
Citation: Ma, R.; Guo, F.; Zhao, L.;

Mei, B.; Bu, X.; Wu, H.; Song, E.

Knowledge Graph Extrapolation

Network with Transductive Learning

for Recommendation. Appl. Sci. 2022,

12, 4899. https://doi.org/10.3390/

app12104899

Academic Editor: Ángel

González-Prieto

Received: 8 March 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Knowledge Graph Extrapolation Network with Transductive
Learning for Recommendation
Ruixin Ma, Fangqing Guo, Liang Zhao *, Biao Mei, Xiya Bu, Hao Wu and Enxin Song

School of Software Technology, Dalian University of Technology, Dalian 116024, China;
maruixin@dlut.edu.cn (R.M.); guofangqing@mail.dlut.edu.cn (F.G.); aliezc0411@163.com (B.M.);
buxiya1999@163.com (X.B.); wuhao990115@163.com (H.W.); 2019192405@mail.dlut.edu.cn (E.S.)
* Correspondence: liangzhao@dlut.edu.cn

Abstract: A knowledge graph is introduced into the personalized recommendation algorithm due to
its strong ability to express structural information and exploit side information. However, there is
a long tail phenomenon and data sparsity in real knowledge graphs, and most items are related to
only a few triples. This results in a significant reduction in the amount of data available for training,
and makes it difficult to make accurate recommendations. Motivated by these limitations, the
Knowledge Graph Extrapolation Network with Transductive Learning for Recommendation (KGET)
is proposed to improve recommendation quality. To be specific, the method first learns the embedding
of users and items by knowledge propagation combined with collaborative signal to obtain high-
order structural information, and the attention mechanism is used to distinguish the contributions
of different neighbor nodes in propagation. In order to better solve with data sparsity and long tail
phenomenon, transductive learning is designed to model links between unknown items to enrich
feature representation to further extrapolate the knowledge graph. We conduct experiments with two
datasets about music and books, the experiment results reveal that our proposed method outperforms
state-of-the-art recommendation methods. KGET also achieves strong and stable performance in
sparse data scenarios where items have merely a few triples.

Keywords: knowledge graph; recommendation; transductive learning; collaborative signal

1. Introduction

The personalized recommendation algorithm has a strong effect in assisting users to
find items useful to them in a limited time. This method effectively alleviates the data
explosion [1] problem brought on by the information age. Therefore, recommendation
algorithms are widely used in many scenarios [2,3], such as online shopping, search engines,
movie recommendation websites and so on.

Collaborative filtering (CF) [4,5], a traditional recommendation algorithm, has at-
tracted much attention due to its effectiveness and universality. The main idea of CF is to
predict the user’s personal preference by mining the user’s historical behavior information
and then recommend similar products to users with similar preferences. However, the
recommendation algorithm of collaborative filtering ignores side information, such as users’
attributes, items’ attributes and so on. Thus, the CF method suffers from data sparsity
and cold start problem, where the user has a few interactions or no interactions. In order
to exploit side information, some recommendation algorithms integrate deep learning
methods [6,7] to obtain feature vectors of users and items, and calculate the probability of
users’ preference for items.

It is worth noting that users, items and their attribute information are related, instead
of independent. Knowledge Graphs (KGs) are the multi-relational graphs which represent
structured data. KGs consist of nodes and edges, where nodes represent entities and
edges represent relations of entities. So, KGs are able to capture high-order structure
information. Therefore, KGs [8–10] are introduced into the recommendation algorithm
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because of their powerful ability to represent structured data. Wang et al. [11] proposed a
deep knowledge-aware network, which combines knowledge graph representation and
news recommendation and fuses semantic-level and knowledge-level representations of
news. For the sequential recommendation, Huang et al. [12] proposed an explainable
interaction-driven user modeling, recommended interpretability is provided by extracting
paths between user-item pairs. Graph theory [13] is the study of graphs, which has
been widely used in non-European graph data learning. Therefore, knowledge graph
recommendations based on the graph neural network has become a popular solution,
which utilizes embedding propagation of entities to aggregate higher-order neighborhood
information. For example, Cao et al. [10] proposed a description-enhanced machine
learning knowledge graph-based method, that combined the knowledge graph-based and
text-based methods, which aggregates neighbors information by a graph neural network
with attention.

In the real recommendation scenarios, there is a long tail effect [14], that is, a large
amount of data has few interactions, and only a small portion of data has a large amount
of interaction information. This is a challenge for recommendation because only a small
amount of data can be used for training. Furthermore, the KG is dynamic, not static. The
general methods based on KG are to make recommendations on the existing knowledge
graph, and predict unknown entities through known entities, while ignoring the association
between unknown entities, which also limits the accuracy of recommendations.

