on signal decomposition and reconstruction. Frequent changes in operating condi-
tions will affect the effectiveness of these methods. Meanwhile, random missing values
make these methods challenging to apply to engineering practice.

The DBSCAN algorithm is a kind of unsupervised clustering method. As an effective
density-clustering method, DBSCAN can adaptively identify clusters with irregular shapes
and automatically mark sample points with low density as noise. The DBSCAN is adopted
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to adaptively recognize the anomaly values in the raw data set. The schematic diagram of
the DBSCAN algorithm is illustrated in Figure 2.

Border point

Core point

Figure 2. Schematic of the DBSCAN.

For each sample p in the data set ¥, the region for which the Euclidean distance from
the sample point p is less than ¢ is defined as the e-neighborhood of p. Its element set is
expressed as:

Ne(p) ={q € ¥lo(p,q) < ¢} 1

where p(p, q) represents the Euclidean distance between samples p and 4.

If sample g is in the e-neighborhood of sample p, p and g are called directly density-
reachable to each other. If sample r is also directly density-reachable to g, but 7 is not
directly density-reachable to p, ¥ and p are called density-reachable to each other. If the
element number of N¢(p) is greater than the minimum density threshold Z, sample p is
defined as a core point. If sample r is located in the e-neighborhood of a particular core
point, but 7 is not a core point, then r is defined as a border point.

The samples which are directly density-reachable or density-reachable to the core
point construct a cluster, as illustrated by blue circles in Figure 2. The samples that do not
belong to any clusters are noise points, marked as red points in Figure 2. The recognized
noise points in the raw data set are dropped out.

2.2. Missing Value Imputation

To provide a complete data set for subsequent health status evaluation, the GRUD-
WGAN model is proposed to fill in the missing values. The main inspiration of the
GRUD-WGAN is to use GRUD to receive incomplete sequences with missing values and
convert them into complete hidden sequences. Then, through the antagonistic training of
the generator and the discriminator under the WGAN framework, the distribution of valid
values is learned adaptively, so as to generate a proper complete sequence.

2.2.1. GRUD

GRU has been widely proved to have an excellent ability to capture dependencies
between time series data [37]. However, the traditional GRU cannot handle sequences with
missing values. Based on the GRU model, GRUD adds the decay mechanism to estimate
the missing values according to the previous sequence [24]. The schematic diagram of the
GRUD model is shown in Figure 3. The trainable decay coefficient - is defined as:

7t = exp(—max(0, Wy ¢ + b)) 2
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where J; is the time interval between the current moment t and the last non-missing value,
W, and b, represent the weight and bias of a neural network so that that y can be updated
during the training process.

XM, §z_K'Yx’

Figure 3. Schematic of the GRUD.

The missing values of the input data x are replaced by £, expressed as:
X = mypxy + (1 — mt)(’yxxt/ + (1 — ’)/x)f) 3)

— 0, if x; is missing
t 1, otherwise

4)

where m; is the mask code, xy is the last non-missing value, and X indicates the mean value
of x.
The decay mechanism is also applied to the hidden state & to enhance the learning of
missing value patterns:
he = O M ©)

where © represents element multiplication.
Moreover, the mask code m is fed into the GRU cell directly. Finally, the update
functions of GRUD are as follows:

Tt = U(W, [J?t, fzt,l,mt} + br) 6)
zt =0 (W [ft, fltq,mt} + bz) 7)
Ji = tanh (W [, 7y @ fiy_1,mi| +b) 8)
h=1—z) 0l 1 +z Ok )

where r and z represent the reset gate and the update gate, and ¢() and tanh() indicate the
sigmoid and tanh activation function.

