Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers
Abstract
:1. Introduction
2. Literature Review
3. Study Hypothesis for the MIT Adoption
3.1. Farmer’s Characteristics
3.2. Mobile Internet Technology Characteristics
3.3. Farm Characteristics
4. Material and Methods
4.1. Model Specification
- (i)
- Wheat farmers do not adopt MDs (y1 = 0);
- (ii)
- Wheat farmers adopts MDs but do not use MIT (y1 = 1; y2 = 0);
- (iii)
- Wheat farmers adopts MDs and use MIT (y1 = 1; y2 = 1).
4.2. Study Area, Sampling Strategy, and Data Collection
4.2.1. Wheat Production in the Study Area
4.2.2. Sampling Strategy and Data Collection
5. Results and Discussion
5.1. Study Hypothesis 1a–d
5.2. Study Hypothesis 2
5.3. Study Hypothesis 3a–c
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIT | Mobile Internet Technology |
MPU | Mobile Phone Usage |
BPM | Bivariate Probit Method |
ICTs | Information Communication Technologies |
IT | Internet Technology |
AM | Agricultural Modernization |
H | Hypothesis |
PAK | Pakistan |
RH | Research Hypothesis |
MDs | Mobile Devices |
SS | Selection Stage |
OS | Outcome Stage |
KPK | Khyber Pakhtunkhwa |
MITA | Mobile Internet Technology Adoption |
DIK | Dera Ismail Khan |
UC | Union Council |
References
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Pérez-Escamilla, R. Food security and the 2015–2030 sustainable development goals: From human to planetary health: Perspectives and opinions. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef] [PubMed]
- Reza Anik, A.; Rahman, S.; Sarker, J.R. Five Decades of Productivity and Efficiency Changes in World Agriculture (1969–2013). Agriculture 2020, 10, 200. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Hailu, A.; Kragt, M.E.; Ma, C. The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agric. Syst. 2018, 160, 11–20. [Google Scholar] [CrossRef]
- Gray, B.; Babcock, L.; Tobias, L.; McCord, M.; Herrera, A.; Cadavid, R. Digital Farmer Profiles: Reimagining Smallholder Agriculture; Grameen Foundation: Washington, DC, USA, 2018. [Google Scholar]
- Trendov, M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas: Status Report; FAO: Rome, Italy, 2019. [Google Scholar]
- Pender, J.; Gebremedhin, B. Determinants of agricultural and land management practices and impacts on crop production and household income in the highlands of Tigray, Ethiopia. J. Afric. Econo. 2008, 17, 395–450. [Google Scholar] [CrossRef]
- Wu, J.; Ma, C.; Tang, K. The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities. Energy 2019, 178, 685–694. [Google Scholar] [CrossRef]
- Hayden, J.; Rocker, S.; Phillips, H.; Heins, B.; Smith, A.; Delate, K. The importance of social support and communities of practice: Farmer perceptions of the challenges and opportunities of integrated crop–livestock systems on organically managed farms in the northern US. Sustainability 2018, 10, 4606. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Khan, F.; Ullah, N.; Ihtisham, M.; Ullah, R.; Ismail, S.; Muhammad, S. Analyzing mobile phone usage in agricultural modernization and rural development. Int. J. Agric. Ext. 2020, 8, 139–147. [Google Scholar] [CrossRef]
- Baumüller, H. Towards smart farming? Mobile technology trends and their potential for developing country agriculture. In Handbook for ICT in Developing Countries: 5G Perspectives; Skouby, K.E., Williams, I., Gyamfi, A., Eds.; River Publishers: Gistrup, Denamrk, 2017; pp. 191–201. [Google Scholar]
- Sołtysik-Piorunkiewicz, A. The development of mobile Internet technology and ubiquitous communication in a knowledge-based organization. Online J. Appl. Knowl. Manag. (OJAKM) 2013, 1, 29–41. [Google Scholar]
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100; United Nations: Rome, Italy, 2017. [Google Scholar]