To address the limitations of existing methods, an end-to-end model, Knowledge
Graph Extrapolation Network with Transductive Learning for Recommendation (KGET)
is introduced. Specifically, KGET is equipped with two designs to tackle the challenges:
(1) Embedding propagation learns the features of unknown entities by a knowledge propa-
gation combined collaborative signal, and learns the weights of neighbor nodes to distill
useful knowledge. It is able to capture collaborative and high-order structural information
and long-distance interest. (2) Transductive learning is able to obtain more accurate and
informative items representations, which models the relationships between unknown enti-
ties to enrich representations of items and realize extrapolate KG. It effectively alleviates
the problem of inaccurate feature extraction due to too few available triples to entities.

Our main contributions are summarized as follows:

1. The novel recommendation method is proposed, Knowledge Graph Extrapolation
Network with Transductive Learning for Recommendation (KGET), aiming to solve
the long-tail problem and data sparsity with less triples information available to items
in real recommendation scenarios.

2. The transductive learning strategy is designed to model relations between unknown
entities to further propagate the knowledge, to obtain enrich representation for
entities.

3. The experiments are conducted on two real-world datasets. The results show that the
KGET significantly outperforms the baseline algorithm.

2. Related Work

Recommendations based on the knowledge graph have received more attention in
recent years due to their excellent recommendation performance. In general, recommen-
dations based on knowledge graphs can be categorized as three types: the embedding-based
approach, path-based approach and hybrid approach. The embedding-based
method [11,15,16] uses the knowledge graph as a feature extraction method, to make
use of the rich semantic relationships in the knowledge graph according to some of the
KG embedding models which embed entities and relationships in low dimensional space.
(e.g., TransE [17], TransR [18]). The path-based approaches [19–21] extract association paths
between the user and item, which leverages relationship information between entities and
enhances the interpretability of recommendations. The hybrid approaches [9,22,23] com-
bine semantic representation with path connectivity information, which use the multi-hop
neighbors of items to enrich the representation information. However, to the best of our
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knowledge, general current recommendation methods based on knowledge graphs mainly
use a large number of training data sets for training, but items with a low number of interac-
tions account for the majority of all items, which makes it difficult to recommend accurately.
Our works focus on items with a few triples, and model relationships between unknown
entities by relearning the feature of already-learned items via the transductive learning
module, to enrich representation. Our proposed model is similar to the hybrid model.

3. Problem Formulation

In a recommendation scenario, the user set is represented by U = {u1, u2, . . . , uM} and
the item set is represented by V = {v1, v2, . . . , vN}. M is the number of users and N is the
number of items. Graph theory is mainly used to study graphs. The graph is represented
as G = {V, E}, V = {v1, . . . , vX} is the set of nodes and E = {e1, . . . , eY} is the set of edges.
The knowledge graph is a data structure based on a graph, which is composed of nodes
and edges. The node is the entity and the edge is the relationship between two entities, and
the knowledge graph connects different kinds of heterogeneous information and can be
regarded as a heterogeneous graph.

User-item Collaborative Graph (CG). It represents the user–item interaction, as well as
the users’ historical behavior data. G1 = {(u, yuv, v)|u ∈ U , v ∈ V} is denoted by the User-
Item Collaborative Graph, where yuv = 1 indicates that user u has interacted with item v;
otherwise yuv = 0. Thus, the User-Item Collaborative Graph is also a bipartite graph.

Knowledge Graph. The knowledge graph contains the side information in the rec-
ommendation, such as the attribute information of the item. Let G2 = {(h, r, t) | h ∈
E , r ∈ R, t ∈ E} denote the knowledge graph, where E is the set of entities,R is the set of
relations, (h, r, t) is a set of triples. Herein, h denotes the head entity, r denotes the relation
and t denotes the tail entity. For example, the triple (Ang Lee, Director of, Life of Pi) states
the fact that Ang Lee is the director of the movie Life of Pi. The entities set consists of items
and non-items. Thus, a set A = {(v, e)|v ∈ V , e ∈ E} is established to illustrate alignments
between items in CG and entities in KG, where (v, e) indicates the item v is able to aligned
with the entity e. The solid blue line illustrates the alignment process in Figure 1.

Knowledge  GraphUser-item Collaborative  Graph

u1

u2

u3

v1

v3

v2

e1e2

e3 e4

e5
e6

r
(h,r,t)

h t

Figure 1. Illustration of Collaborative Graph and Knowledge Graph. The left is collaborative graph,
which represents interaction information between users and items. The right is knowledge graph,
where solid blue lines indicate the alignment of items in the collaborative graph with entities in the
knowledge graph. The orange circles represent side information in recommendation, such as the
attributes of the item.
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Task Description. Given the user-item collaborative graph is G1 and knowledge graph
is G2, the task is to predict the probability ŷuv that user u would be fond of the item v.

The list of symbols in the model is shown in Table 1.

Table 1. List of symbols.