2.2.2. WGAN

The GAN model is inspired by the two-player zero-sum game [26]. The typical
structure of the GAN includes a discriminator and a generator. The goal of the discriminator
is to correctly distinguish between actual data sampled from the input data set and fake
data generated by the generator. The purpose of the generator is to produce fake data that
can deceive the discriminator. GAN is trained by alternating adversarial learning between
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| Incomplete sequence

discriminator and generator, and the optimum objective is to achieve Nash equilibrium.
Finally, the generator can accurately estimate the distribution of data samples. However, the
original GAN has some problems, such as training difficulty and mode collapse. Therefore,
Arjovsky et al. proposed the WGAN model, which adopts the Wasserstein distance instead
of the Jensen—Shannon divergence to indicate the difference between the actual samples
and the generated samples [32]. Specifically, the Wasserstein distance of the WGAN can be
simplistically expressed as:

W = max(E[f(x,)] — E[f(x;)]) (10)

where E[ ] represents the mathematical expectation, x, and x, represent samples of the real
data and the generated data, respectively, and f() indicates a neural network model for
which the last layer is not a nonlinear activation layer.

The introduction of the Wasserstein distance solves the problem of gradient extinction.
To minimize the Wasserstein distance, the loss function of the generator G() and the
discriminator D() of WGAN can be expressed as:

Lo = -D(G(x)) a1

Lp = D(G(x)) ~ D(x;) (12)

In addition, to satisfy the Lipschitz continuity condition, the parameters of the dis-
criminator network need to be clipped to [—¢, c]. ¢ is a fixed constant, and its value does
not affect the direction of the gradient.

2.2.3. GRUD-WGAN Model

The GRUD and the WGAN models are combined to establish the GRUD-WGAN
model, as shown in Figure 4. The GRUD model is adopted to be the essential component
of both the generator and the discriminator of the WGAN framework. Specifically, the
generator is constructed with a GRUD layer and a linear layer. The incomplete input
sequence X; at time ¢ with length / is fed into the GRUD model, and n-dimensional
hidden state vectors are outputted. The linear layer maps these hidden state vectors to a
reconstructed sequence X; of the same shape as the input sequence. Then, the complete
output sequence X; is calculated according to the mask code matrix M;, expressed as:

Xe=M X+ (1- M) O X (13)

Q00OXQO:--

1 1101 oo

Mask

Complete sequence

!

‘ Flatten layer ‘

v

oooooooo. -

Hidden vectors

00000 --

11T 111 e

4—‘ Linear layer ‘

! }
A<— Linear layer

Generator

Figure 4. The framework of the proposed GRUD-WGAN.
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The discriminator is also built by a GRUD layer and a linear layer. The GRUD is
adopted to accept the incomplete sequences of the real data set or the complete imputed
data set produced by the generator. The linear layer is used to map the hidden state vectors
to a single value, which indicates the Wasserstein distance.

To make full use of the available data to accelerate convergence, the reconstruction
error L, is added to the loss function of the generator, given by:

L= (Xt — Xt) ® M (14)

Lc = —D(G(X})) + L, (15)

when the training process converges, a generator that receives incomplete sequences and
outputs complete sequences can be obtained.

2.3. Healthy-State Model Construction

To realize the accurate performance evaluation of FTUs under variable operating
conditions, the mapping relationship between operating parameters and the probability
density distribution of the vibration amplitude is constructed based on the GPR algorithm.
GPR is a non-parametric regression method based on the probability statistical theory,
which shows a strong generalization ability and adaptability in dealing with complex fitting
and regression tasks. The GPR constructs the time series model through the Gaussian prior
knowledge. The Gaussian prior is the distribution of f(X) values corresponding to each
independent variable X. It can be described by the mean function y() and the covariance
function «(), expressed as:

Y = £(X) ~ N(ux) (16)

According to the Bayesian inference, the joint distribution of actual observation sam-
ples Y* and the dependent variable Y also obeys the Gaussian distribution, given by:

v (e o o |) 17)

where the superscript * indicates the actual observation value.
After expanding Equation (17), the mean and the variance of Y can be expressed as:

Y~ N (it (), gy = iz gy (18)
u(Y) = xfx u(Y") (19)
var(Y) = Ky — Kf, K7 Ky (20)

According to the Gaussian distribution formula, the probability density of Y can be
expressed as:

1 (Y — p(Y))?
P(Y) oY) exp ( 20ar(Y) ) (21)
The healthy standard distribution model of vibration amplitude is constructed by
the monitoring data acquired during the normal working period of the FTU. The NLLP
between the healthy standard distribution and the data to be evaluated Y’ is defined as the
PD], given by:
NLLP = —1log(P(Y")) (22)

The smaller the NLLP value is, the more similar the distribution of the data to be
evaluated is to the healthy standard distribution, and the better the FTU status is, and
vice versa.
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2.4. Degradation Trend Prediction

After quantifying the differences between the data to be evaluated and the health
model as the PDIs of the FTU, the degradation trend prediction task is converted to a
time series forecasting problem. The TPA-LSTM introduced a temporal pattern attention
mechanism based on the IDCNN to the traditional LSTM model. The TPA-LSTM effectively
improves the accuracy and stability of time series prediction by learning the attention
weights of previous hidden states [39]. The basic framework of the TPA-LSTM model is
shown in Figure 5.

Hy)| \Hij e |Hy

I > E) 5

-

fie

- —— Y v
1 el c c c
\[HZ,I Hyg oo ’ . —@
A —— | Scoring [ - &)
: : . function | . .
h ] e "
t—‘[Hm HmZ el Hka 4 _b@_» q
> ht
—

LSTM network

T

T

Xi-1 X

Figure 5. Schematic diagram of the TPA-LSTM.

The classic LSTM network is adopted to calculate the hidden state & with m dimensions
according to the input data x. Then, a one-dimensional convolution operation with k kernels
is performed on the matrix constructed with previous hidden state vectors to gain various
temporal patterns, expressed as:

w
HZ'C,]' = 2 it w140 X Cj (23)
n=1

where w is the window length of the input data, t represents the time stamp, and ¢; is the
j" 1DCNN kernel.
The attention weights vector « is calculated by the scoring function, which is essentially
a fully connected layer.
a; = sigmoid (WyhHY) (24)

The context vector v; and the final hidden state h; are defined as:

m

vp =Y a;Hf (25)
n=1

h; = Whht + Wyu: (26)

3. Engineering Application

To verify the effectiveness of the proposed method, a large-scale FTU in the actual
engineering environment was selected as the research object. This section begins with a
brief introduction to the basic information of the FTU. Then, the long-term monitoring
records of the water head (H), the active power (P) and the vibration amplitude (V) of
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the top cover were obtained from the computer monitoring system of the hydropower
station to form the raw data set. Next, anomaly samples in the raw data were removed
based on DBSCAN. In addition, the GRUD-WGAN model was established to fill in the
missing values. On this basis, the health state probability model of FTU was constructed
based on the GPR algorithm, and the NLLP was defined as the PDI of the FTU. Finally, the
TPA-LSTM model was built to realize the degradation trend prediction of the FTU.

3.1. Research Object

The researched FTU is located in the upper reaches of the Dadu River, Sichuan province,
west of China. It is a large-capacity unit with a medium-high water head. Its essential
performance parameters are listed in Table 1, and the basic structure is shown in Figure 6.
The working state of the FTU is closely related to the operating parameters. Therefore,
operating conditions must be considered. The operating condition of the FTU can be
described by the water head (H) and the active power (P). The top cover is located between
the turbine and the generator. It seals the runner chamber and connects the main shaft. As a
critical component, its vibration amplitude (V) can reflect the working state of the FTU. The
position of the monitoring point is illustrated in Figure 7. Therefore, the raw sample set ¥
including both operating parameters and monitoring data is formed by (H, P, V).

Table 1. Basic performance parameters of the FTU.

Parameters Values Units
Type HLD416A-L]-696 \
Rated power 600 MW
Rated water head 156.7 m
Rated flow rate 435 m3/s
Rated rotate speed 125 r/min
Rated efficiency 96.43 %
Inlet diameter of the runner 6.964 m
Number of runner blades 15 \
Guide vane distribution diameter 8.0 m
Number of guide vanes 24 \

Figure 6. The basic structure of the FTU.
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Figure 7. The position of the monitoring sensor.