- Xydis, G.A.; Liaros, S.; Avgoustaki, D.-D. Small scale Plant Factories with Artificial Lighting and wind energy microgeneration: A multiple revenue stream approach. J. Clean. Prod. 2020, 255, 120227. [Google Scholar] [CrossRef]
- Tang, K.; He, C.; Ma, C.; Wang, D. Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China. Aust. J. Agric. Resour. Econ. 2019, 63, 575–592. [Google Scholar] [CrossRef]
- Xiang, T.; Malik, T.H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Chang. 2020, 152, 119895. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Wang, F.; Li, G. Does internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis. Food Policy 2021, 102, 102044. [Google Scholar] [CrossRef]
- Mondal, A.; Chakrabarti, A.B. Information and Communication Technology Adoption Strategies of Emerging Multinationals From India. J. Glob. Inf. Manag. (JGIM) 2021, 29, 161–175. [Google Scholar] [CrossRef]
- Twumasi, M.A.; Jiang, Y.; Zhou, X.; Addai, B.; Darfor, K.N.; Akaba, S.; Fosu, P. Increasing Ghanaian fish farms’ productivity: Does the use of the internet matter? Mar. Policy 2021, 125, 104385. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, R.; Zhang, C.; Shi, G. Does Internet use improve technical efficiency? Evidence from apple production in China. Technol. Forecast. Soc. Chang. 2021, 166, 120662. [Google Scholar] [CrossRef]
- Morrar, R.; Abdeljawad, I.; Jabr, S.; Kisa, A.; Younis, M.Z. The role of information and communications technology (ICT) in enhancing service sector productivity in Palestine: An international perspective. J. Glob. Inf. Manag. (JGIM) 2019, 27, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Issahaku, H.; Abu, B.M.; Nkegbe, P.K. Does the use of mobile phones by smallholder maize farmers affect productivity in Ghana? J. Afr. Bus. 2018, 19, 302–322. [Google Scholar] [CrossRef]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Kelemu, K. Impact of Mobile Telephone on Technical Efficiency of Wheat Growing Farmers in Ethiopia. Int. J. Res. Stud. Agric. Sci. 2016, 2, 1–9. [Google Scholar]
- Quandt, A.; Salerno, J.D.; Neff, J.C.; Baird, T.D.; Herrick, J.E.; McCabe, J.T.; Xu, E.; Hartter, J. Mobile phone use is associated with higher smallholder agricultural productivity in Tanzania, East Africa. PLoS ONE 2020, 15, e0237337. [Google Scholar]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Asongu, S.A.; Ansah, S.; Zhang, S. Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Land 2021, 10, 1023. [Google Scholar] [CrossRef]
- Tang, K.; Kragt, M.E.; Hailu, A.; Ma, C. Carbon farming economics: What have we learned? J. Environ. Manag. 2016, 172, 49–57. [Google Scholar] [CrossRef]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.A.; Mushore, T.D.; Gupta, A. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Mwalupaso, G.E.; Wang, S.; Rahman, S.; Alavo, E.J.-P.; Tian, X. Agricultural informatization and technical efficiency in maize production in Zambia. Sustainability 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
- Price, C.J.A.C. Wheat: Outlook to 2020–21. Agric. Commod. 2016, 6, 29–45. [Google Scholar]
- Hou, J.; Huo, X.; Yin, R. Does computer usage change farmers’ production and consumption? Evidence from China. China Agric. Econ. Rev. 2018, 11, 387–410. [Google Scholar] [CrossRef] [Green Version]
- Aker, J.C.; Ksoll, C. Can mobile phones improve agricultural outcomes? Evidence from a randomized experiment in Niger. Food Policy 2016, 60, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Tack, J.; Aker, J.C. Information, mobile telephony, and traders’ search behavior in Niger. Am. J. Agric. Econ. 2014, 96, 1439–1454. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Siddiqui, B.N.; Zhang, S. Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study. Land 2022, 11, 361. [Google Scholar] [CrossRef]
- Zanello, G.; Srinivasan, C.S. Information sources, ICTs and price information in rural agricultural markets. Eur. J. Dev. Res. 2014, 26, 815–831. [Google Scholar] [CrossRef]