Symbol Meaning

U Set of users
V Set of items

yuv Score between user and item
ŷuv Predictive score between user and item
E Set of entities
R Set of relationships

G1 = {(u, yuv, v)|u ∈ U , v ∈ V} User-item collaborative graph
G2 = {(h, r, t) | h ∈ E , r ∈ R, t ∈ E} Knowledge graph

A Set of alignments of items and entities
I(u) Initial set of user
I(v) Initial set of item
N 0

(u) Initial entity set of user

N 0
(v) Initial entity set of item

N l
(e) Set of neighbors of entity at l-th order

T l
(e) Triplet set of entity at l-th layer

el Embedding of entity at l-th layer

ϕ = {e(1), e(2), . . . , e(L)} Representations set of entity embedding in
embedding propagation

ϕu
Representations set of user embedding in

embedding propagation

ϕv
Representations set of item embedding in

embedding propagation

φu
The final representations set of user embedding

after transductive learning

φv
The final representations set of item

embedding after transductive learning

4. The Proposed Method

In this section, the proposed KGET model is introduced in an end-to-end framework,
which mainly consists of three components: (1) Embedding propagation, which learns the
feature representation of each node in KG. (2) The transductive learning strategy, which
models relationships between unknown entities themselves to enrich representations. (3)
The prediction layer, which calculates the scores of users and corresponding items. The
method is described in detail in the next few paragraphs. As shown in Figure 2, it illustrates
the whole learning process.
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Figure 2. The illustration of the proposed KGET framework for recommendation.

4.1. Embedding Propagation

The embedding propagation is the knowledge propagation with collaborative signal.
As is known to all, knowledge is propagated along the links in the knowledge graph. Thus,
the user’s long-distance interests are captured by capturing higher-order connection infor-
mation in KG. Furthermore, the user-item collaborative graph with interactions between
users and items, directly contains a collaborative signal, including the relationship between
original user and item. So, the collaborative signal is extracted by learning interactions in
CG. Concretely speaking, the embedding propagation is composed of two components:
collaborative signal extraction and knowledge propagation. First, the collaborative signal is
extracted as the initial sets of entities for users and items according to historical users’ inter-
action data with the items. Second, knowledge is propagated layer by layer by aggregating
information from each layer’s neighborhood.

Collaborative signal extraction. In user and item interactions, it is generally assumed
that users with similar access behaviors may prefer the similar items, and users may
like items that are similar to their preferences. Thus, it makes sense for collaboration
signals to be embedded in the feature representations of users and items and participate in
propagation. In particular, the user’s collaborative signal is represented by items, which
the user has already indicated they prefer. A collection of these items with a score of 1
between user and items is named the initial set of users for the user. The initial set of users
u formulated as I(u) = {v|yuv = 1}. For the item, if different items are all associated with a
user, there may be a correlation and similarity between these items. Therefore, first, users
who have interacted with the item v are found, then other items that interact with the same
users are treated as collaborative neighbors. The set of item’s collaborative neighbors is
called the initial set of items, as I(v) = {vu|u ∈ {u|yuv = 1} ∧ yuvu = 1}. For example, in
Figure 1, user u1 prefers items v1 and v2, so the initial set of the user includes v1 and v2.
For item v1, the user interacting with v1 is u1 and u2, v2 interacts with u1 and v3 interacts
with u2. Thus, the initial set of the v1 contains v2 and v3.
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Notice that the items in the user-item collaborative graph is aligned with the entities
in the knowledge graph, to obtain the initial entity set of the user and the initial entity set
of the item, respectively. The initial entity set of the user is shown below:

N 0
(u) = {e|(e, v) ∈ A ∧ v ∈ I(u)}. (1)

The initial entity set of the item is shown below:

N 0
(v) = {e|(e, vu) ∈ A ∧ vu ∈ I(v)} (2)

Knowledge propagation. The knowledge graph contains a large amount of side
information, such as item attributes, correlation information and so on. In knowledge
graph, entities are connected through relationships. The neighbor information of an entity
has an essential influence on the feature of the entity. So, the feature representation of the
entity is extended layer by layer through neighborhood knowledge along links between
entities themselves. This method is able to capture high-order structural information.

Since the initial entity sets of users and items are subsets of the entity set E in the
knowledge graph, the feature representations of users and items are extended and learned,
which starts with them initial entity sets. In other words, both users and items carry out
embedding propagation and feature extraction in the form of entities on the knowledge
graph. Thus, the propagation of entity e is used to illustrate the specific propagation process
for convenience.

Specifically, the entities directly connected to an entity e is the first-order neighbors
of the entity, as N 1

(e). Furthermore, given a triple (h, r, t), the tail entity t is one of the
first-order neighbors of the head entity h. By analogy, the l-order neighbors set of an entity
is defined as N l

(e) at layer l. The details as follows:

N l
(e) = {t|(h, r, t) ∈ G2 ∧ h ∈ N l−1

(e) }, (3)

where N l−1
(e) denotes the (l − 1)-order neighbors of the entity e at layer l − 1. The triplet set

composed of all neighbors at layer l for entity e is shown below:

T l
(e) = {(h, r, t)|(h, r, t) ∈ G2 ∧ h ∈ N l−1

(e) }. (4)

In the real scene, different tail entities have different contributions to feature repre-
sentation of an entity under different conditions. For example, user u1 prefers a movie
named Crouching Tiger, Hidden Dragon. The movie is both a martial arts film and a love
story. However, user u1 actually prefers this movie because he likes martial arts films.
Therefore, martial arts as the attribute of the film should have a higher weight than love
story. Therefore, the attention mechanism is designed to learn the weights of different tail
entities. The global embedding of the triple set at the l-th layer for the entity is defined
as follows:

el = ∑
(h,r,t)∈T l

(e)

π(h, r)et, (5)

where et is the embedding representation of the tail entity t, π(h, r) is a scoring function
used to compute the attention weight, which controls how much information from the tail
entity is propagated to head entity in this case, where head entity is h and the relation is r.