The operating parameters of the FTU are monitored by the supervisory control system
of the hydropower station. The vibration signals of critical components are acquired by
a PSTA-2100 state monitoring system. They are transmitted to the computer monitoring
system of the hydropower station through the TCP/IP protocol and Modbus 485 proto-
col, respectively. The physical distance of the transmission link is usually above several
thousand meters, including multiple switches, routers, and different transceiver devices. In
addition, these monitoring and communication systems work in the extreme environment
of high humidity, strong vibration, and high electromagnetic interference, which may result
in short-term failures. Consequently, the raw data directly exported from the computer
monitoring system are often low quality, which manifests as data anomalies and data loss.

3.2. On-Site Data Cleaning

The acquired data include the (H, P, V) records from 20 January 2019, to 11 October 2019,
and the sampling frequency is 30 min per sample, including 12,638 samples. The raw
data are shown in Figure 8. There is a long-term fluctuation trend in the water head data
because of the seasonal fluctuation of upstream and downstream water levels. The active
power is specified by the dispatching center according to the real-time power network load
demand. Hence, it has high-frequency short-term fluctuation characteristics. The vibration
amplitude is affected by the variation in these operating parameters, so its variation is
complicated. Therefore, the operating condition parameters should be considered in data
cleaning and subsequent evaluation. In addition, the overall missing rate of the raw data is
0.243, and the data anomaly in the vibration data is obvious.
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Figure 8. On-site raw data: (a) water head H; (b) active power P; and (c) vibration amplitude of the
top cover V.

The raw data (H, P, V) were combined into a three-dimensional point set ¥, as shown
in Figure 9. Due to the characteristics of the FT'U, the oblique blank area is the restricted
operating region. Usually, the FTU would avoid working in this restricted operating region
because of the high vibration and low efficiency. The valid data are concentrated in the
operating condition area on both sides. In addition, the anomaly data include singulars
whose amplitude is different from the standard values and the outliers whose values are
within the normal range, but with a distribution inconsistent with the standard values.
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The dataset ¥ was inputted into the DBSCAN model, and the radius ¢ and the minimum
number of samples within cluster Z were determined by the silhouette score s, defined as:

1 n bi—ﬂl‘

T Li max(a;, b;) @7

where a; is the average distance between the ith sample and other samples in the same
cluster, and b; is the average distance between the ith sample and all other samples in
the nearest cluster. s € [—1,1] A larger s indicates that the samples within clusters are
condensed, and the samples between clusters are dispersed.

r’//\
. 200
Singular—*
* . - 150
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@ | Validdata Fj100 3
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Figure 9. The three-dimensional sample set.

After several experiments, s reached its maximum of 0.63 when e = 7.5, Z = 196. The
clustering result is shown in Figure 10. The DBSCAN model effectively identified two valid
data agglomerations and marked both singulars and outliers as noise points. The noise
point was dropped out, and the valid data were retained, defined as the valid data set ¥’,
for subsequent analysis.

Cluster | @ Cluster2 @ Noise point
T

200

120

Figure 10. Clustering result of DBSCAN.
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3.3. Missing Value Imputation

The missing data rates of the raw dataset ¥ and the cleaned valid data set ¥’ were 0.243
and 0.292, respectively. The existence of missing values greatly impacts the subsequent
evaluation and prediction procedures. The H’, P/ and V7 of the valid data set ¥’ were
inputted into the proposed GRUD-WGAN model to fill the missing values. The main
parameters are listed in Table 2. The result of data imputation is shown in Figure 11,
where imputation values are marked as red points. It can be seen that the amplitudes of
imputation values are similar to the actual values nearby. The distribution of the imputation
values is also similar to the actual values, as shown in Figure 12. This indicates that the
generator successfully learned the distribution of actual data. The complete data set after
data imputation was defined as ¥¢. The validity of the proposed GRUD-WGAN and other
data imputation methods is further compared and discussed in Section 4.