- Aker, J.C.; Mbiti, I.M. Mobile phones and economic development in Africa. J. Econ. Perspect. 2010, 24, 207–232. [Google Scholar] [CrossRef] [Green Version]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Aker, J.C.; Fafchamps, M. Mobile phone coverage and producer markets: Evidence from West Africa. World Bank Econ. Rev. 2015, 29, 262–292. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ullah, R.; Khan, N.; Naseem, M.; Farhatullah, M.R.; Khan, N.U.; Muhammad, S.; Khayyam, M.; Ihtisham, M.; Siddiqui, B.N. Agricultural Extension Worker Role in the Transfer of Garlic Production Technology: A Case Study of Balochistan Province, Pakistan. Int. J. Biosci. (IJB) 2021, 18, 26–35. [Google Scholar]
- Jensen, R.T. Information, efficiency, and welfare in agricultural markets. Agric. Econ. 2010, 41, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Courtois, P.; Subervie, J. Farmer bargaining power and market information services. Am. J. Agric. Econ. 2015, 97, 953–977. [Google Scholar] [CrossRef] [Green Version]
- Zanello, G. Mobile phones and radios: Effects on transactions costs and market participation for households in Northern Ghana. J. Agric. Econ. 2012, 63, 694–714. [Google Scholar] [CrossRef]
- Min, S.; Liu, M.; Huang, J. Does the application of ICTs facilitate rural economic transformation in China? Empirical evidence from the use of smartphones among farmers. J. Asian Econ. 2020, 70, 101219. [Google Scholar] [CrossRef]
- Zaremohzzabieh, Z.; Samah, B.A.; Muhammad, M.; Omar, S.Z.; Bolong, J.; Hassan, S.B.H.; Mohamed Shaffril, H.A. Information and communications technology acceptance by youth entrepreneurs in rural Malaysian communities: The mediating effects of attitude and entrepreneurial intention. Inf. Technol. Dev. 2016, 22, 606–629. [Google Scholar] [CrossRef]
- Büyükbay, E.O.; Gündüz, O. An investigation on computer and internet use for agricultural development in rural areas: A case study for Tokat Province in Turkey. Afric. J. Biotechn. 2011, 10, 11879–11886. [Google Scholar]
- Savari, M.; Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar]
- Bort-Roig, J.; Gilson, N.D.; Puig-Ribera, A.; Contreras, R.S.; Trost, S.G. Measuring and influencing physical activity with smartphone technology: A systematic review. Sports Med. 2014, 44, 671–686. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Huo, X.; Salim, R.; Bloch, H.; Zhang, H. Assessing fertilizer use efficiency and its determinants for apple production in China. Ecol. Indic. 2019, 104, 268–278. [Google Scholar] [CrossRef]
- Fan, L.; Yuan, Y.; Ying, Z.; Lam, S.K.; Liu, L.; Zhang, X.; Liu, H.; Gu, B. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 464–472. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar]
- Mendes, J.; Pinho, T.M.; Neves dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone applications targeting precision agriculture practices—A systematic review. Agronomy 2020, 10, 855. [Google Scholar] [CrossRef]
- Huq, M.E.; Fahad, S.; Shao, Z.; Sarven, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; ur Rahman, M.H.; Khan, I.A.; Alam, M.; Saeed, M.; et al. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. J. Environ. Manag. 2019, 242, 199–209. [Google Scholar] [CrossRef]
- Mayzelle, M.; Santibañez, M.-P.; Schweiger, J.; Jallo, C. Assessment of Information and Communication Technologies in Afghan Agricultural Extension; Government of the United States of America, University of California: Oakland, CA, USA, 2015. [Google Scholar]
- Mittal, S.; Mehar, M. Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. The J. Agric. Edu. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Razaque, A.; Sallah, M. The use of mobile phone among farmers for agriculture development. Int. J. Sci. Res. 2013, 2, 95–98. [Google Scholar]