The π(h, r) is implemented via the attention network, which is formulated as follows:

π(h, r) = σ(W2ReLU(W1z0 + b1) + b2), (6)

z0 = ReLU
(

W0

(
eh‖r

)
+ b0

)
, (7)
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where π(·) is a multi-layer neural network. W0, W1 and W2 are the trainable weight
matrices of each layer, respectively. b0, b1 and b2 are the biases. σ(·) is the last nonlinear
activation function, which is Sigmoid. ReLU is the activation function except for the last
layer. Then, the softmax function is applied to normalize the coefficients across all triples,
as follows:

π(h, r) =
exp(π(h, r))

∑(h′ ,r′ ,t′)∈T l
e

exp(π(h′, r′))
. (8)

The attention score function is capable of attracting more attention to the neighboring
tail entity that has more influence. The method distills more accurate association information.

Finally, the representations of entities of other layers are computed according to
Equation (5), and the representations set from layer 1 to layer L are obtained for the entity e:

ϕ = {e(1), e(2), . . . , e(L)}, (9)

So, the representation sets of user and item are obtained as ϕu and ϕv. However, there
is still an issue to note, which is that the importance of the initial entity set should not
be ignored. In particular, the initial entity set of the user is directly related to the user
and represents the user’s preferred items. It directly reflects user interest and, for items,
the initial entity set is a set of collaborative neighborhoods, which contains collaboration
information and strong interaction information. Thus, the initial entity sets of users and
items are treated as their 0-order neighborhood, respectively. The average value of the
embedding representations of the entities in the initial entity set of the user and the item is
regarded as the 0-th layer embedding of the user and the item:

e(0) =
∑e∈N 0

(e)
e∣∣∣N 0

(e)

∣∣∣ , (10)

Finally, the representation sets of users and items, which contain attention weight, are
as follows:

ϕu = {e(0)u , e(1)u , . . . , e(L)
u }, (11)

ϕv = {e(0)v , e(1)v , . . . , e(L)
v }. (12)

4.2. Transductive Learning

The long tail problem is a serious challenge for personalized recommendation. In the
real recommended scenario, most entities have only a few interactive data. This results
in insufficient data available for training. However, the general methods require a large
amount of training data to achieve an accurate effect. Therefore, the transductive learning
strategy is proposed to to alleviate the long tail problem. Transductive learning is applied to
each layer of item individually. For ease of understanding, we use the example of executing
the strategy at layer l, as well as at other layers. Here are the details.

First, the representations of items are updated, based on the representation of un-
known items already learned in the previous step. Then, considering the small number of
triples available to entities and high uncertainties on unknown items, the novel representa-
tions of items are fed into two individual knowledge propagation layers to model relations
of unknown items. So, the number of nodes and layer depth of knowledge propagation in
transductive learning are consistent with the number of nodes and layer depth in embed-
ding propagation. Then, the transductive learning layer is designed to re parameterize the
model by computing the output representations across the two knowledge propagation
layers. The specific calculation process is as follows:

êl
v = ∑

(h,r,t)∈T l
(e)

π(h, r)et + exp{0.5 · [ ∑
(h,r,t)∈T l

(e)

π(h, r)et]′}, (13)
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where the learning feature embedding of items that have been updated in the previous
step is ϕv , and ϕl

v denotes representation of item v at l-th layer. ∑
(h,r,t)∈T l

(e)

π(h, r)et and

[ ∑
(h,r,t)∈T l

(e)

π(h, r)et]′ represent processes through two individual knowledge propagation

layers, respectively. Meanwhile, eh ∈ ϕl
v, if there is an item v and entity h that satisfy

(v, h) ∈ A. Homoplastically, et ∈ ϕl
v, if there is an item v and entity t that satisfy (v, t) ∈

A(e, t) ∈ A. êl
v is defined as embedding of item v at the l-th layer, which contains a

relationship between unknown items that have been modeled.
Transductive learning predicts the relationship between unknown entities themselves

and constructs a connection for them. As a result, when a new item is added to the
knowledge graph, reliable contact information for that entity is also capable of being
obtained, even though the new entity has no triple. This approach extends the knowledge
graph and also eases the cold starts problem.