1801 | ® Truedata
1701 ® Imputation value
160
£ 1501
140
130
120
20Jan.2019 20 Mar.2019 20 May2019  20Jul. 2019 20 Sep. 2019
Date
(a)
600 54 & comse ® True data
’*‘}'h"‘ ) ® Imputation value
) %gi.- - =
< 4004 i ii.i mg%’ '
a e { i
L , B :
o P e 2
048 B0 : B i ’. i i :
20Jan. 2019 20 Mar. 2019 20 May 2019 20 Jul. 2019 20 Sep. 2019
Date
(b)

® True data
7| @ Imputation value

5 . T - T T T '
20Jan. 2019 20 Mar. 2019 20 May 2019 20 Jul. 2019 20 Sep. 2019
Date

(©)

Figure 11. The results of data imputation: (a) water head H; (b) active power P; and (c) vibration
amplitude of the top cover V.
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Figure 12. The distribution of data imputation results: (a) water head H; (b) active power P; and
(c) vibration amplitude of the top cover V.

Table 2. Main parameters of the GRUD-WGAN.

Parameter Value
Length of the input sequence 20
Number of hidden units in the generator 32
Number of hidden units in the discriminator 32
Clipping coefficient 0.01
Epochs of training 250

3.4. Performance Evaluation of the FTU

The data from 20 January 2019 to 1 May 2019 in the complete data set ¥ were defined
as the healthy standard data set ¥y, including 4814 samples. The FTU was maintained
before 20 January 2019, and it performed well in the restart test. Meanwhile, this period
includes all possible operating conditions, especially the water head. The rest of the data
were defined as the evaluated data set Y, including 7824 samples.

The operating parameters Hy and Py in ¥ were selected as two independent vari-
ables, and Vi was selected as the dependent variable. The GPR algorithm was adopted to
fit the mapping relationship between (Hp, Pry) and the probability density distribution of
VH, as the healthy-state model. Figure 13a shows the three-dimensional surface formed by
the mean value of proby,, p, (V). In addition, three operating conditions ((H = 156.7 m,
P =600 MW) , (H = 156.7 m, P = 300 MW), and (H = 130.0 m , P = 300 MW)) were selected
as the example to draw the probability density distribution curve of proby,, p, (Vi) as
shown in Figure 13b. Obviously, the distribution of the vibration amplitude of the top cover
is highly related to the operating condition parameters. At the rated operating condition
(H = 156.7 m, P = 600 MW), the vibration amplitude distribution is more concentrated.

The operating parameters (Hg, Pr) of the evaluated data set ¥ were inputted into
the constructed healthy-state model to calculate the healthy standard distribution function
of the vibration amplitude proby, p.(V). Then, Vg was put into the function, and the
NLLP = — log(probu,,p, (Ve)) was calculated as the PDI of the FTU. Moreover, considering
that sufficient samples can reflect the characteristics of the probability density, one day
(48 samples) was taken as the time window to generate a moving average for the calculated
PDIs, and the finally obtained PDI curve is shown in Figure 14. The defined PDI based
on the NLLP represents the difference in the probability density distribution between the
current state and the healthy state. The PDI indicates the relative degradation trend of
the FTU, so it is a dimensionless value. It can be seen that the PDI remains stable from
1 May 2019 to 18 May 2019, and the curve shows an apparent upward trend with oscillation
after 18 May 2019.
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Figure 13. The healthy-state model based on GPR: (a) the three-dimensional surface of the mean
value; and (b) the standard distribution at specific conditions.
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Figure 14. PDI curve of the FTU.

3.5. Degradation Trend Prediction of the FTU

To forecast the degradation trend of the FTU according to the historical PDIs, the
TPA-LSTM model was established. The main parameters are listed in Table 3. The mean
square error was selected as the loss function, and the Adam optimizer was adopted to
obtain a dynamic update of the learning rate. The obtained PDI curve included 7776 points,
which were divided into a training set and test set in a ratio of 7:3. The model was trained
for 300 epochs and the final prediction result is shown in Figure 15.

Table 3. Main parameters of the TPA-LSTM.

Parameter Value
Length of the input 12
Length of the output sequence 1
Number of hidden units in the LSTM layer 32
Number of kernels in the IDCNN layer 10

Batch size 64
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Figure 15. Prediction result of the TPA-LSTM.