- Khan, N.; Ray, R.; Ihtisham, M.; Siddiqui, B.; Khayyam, M.; Anjum, R.; Asongu, S. Socioeconomic Determinants of the awareness and adoption of apple production practices: A case study of Balochistan, Pakistan. Sarhad J. Agric. 2022, 38, 322–330. [Google Scholar] [CrossRef]
- Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the potential of digital development: The case of agricultural advice. Science 2019, 366, eaay3038. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2020, 21, 983–1009. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, Y.; Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 28, 2063–2073. [Google Scholar] [CrossRef]
- Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of information and communication technology for sustainable growth of SMEs in India food industry. Resour. Conserv. Recycl. 2019, 147, 10–18. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Mobile money, agricultural marketing, and off-farm income in Uganda. Agric. Econ. 2017, 48, 597–611. [Google Scholar] [CrossRef]
- Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I.; Iqbal, M.S. Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Sci. J. 2016, 14, 70–74. [Google Scholar]
- O’Leary, D.; Zimmermann, R.; Grahn, A.; Poarch, D.; Cook, M.; Pirc, J. Mobile Device Security in the Workplace: 5 Key Risks and a Surprising Challenge. 2017. Available online: http://focus.forsythe.com/articles/55 (accessed on 20 March 2022).
- Yuan, F.; Tang, K.; Shi, Q. Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environ. Sci. Pollut. Res. 2021, 28, 6005–6017. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.R.; Peres, E.; Morais, R.; Oliveira, A.A.; Matos, S.G.; Fernandes, M.A.; Reis, M.J.C.S. The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management. Comp. Electr. Agric. 2010, 73, 154–164. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Matassa, S.; Batstone, D.J.; Hülsen, T.; Schnoor, J.; Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 2015, 49, 5247–5254. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Nuthall, P. Adoption of computer based information systems: The case of dairy farmers in Canterbury, NZ, and Florida, Uruguay. Comput. Electron. Agric. 2006, 50, 48–60. [Google Scholar] [CrossRef]
- Roco, L.; Engler, A.; Bravo-Ureta, B.E.; Jara-Rojas, R. Farmers’ perception of climate change in mediterranean Chile. Reg. Environ. Change 2015, 15, 867–879. [Google Scholar] [CrossRef]
- Kaila, H.; Tarp, F. Can the Internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Verbeek, M. A Guide to Modern Econometrics; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Jarrett, A.; Gan, J.; Johnson, C.; Munn, I.A. Landowner awareness and adoption of wildfire programs in the southern United States. J. For. 2009, 107, 113–118. [Google Scholar]
- Heckman, J.J. Sample selection bias as a specification error. Econom. J. Econom. Soc. 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Van de Ven, W.P.; Van Praag, B.M. The demand for deductibles in private health insurance: A probit model with sample selection. J. Econom. 1981, 17, 229–252. [Google Scholar] [CrossRef]
- Kongaut, C.; Bohlin, E. Investigating mobile broadband adoption and usage: A case of smartphones in Sweden. Telemat. Inform. 2016, 33, 742–752. [Google Scholar] [CrossRef]
- Alemi, F.; Circella, G.; Mokhtarian, P.; Handy, S. What drives the use of ridehailing in California? Ordered probit models of the usage frequency of Uber and Lyft. Transp. Res. Part C Emerg. Technol. 2019, 102, 233–248. [Google Scholar] [CrossRef]
- Michels, M.; Fecke, W.; Feil, J.H.; Musshoff, O.; Pigisch, J.; Krone, S. Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precis. Agric. 2020, 21, 403–425. [Google Scholar] [CrossRef]
- Sartori, A.E. An estimator for some binary-outcome selection models without exclusion restrictions. Political Anal. 2003, 11, 111–138. [Google Scholar] [CrossRef]