Furthermore, different from users who only appear in the user-item collaborative
graph, items appear both in the collaborative graph and as entities in the knowledge
graph. This results in the item having initial embedding in the knowledge graph, and the
embedding of the item in the original knowledge graph ê

′
v is closely related to the item, so

the initial embedding of the item is added to the representation set.
Performing the above procedure at each layer results in the new embedding representa-

tions of the item at each layer with richer connection information. Then, the representations
of items is updated again to φv = {ê′v, ê(0)v , ê(1)v , . . . , ê(L)

v }. The representations of the user
is also ϕu. For convenience, let us say φu is equal to ϕu. Therefore, the final embedding of
the user and item is shown below:

φv = {ê′v, ê(0)v , ê(1)v , . . . , ê(L)
v } (14)

φu = {e(0)u , e(1)u , . . . , e(L)
u } (15)

4.3. Prediction Layer

The embedding representation of each layer contains the underlying latent feature of
the item and the user, as well as higher-order connectivity information. It is useful for min-
ing the user’s underlying preferences. Hence, it is indispensable to aggregate information
of each layer of user and item representation. There are three types of aggregators:

• Sum aggregator, which sums embedding representations of each layer up before
applying a non-linear transformation, as follows:

fsum = σ(W ·∑e∈φ
e + b), (16)

where W and b are the trainable weight and bias, σ is set as an activation function
as Sigmoid. φ denotes the representation of users or items at all layers. If the rep-
resentations of all layers of the item need to be combined, φ represents φv and e
represents each of these representations in φv. The same goes for the user. The other
two aggregators are also represented this way.

• Pool aggregator, which selects the maximum vector in the feature representations of
all layers and uses a non-linear transformation as follows:

fpool = σ(W · poolmax(φ) + b). (17)

• Concat aggregator, which concatenates representation vectors followed by a non-linear
function as follows:

fconcat = σ
(

W ·
(

e(1)‖ . . . ‖e(k)‖ . . . ‖e(|φ|)
)
+ b

)
, (18)
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where |φ| is the number of vectors in φ, e(k) ∈ φ, ‖ is the concatenation operation
which means concatenate two vectors.

The use of aggregators which combines the representation of different layers is able to
capture higher-order structural information in the knowledge graph and enrich the poten-
tial representation of users and items. The effects of different aggregators are compared
in Section 5.5.3.

The aggregated vectors of the user and item were obtained in the previous step. Let eu
denote the vector representation of the user. ev is set as the vector representation of the item.
Finally, the inner product of the user representation and item representation is conducted
to predict the probability of user preference for the item:

ŷuv = eu
>ev. (19)

4.4. Loss Function

Note that the negative sample is just as important as the positive sample, so the
cross-entropy loss is opted to optimize the recommendation model:

L = ∑
u∈U

 ∑
v∈{v|(u,v)∈Z+}

J (yuv, ŷuv)− ∑
v∈{v|(u,v)∈Z−}

J (yuv, ŷuv)

+ γ‖Θ‖2
2, (20)

where J is the cross-entropy loss, Z+ indicates the positive interactions between users and
items, while Z− is the sampled negative interactions set, which consists of user-item pairs
between users and items they do not like and score between the user and item is 0, ‖Θ‖2

2 is
the L2 regularization parameterized by γ.

5. Experiments

The proposed model KGET is evaluated on the real-world datasets in this part. The fol-
lowing research questions will be answered:

• RQ1: How does our proposed KGET perform compared to the baseline algorithm
based on the knowledge graph?

• RQ2: How does choosing different parameters affect KGET?

5.1. Dataset

To evaluate the performance of KGET, we conducted the experiment in two scenarios:
music recommendations and book recommendations. So, we used two benchmark datasets:
Last.FM and Book-Crossing, respectively. These datasets were obtained from different
domains and have different sizes and sparsity.

Last.FM. The dataset is provided by last.fm online music system, which contains music
artist listening information from 2 thousand users, where tracks are defined as items.

Book-Crossing. The dataset contains readers’ ratings of different books from the
book-crossing community. The ratings range from 0 to 10.

Because these two datasets with explicit ratings are not suitable to be applied to
the proposed model KGET, the explicit ratings are transformed explicit feedbacks. Thus,
1 indicates positive samples that the user has rated the items positively. On the contrary,
0 is marked as negative samples which are randomly sampled from unrated items for
the user. Due to the sparsity of Last.FM and Book-Crossing, no threshold is set, and all
ratings are viewed as the positive samples. Besides the interactions, the knowledge graph
about the item needed to be constructed for the two datasets. We followed the work
of [24] to construct sub-KGs for Last.FM and Book-Crossing from Microsoft Satori KG. The
confidence level of the subset is greater than 0.9.

To verify the proposed method KGET in data sparsity, where items have few triples,
there are still a large number of items with more triples removed from the current dataset.
The current dataset was processed as follows: First, we measured the frequency of items
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appearing in the knowledge graph. Second, we extracted random entities that appear
less frequently. Finally, we only retained user interaction information associated with the
extracted entities. (1) Last.FM contains 9366 entities and 60 relations which is used for the
recommendation task. Particularly, we sample the items which have associated triplets be-
tween 3 and 40 in KG. Finally, there are 13,729 user–item interactions information extracted
from 42,346 interactions. (2) Book-Crossing consists of 77,903 entities and 25 relations. We
randomly sampled the items which have associated triplets between 4 and 80 in KG, and
there are 11,615 user-item interactions information extracted from 139,746 interactions.