The root mean square error (RMSE), mean absolute error (MAE) and R? were selected
as the metrics of the prediction result, defined as:

1 N
RMSE = | &5 Y (0 — vi*)? (28)
-1
1N .
MAE = 5 ) 19 = ¥i"| (29)
i=1
R2 — Zf\il (?z - y)Z (30)
YN (vt — y)z

where N is the length of the sequence, §j; means the prediction value, y;* is the actual value
and ¥ is the mean value of the actual sequence. Lower RMSEs and MAEs indicate the better
accuracy of the prediction result. The R? value is between 0 and 1. An R? close to 1 means
the correlation between the predicted sequence and the actual sequence is strong. The
metrics of the prediction result are listed in Table 4. The accuracy and the correlation of
the TPA-LSTM model are high in the degradation trend prediction task. The criteria of the
training set and the test set are similar, indicating that the model has good generalization
performance. The performances of the TPA-LSTM model and other prediction methods
are further compared and discussed in Section 4.

Table 4. Criteria of the prediction result.

Data Set RMSE MAE R?
Training data set 0.094 0.064 0.999
Test data set 0.104 0.068 0.999

4. Discussion

In order to prove the effectiveness of the proposed method in terms of missing data
imputation and the degradation trend prediction of the FTU, the necessity of data im-
putation is analyzed first. Then, the effects of different data imputation methods on the
complete measured data set are compared in this section. Next, the influence of different
input sequence lengths on the GRUD-WGAN model is discussed. Then, the forecasting
efficiency of different prediction models on the PDI curve is compared.
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4.1. Necessity Analysis of Data Imputation

To validate the necessity of the data imputation procedure, this step was left out of the
approach framework, and the samples from 20 January 2019 to 1 May 2019 in the cleaned
data set ¥/ were selected to construct the healthy-state model of the FTU. The valid samples
of each day from 1 May 2019 to 11 October 2019 were used for evaluation. The number of
samples per day was inconsistent due to the missing data, as shown in Figure 16. Missing
data may make the PDI curve unstable.

(O8]
(e

—
W
1

Number of valid samples

0 T T
1 May 2019 1 Jul. 2019 1 Sep. 2019

Date

Figure 16. The number of valid samples per day.

The obtained PDI curves are shown in Figure 17. The data imputation step makes the
trend of the PDI curve more obvious. In order to quantify the influence of data imputation
on the PDI curve, the standard deviation (STD) and the mean absolute difference (MAD)
were introduced to describe the stability and the smoothness of the PDI curve, defined as:

Z

1
N :

1

STD = (I -T)° (31)

I
—

i i1 — L
N-1
where I indicates the PDI value, and N represents the sample number of the PDI sequence.
The smaller the STD and the MAD values are, the more significant the trend of the PDI
curve is. The criteria of the results obtained by different procedures are listed in Table 5. The
proposed data imputation method reduces STD and MAD on the PDI curve by 17.9% and
67.8%, respectively. Therefore, it is necessary to introduce the data imputation procedure.

MAD = (32)

601 e Evaluation after imputation :-
® Evaluation without imputation ‘
45 k
A 304
~
15+
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Figure 17. The influence of data imputation on PDI curve.
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Table 5. Criteria of different procedures.

STD MAD
PDI curve obtained after data imputation 11.023 0.098
PDI curve obtained without data imputation 13.429 0.305

4.2. Comparison of Different Imputation Methods

To verify the efficiency of the proposed GRUD-WGAN missing data imputation
model, various different methods were compared. In order to allow the imputation results
to be evaluated, the complete measured water head data of a large hydropower station
in the middle reaches of the Yangtze River were adopted. The data set included the daily
mean value of the water head from 1 January 2014 to 1 January 2020. Various missing rates,
r, of samples, including 0.1, 0.3, 0.5 and 0.7, were randomly selected from the complete
dataset to construct the incomplete data set. The baseline methods are as follows:

1. Low-rank autoregressive tensor completion (LATC): This model selects the temporal
variation as a new regularization term, which makes it better able to capture the global
consistency of data [40].