- Adapa, S. Indian smart cities and cleaner production initiatives–Integrated framework and recommendations. J. Clean. Prod. 2018, 172, 3351–3366. [Google Scholar] [CrossRef]
- Abdullah, F.A.; Samah, B.A. Factors impinging farmers’ use of agriculture technology. Asian Soc. Sci. 2013, 9, 120. [Google Scholar] [CrossRef]
- Uduji, J.I.; Okolo-Obasi, E.N.; Asongu, S.A. Does growth enhancement support scheme (GESS) contribute to youth development in informal farm entrepreneurship? Evidence from rural communities in Nigeria. J. Enterprising Communities People Places Glob. Econ. 2021, 15, 451–476. [Google Scholar] [CrossRef]
- Ogbeide, O.A.; Ele, I. Smallholder farmers and mobile phone technology in Sub-Sahara Agriculture. Mayfair J. Inf. Technol. Manag. Agric. 2015, 1, 1–19. [Google Scholar]
- Woodburn, M.; Ortmann, G.; Levin, J.B. Computer use and factors influencing computer adoption among commercial farmers in Natal Province, South Africa. Comput. Electron. Agric. 1994, 11, 183–194. [Google Scholar] [CrossRef]
- Adamowicz, M.; Szepeluk, A. Support to young farmers as part of agricultural policy of the European Union. Probl. Agric. Econ. 2016, 3, 106–127. [Google Scholar]
- Yang, L.; Tang, K.; Wang, Z.; An, H.; Fang, W. Regional eco-efficiency and pollutants’ marginal abatement costs in China: A parametric approach. J. Clean. Prod. 2017, 167, 619–629. [Google Scholar] [CrossRef]
- Hong, I.B. Understanding and predicting behavioral intention to adopt mobile banking: The Korean experience. J. Glob. Inf. Manag. (JGIM) 2019, 27, 182–202. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Zhang, S.; Osabuohien, E.; Ihtisham, M. Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technol. Soc. 2022, 68, 101866. [Google Scholar] [CrossRef]
- Islam, M.S.; Grönlund, Å. Factors influencing the adoption of mobile phones among the farmers in Bangladesh: Theories and practices. Inter. J. Advan. ICT Emer. Reg. 2011, 4, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Qijie, G.; Sertse, S.F.; Nabi, M.N.; Khan, P. Farmers’ use of mobile phone-based farm advisory services in Punjab, Pakistan. Inf. Dev. 2020, 36, 390–402. [Google Scholar] [CrossRef]
- Salamzada, K.; Shukur, Z.; Bakar, M.A. A framework for cybersecurity strategy for developing countries: Case study of Afghanistan. Asia-Pac. J. Inf. Technol. Multimed. 2015, 4, P1–P10. [Google Scholar] [CrossRef] [Green Version]
- Krone, M.; Dannenberg, P.; Nduru, G. The use of modern information and communication technologies in smallholder agriculture: Examples from Kenya and Tanzania. Inf. Dev. 2015, 32, 1503–1512. [Google Scholar] [CrossRef]
- Hoang, H.G. Determinants of the adoption of mobile phones for fruit marketing by Vietnamese farmers. World Dev. Perspect. 2020, 17, 100178. [Google Scholar] [CrossRef]
- Matous, P.; Todo, Y.; Ishikawa, T. Emergence of multiplex mobile phone communication networks across rural areas: An Ethiopian experiment. Netw. Sci. 2014, 2, 162–188. [Google Scholar] [CrossRef] [Green Version]
- Akudugu, M.A.; Guo, E.; Dadzie, S.K. Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions? J. Biol. Agric. Health 2012, 2, 1–14. [Google Scholar]
- Malhotra, N.K.; Kim, S.S.; Agarwal, J. Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Inf. Syst. Res. 2004, 15, 336–355. [Google Scholar] [CrossRef] [Green Version]
- Mohmand, A.M.; Marjan, A.; Sangin, A. Developing e-government in Afghanistan. In Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance, Beijing, China, 25–28 October 2010; pp. 43–48. [Google Scholar]
- Fecke, W.; Danne, M.; Mußhoff, O. Online-Einkauf von Pflanzenschutzmitteln: Ein Discrete Choice Experiment mit landwirtschaftlichen Unternehmern in Deutschland; Diskussionsbeitrag: 2018. Available online: http://hdl.handle.net/10419/190683 (accessed on 20 March 2022).