We selected 60% of user–item interactions as the training set, 20% of the remaining
interactions data were used as the validation set, and the rest of the interactions serve as the
test set. This method ensures that the three subsets are not duplicated. Training sets were
used to train the model. We fine-tuned the parameters in the validation set. We evaluated
the performance of the model in the test set.

The detail statistics for two datasets are shown in Table 2.

Table 2. Basic statitics for datasets.

Last.FM Book-Crossing

#user 1863 5275
#item 1024 957

#interactions 13,729 11,615

#entities 9366 77,903
#relations 60 25

#KG triples 15,518 151,500

5.2. Baselines

We compare the proposed model with the following baselines to demonstrate the effec-
tiveness of KGET. The baselines are divided into two types: KG-free method and KG-aware
methods. The KG-free method is a CF-based method (BPRMF), and KG-aware methods in-
clude embedding-based (CKE), path-based (RippleNet) and hybrid-based (KGCN, KGNN,
KGAT, CKAN).

BPRMF [25]. The method belongs to a CF model, which uses matrix factorization
for item recommendation from implicit feedback, and directly optimizes for ranking by
proposed Bayesian personalized ranking from implicit feedback.

CKE [16]. The model is an embedding-based method, which learns the latent rep-
resentations in collaborative filtering, and extracts items’ semantic representations with
structural, textual and visual information by leveraging the heterogeneous information in
the knowledge graph.

RippleNet [21]. The model is a path-based method with a knowledge embedding-
based method, which thinks of the preference propagation as ripples in water, and auto-
matically discovers the path between users and items that they might prefer.

KGCN [24]. The method is a non-spectral GCN approach in the knowledge graph,
which extends the receptive field to multiple hops for capturing high-order structural
information and users’ preference, and user-relation scores are calculated as neighbor
weights.

KGNN [26]. The method proposes knowledge-aware graph neural networks with label
smoothness regularization, which transforms a heterogeneous KG into a user-personalized
weighted graph that characterizes user’s preferences, and then uses a supervised fashion
to train the edge weights. To avoid overfitting, the technique for regularization of edge
weights is designed to generalize to unobserved interactions.

KGAT [27]. The method combines a user-item collaboration graph and knowledge
graph into a collaborative knowledge graph, which explicitly models the high-order re-
lations. The knowledge-aware attention mechanism is adopted to learn the weights of
neighbor nodes.
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CKAN [23]. The method applies a heterogeneous propagation strategy to explicitly
encode collaborative signals and knowledge associations, and a knowledge-aware attention
mechanism is employed to discriminate the importance of neighbors.

5.3. Experimental Settings

We evaluate the proposed method KGET in click-through rate (CTR), which predicts
the matching score between user and item. The AUC and F1 are used as the metrics to
evaluate the model in the test set. AUC is the area under the curve which is defined as
the area enclosed under the ROC (Receiver Operating Characteristic) curve. F1 is the
harmonic average of precision and recall. The higher the value of AUC and F1, the better
the performance of the model.

The proposed method KGET is implemented by PyTorch, and the optimizer is Adam [28]
for the model. We apply a grid search for hyper-parameters. We set batch size as 2048.
The learning rate is selected from

{
10−3, 2× 10−3, 10−2, 2× 10−2

}
. The coefficient of L2

normalization is tuned amongst
{

2× 10−6, 10−5, 2× 10−4, 10−3
}

. The depth of layers is
set to {1, 2, 3, 4}. The embedding size is set to {4, 8, 16, 32, 64, 128, 256}. The triple set size
is searched in {4, 8, 16, 32, 64, 128}. Baseline algorithms are parameterized according to the
best parameter settings in their original papers and experimental verification.

5.4. Prediction Performance (RQ1)

In the section, we first focus on the performance of all methods. Table 3 presents the
performance comparison results with the AUC and F1 of eight methods. The observations
are as follows:

• The proposed method KGET consistently outperforms these state-of-the-art baselines
on all datasets. KGET exhibits improvements of 1.6% and 4.5% over the best algorithms
in AUC on Last.FM and Book-Crossing, respectively, and F1 increased by 1.2% and
1.4% in Last.FM and Book-Crossing, respectively. The improvements of our method
on Book-Crossing is higher than results on Last.FM. This may be due to the fact
that Book-Crossing is sparser than Last.FM, and the distribution of users and items
are more unbalanced in Book-Crossing, with the number of users far outnumbering
the number of items. This demonstrates that direct learning of embedding unseen
entities is difficult to capture comprehensive relationship information. However, our
proposed method KGET is able to learn embedding more stably in training data
sparsity and data imperfection by learning the connections between unseen entities
(transductive learning).