2.  Bayesian-augmented tensor factorization model (BATF): This model establishes a
full Bayesian framework, and the variational Bayesian algorithm is used to adaptively
optimize the parameters [41]. BATF combines explicit patterns and latent factors
together, and it has good generalization performance.

3. Mean filling: As the most straightforward statistical approach, the missing values are
filled by the mean value of the sequence data.

The parameters of the GRUD-WGAN model were consistent with those in Table 3.
The main configurations of the other models are listed in Table 6.

Table 6. Main parameters of the compared imputation methods.

Model Parameter Value

Weight for tensors’ nuclear norm 5

LATC Truncation coefficient for nuclear norm 30
Stop tolerance 0.001

BATE Rank of the factorization matrix 80
Number of iterations 1000

The specific imputation results of each model are shown in Figure 18. For each missing
rate, the imputation values of GRUD-WGAN are closest to the actual values. The RMSEs
between the imputation results and the actual values under different rates of missing data
are compared in Figure 19. Under each missing rate, the RMSE of the GRUD-WGAN model
achieves the lowest values, while the mean filling achieves the highest. The imputation
RMSE:s of all the compared methods increase along with the rise in the missing rate r, and
the GRUD-WGAN model has the most minor error increase amplitude. This suggests
that the proposed GRUD-WGAN has the highest accuracy and robustness among all the
compared models.
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Figure 18. The result of data imputation with various missing rates: (a) ¥ = 0.1; (b) r = 0.3; (¢) r = 0.5;

and (d) » = 0.7.
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Figure 19. RMSEs of different data imputation models.

4.3. Influence of the Input Length

In the GRUD-WGAN model, the GRUD, which is the core component of both the
generator and discriminator, receives sequences of length [ and mines the temporal depen-
dencies in the inputs. Hence, the parameter | determines the width of the receptive field of
the GRUD model. Figure 20 shows the influence of different input length / on the GRUD-
WGAN model at various missing rates. Obviously, when the missing rate is low (r = 0.1),
the filling error decreases with the increase in I, because longer input sequences contain
more valid information. However, when the missing rate increases (r = 0.3, 0.5, 0.7),
the imputation accuracy of the GRUD-WGAN increases first and then decreases with the
increase in /, reaching the minimum value at / = 20. This is because the input of too many
missing values affects the learning of potential patterns. It is also worth noting that the
training time cost rises with the increase in /. Hence, in order to improve the accuracy and
efficiency of the model, it is critical to select the appropriate input length [.

1 ——7=0.1 —A—r=0.5 O
304 \—0—r=0.3 —v—r=07 7~ [ 5000
—O=—Time cost 7 1
o
7 2
L (@}
51.5 . L1500 2
0.0 T . T . T g T - 1000
15 20 25 30
Input length

Figure 20. RMSE:s of different input lengths.

4.4. Comparison of Different Prediction Methods

To validate the effectiveness of the PDI forecasting model based on the TPA-LSTM,
various prediction methods were compared:
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1. RNN: The classic RNN is the basic framework of other recurrent models. For each

timestamp, the structure and the parameters of the RNN cell are shared [42].

e  LSTM: This model is an improved version based on the RNN. The LSTM cal-
culates the hidden state for the long-term memory and the cell state for the
short-term memory. The input gate, the forget gate and the output gate are
introduced to control the transmission of information [43].

2. GRU: This model is a variant of LSTM and has a simpler structure. The forget gate and
the input gate are merged to form the update gate. Hence, the calculation efficiency of

the GRU is relatively higher [44].

3. Support vector regression (SVR): This model reflects the low-dimensional time series
data to the high-dimensional feature space through the kernel function. Then, the

regression result with the minimum error is searched through iterations [45].

The main parameters of the above models are listed in Table 7.

Table 7. Main parameters of the compared prediction methods.