• The performance of RippleNet, KGCN and KGNN in Last.FM is better than the
performance in Book-Crossing, which indicates that the user’s neighbor information is
also useful in recommendations. Since RippleNet, KGCN and KGNN do not focus on
the user’s neighborhood information, but only on the neighborhood of the item with
which the user interacts, and there are many more users than items in Book-Crossing,
the user’s neighborhood information becomes more important.

• We observe that CKAN and KGAT achieve better performance than other baselines,
which illustrates that a method combining the collaborative signal with side infor-
mation in KG might fully mine the feature information of users and items. The
collaborative signal and higher-order connection information benefit the personalized
recommendation.

• Compared with RippleNet, the results show that the performance of propagation-
based methods outperform the path-based methods. Which may be because the
relationships between entities in the real knowledge graph are complicated and it is
difficult to extract high-quality paths.

• The AUC of the KG-free method BPRMF is better than that of KG-based methods
including CKE, RippleNet, KGCN, and KGNN, indicating the advantages of the
collaborative filtering method. It is not certain that good results are obtained by using
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side information of the knowledge graph. It is also necessary to consider whether the
advantages of the knowledge graph might be fully utilized and whether it is suitable
for the dataset.

Table 3. Overall performance comparison.

Model
Last.FM Book-Crossing

Auc F1 Auc F1

BPRMF 0.773 (−9.0%) 0.683 (−16.1%) 0.659 (−15.4%) 0.605 (−22.8%)
CKE 0.763 (−10.1%) 0.669 (−17.8%) 0.673 (−13.6%) 0.600 (−23.5%)

RippleNet 0.693 (−18.4%) 0.685 (−15.8%) 0.544 (−30.2%) 0.663 (−15.4%)
KGCN 0.704 (−17.1%) 0.707 (−13.1%) 0.521 (−33.1%) 0.743 (−5.2%)
KGNN 0.669 (−21.2%) 0.701 (−13.9%) 0.525 (−32.6%) 0.746 (−4.8%)
CKAN 0.827 (−2.6%) 0.804 (−1.2%) 0.734 (−5.8%) 0.773 (−1.4%)
KGAT 0.835 (−1.6%) 0.773 (−5.0%) 0.744 (−4.5%) 0.720 (−8.2%)
Ours 0.849 0.814 0.779 0.784

5.5. Study of KGET (RQ2)

In this section, we investigate the performance of the proposed model KGET under
different hyper-parameter conditions, which include the dimension of embedding, triple
set size, aggregators, transductive learning and depth of layer.

5.5.1. Effect of Dimension of Embedding

We show the results of different dimensions of embedding on all datasets on Figures 3–6.
We can observe that AUC and F1 values gradually increase with the increase in dimension
of embedding. However, when the dimension exceeds the threshold, the related indicators
decrease, especially in Book-Crossing. This may be because the embedding vector encodes
more feature information as the dimension increases, but when the dimension is too large,
it will cause overfitting.

Figure 3. Comparison of the AUC performance on different embedding dimensions in Last.FM.

Figure 4. Comparison of the AUC performance on different embedding dimensions in Book-Crossing.
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Figure 5. Comparison of the F1 performance on different embedding dimensions in Last.FM.

Figure 6. Comparison of the F1 performance on different embedding dimensions in Book-Crossing.

5.5.2. Effect of Triple Set Size

As shown in Tables 4–7, we set the user and item triplet sizes for different sizes, and
then observe the values of AUC and F1 on Last.FM and Book-Crossing. We conducted the
experiment with all parameters remaining consistent except the size of the triplet. We set
the depth of layer as 1, weight of L2 regularization term as 10−5, learning rate as 2× 10−3,
dimension of entity and relation embedding as 128, and the sum aggregator was used
uniformly.We found that the KGET achieves the best AUC performance when the size
of the user’s triple set is 4 and the number of triples for the item is set to 16 on Last.FM,
and the best value of F1 be obtained when number of triples for user is set to 4 and the
number of triples for item is set to 64. On Book-Crossing, we can observe that the AUC
value reaches the best when sampling 32 triples for user and 4 triples for item, and the best
F1 result appears when sampling 64 triples for user and 8 triples for item.

Table 4. The effect of size of triple set on AUC in Last.FM.

Item
User 4 8 16 32 64 128

4 0.828 0.832 0.827 0.836 0.835 0.830
8 0.837 0.840 0.837 0.838 0.832 0.832

16 0.848 0.841 0.834 0.835 0.837 0.835
32 0.842 0.837 0.838 0.833 0.833 0.834
64 0.839 0.829 0.825 0.827 0.824 0.830
128 0.831 0.830 0.816 0.821 0.818 0.820
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Table 5. The effect of size of triple set on F1 in Last.FM.

Item
User 4 8 16 32 64 128

4 0.788 0.803 0.797 0.805 0.805 0.804
8 0.798 0.808 0.805 0.801 0.804 0.802

16 0.809 0.805 0.804 0.793 0.805 0.805
32 0.807 0.808 0.808 0.804 0.804 0.804
64 0.813 0.81 0.804 0.809 0.805 0.804
128 0.811 0.803 0.804 0.803 0.804 0.807

Table 6. The effect of size of triple set on AUC in Book-Crossing.