Model Parameter Value
RNN Number of hidden units 32
Number of hidden layers 2
Number of hidden units 32
LST™M Number of hidden layers 2
GRU Number of hidden units 32
Number of hidden layers 2
Regularization coefficient 10
SVR Epsilon 0.01

The next sample was predicted with every 12 previous points. The prediction results
of the above methods are shown in Figure 21. Additionally, the criteria are listed in Table 8.
For this single-step time series prediction task, all the compared models achieved good
results on the training set. Most of the methods also performed well in the test set, except
for the SVR. Due to the introduction of the temporal pattern attention mechanism, the
TPA-LSTM achieved the best results on both the training set and test set, which indicates
that the TPA-LSTM has better accuracy, as well as a better generalization ability. However,
due to the more complex structure, TPA-LSTM is more time-consuming.

1 Train set B . 1Test set
604 1 ¥ 36 / L
Wi |
4549 2 i ’ﬁj”i“:m, :
a 301 T
& 30- P
no
U\‘y |
154 e Truevalue © RNN
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0- e SVR * GRU
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Figure 21. Prediction results of the compared models.
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Table 8. Criteria of different prediction models.

del Train Set Test Set Time Cost
Mode RMSE MAE R? RMSE MAE R? (s)
TPA-LSTM 0.094 0.064 0.999 0.104 0.068 0.999 108.36
RNN 0.111 0.080 0.999 0.133 0.097 0.997 48.36
LSTM 0.099 0.067 0.998 0.284 0.214 0.998 49.82
GRU 0.09 0.066 0.999 0.136 0.082 0.997 48.07
SVR 0.098 0.065 0.999 2589 1.703 0.908 23

5. Conclusions

Focusing on the practical problems of low-quality data and the frequently changing
operating conditions of the fields of engineering applications of the FTU, an approach
to the performance evaluation and prediction of the FTU considering low-quality data
and variable operating conditions is proposed in this study. First, the on-site data set is
constructed by the operating parameters and the vibration amplitude, and the DBSCAN
algorithm is adopted to clean the anomaly data under variable operating conditions.
Second, combining the incomplete sequence information mining ability of the GRUD and
the hidden pattern learning ability of the WGAN, the GRUD-WGAN based missing value
imputation model is proposed to improve the low-quality data utilization value. Third, the
probability healthy-state model of the FTU is constructed based on the GPR to reduce the
impact of data randomness. Additionally, the NLLP is calculated as the PDI of the FTU.
Fourth, the degradation trend prediction model of the FTU is established based on the
TPA-LSTM. Finally, a set of comparison experiments were carried out. The verification
results demonstrate that the proposed data imputation method enhances the stability and
the smoothness of the obtained PDI curve. Among the compared methods, the proposed
GRUD-WGAN for data imputation has the highest accuracy at each experimental rate
of missing data, r. In addition, when r = 0.1, the accuracy of GRUD-WGAN rises with
the increase in the input length I. When r > 0.3, the imputation accuracy reaches the
maximum while / = 20. In addition, the constructed prediction model based on TPA-LSTM
achieves the lowest RMSE and MAE, and the highest R? on both the training set and test
set, indicating that the model has good accuracy and generalization performance.

The relative trend of the current state of the FTU against the healthy standard state
is identified in this study. In the next phase of our research, if the long-term maintenance
records can be obtained, the PDI curve can be correlated with the actual state of the
FTU. Furthermore, a multistage degradation alarm model based on the PDI values can be
constructed, so as to lay the foundation for state-based maintenance.
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Abbreviations

FTU Francis turbine unit

DBSCAN Density-based spatial clustering of applications with noise
RNN Recurrent neural networks

GRU Gate recurrent unit model

GRUD Gate recurrent unit model with decay mechanism

WGAN Wasserstein generative adversarial network

GPR Gaussian process regression

PDI Performance degradation indicator
LSTM Long short-term memory
TPA-LSTM  Temporal pattern attention—long short-term memory

NLLP Negative log-likelihood probability
RMSE Root mean square error
MAE Mean absolute error
STD Standard deviation
MAD Mean absolute difference
LATC Low-rank autoregressive tensor completion
BATF Bayesian augmented tensor factorization model
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