Item
User 4 8 16 32 64 128

4 0.741 0.742 0.736 0.759 0.746 0.749
8 0.739 0.743 0.737 0.735 0.750 0.747

16 0.750 0.737 0.726 0.737 0.742 0.739
32 0.731 0.733 0.717 0.73 0.726 0.731
64 0.722 0.718 0.717 0.713 0.720 0.712
128 0.722 0.717 0.706 0.703 0.710 0.719

Table 7. The effect of size of triple set on F1 in Book-Crossing.

Item
User 4 8 16 32 64 128

4 0.771 0.778 0.764 0.772 0.771 0.769
8 0.771 0.772 0.776 0.771 0.782 0.771

16 0.778 0.776 0.773 0.772 0.777 0.772
32 0.772 0.774 0.774 0.772 0.772 0.770
64 0.769 0.778 0.777 0.773 0.777 0.772
128 0.776 0.778 0.777 0.772 0.773 0.775

Generally speaking, the larger the sample of the set of triples, the more neighborhood
information is propagated. However, a larger size of triple set might also cause data
redundancy and propagate more noise data, which cause the performance of the model
to degrade. Furthermore, the model achieves the best performance when there are more
item’s triples than user’s triples on Last.FM, and conversely, the model’s performance is
best when there are more user’s triples than item’s triples on Book-Crossing. A reasonable
explanation is that the number of users in the book dataset is more than the number of
items, while the number of items in the music dataset is more than the number of items, so
the model learns feature information by enlarging the user’s triple set in the book dataset
and vice versa.

5.5.3. Effect of Aggregators

We experimented with three types of aggregators: sum aggregator (KGET-sum), concat
aggregator (KGET-concat) and pool aggregator (KGET-pool), the detailed results are shown
in Tables 8 and 9. In most cases, the sum aggregator works better than the concat aggregator
and pool aggregator. The possible reason is that the method of summing each layer of
vectors retains more information about the hidden layer.

Table 8. The influence of aggregator in AUC.

Aggregator KGET-Concat KGET-Pool KGET-Sum

Last.FM 0.824 0.824 0.849
Book-Crossing 0.731 0.744 0.759
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Table 9. The influence of aggregator in F1.

Aggregator KGET-Concat KGET-Pool KGET-Sum

Last.FM 0.788 0.799 0.813
Book-Crossing 0.772 0.780 0.773

5.5.4. Effect of Transductive Learning

To order to explore the effect of transductive learning, we carried out the experiment
without using the transductive learning strategy. The results of AUC and F1 on datasets are
presented in Table 10. The KGETNO denotes the method without transductive learning.
We found the method without transductive learning performs worse than the KGET, which
verifies the necessity of the existence of transductive learning. It proves that the prediction
of relationships between unseen entities extrapolates the knowledge graph and is beneficial
for recommending tasks.

Table 10. The effect of transductive learning.

Last.FM Book-Crossing

KGET KGETNO KGET KGETNO

AUC 0.848 0.821 0.778 0.732
F1 0.814 0.793 0.776 0.767

5.5.5. Influence of Depth of Layer

The depth of layer was changed from 1 to 4, to study the effect of depth of layer.
Tables 11 and 12 summarize the performance of the model at different depths of layer.
We observed that the KGET works best with a depth of 1 in Last.FM and achieves the
best performance at a depth of 2 in Book-Crossing, which if too deep may bring the over-
smoothing problem and have a negative impact on model performance in the graph neural
network, especially in the case of large amounts of data.

Table 11. The Influence of depth of layer on Last.FM.

Layer 1 2 3 4

AUC 0.849 0.835 0.832 0.818
F1 0.814 0.795 0.802 0.792

Table 12. The Influence of depth of layer on Book-Crossing.

Layer 1 2 3 4

AUC 0.759 0.773 0.755 0.748
F1 0.773 0.784 0.776 0.766

6. Conclusions

In this paper, we propose a novel end-to-end model, Knowledge Graph Extrapolation
Network with Transductive Learning for Recommendation, which is named KGET. KGET
learns the embedding of users and items by embedding propagation to obtain high-order
connection information in KG, which is composed of knowledge propagation combined
with collaborative signal, and the attention mechanism is designed to distinguish contri-
butions of different neighbor nodes. In this study, transductive learning was employed
to model links between unknown entities and enrich representation of items, which re
parameterize by representations learned via two individual knowledge propagation layers.
The strategy effectively alleviated data sparsity and cold start problems because of the full
use of inter-entity relationship information. Extensive experiments have shown that the
proposed model KGET outperformed the relevant baselines.
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This work was mainly to enrich the feature representations of items by learning the
relationships between items. In future work, we plan to mine more relationship information
in knowledge graph and focus on fine-grained interactions about users and items, to further
improve our model. We will conduct more experiments to demonstrate the validity of
our model.
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