- Ghimire, R.; Huang, W.; Poudel, M.P. Adoption intensity of agricultural technology: Empirical evidence from smallholder maize famers in Nepal. Int. J. Agric. Innov. Res. 2015, 4, 139–146. [Google Scholar]
- Narula, S.A. Revolutionizing food supply chains of Asia through ICTs. In Sustainability Challenges in the Agrofood Sector; Bhat, R., Ed.; Wiley: Hoboken, NJ, USA, 2017; p. 212. [Google Scholar]
- Bellon-Maurel, V.; Peters, G.M.; Clermidy, S.; Frizarin, G.; Sinfort, C.; Ojeda, H.; Roux, P.; Short, M.D. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—Part II: Application to viticulture. J. Clean. Prod. 2015, 87, 119–129. [Google Scholar] [CrossRef] [Green Version]
Variables | Hypothesis | Explanation of Research Hypothesis | Mean (SD) |
---|---|---|---|
Dependent variables | |||
MIT | 1 if farmers use MIT; 0 otherwise | 0.55 (0.04) | |
MD | 1 if the farmer has Internet-enabled MD; 0 otherwise | 0.65 (0.02) | |
Independent variables | |||
Age | Hypothesis 1a | Age of the farmers (years) | 47.88 (11.77) |
Gender | Hypothesis 1b | 1 if the farmer is male; 0 otherwise | 0.88 (0.03) |
Education | Hypothesis 1c | 1 if the farmers hold a university degree; 0 otherwise | 0.17 (0.03) |
Innovativeness | Hypothesis 1d | Once a new technological innovation arrives on the market, I will be interested in assessing it | 2.26 (1.07) |
Awareness of IT risks | Hypothesis 2 | Aware to avoid the IT risks | 2.70 (1.12) |
Farm size | Hypothesis 3a | Farm size (ha) | 7.17 (6.01) |
Region | Hypothesis 3b | ||
North | The farmhouse is situated in the north of KPK | 0.24 | |
West | The farmhouse is situated in the west of KPK | 0.26 | |
South | The farmhouse is situated in the south of KPK | 0.42 | |
East | The farmhouse is situated in the east of KPK | 0.07 | |
Farm diversification | Hypothesis 3c | Measurement of the farmhouse diversification | 0.25 (0.22) |
Control variable | |||
IT usage (Regular) | 1 if farmer use IT regularly; 0 otherwise | 0.74 |
Variables | Hypothesis | MD Adoption (SS) | MIT Adoption (OS) |
---|---|---|---|
Coefficient (S.E) | Coefficient (S.E) | ||
IT use (Regular) | - | 0.7802 *** (0.0986) | - |
Age | Hypothesis 1a | −0.0218 *** (0.0044) | −0.0201 *** (0.0054) |
Gender | Hypothesis 1b | 0.0202 (0.1578) | 0.0617 (0.1677) |
Education | Hypothesis 1c | 0.3177 ** (0.1335) | 0.0299 (0.1347) |
Innovativeness | Hypothesis 1d | - | 0.192 8 *** (0.0485) |
Awareness of IT risks | Hypothesis 2 | - | 0.0955 ** (0.0463) |
Farm size | Hypothesis 3a | 0.033 (0.015) | 0.010 * (0.005) |
Region | Hypothesis3b | ||
North | - | 0.3344 *** (0.1277) | |
West | - | 0.4798 *** (0.1263) | |
South | - | 0.3135 (0.1134) | |
East | - | 0.0740 (0.2090) | |
Farm diversification | Hypothesis 3c | −0.1066 (0.2106) | −0.1102 (0.1347) |
Constant | 0.8708 *** (0.2890) | 0.4165 (0.3383) | |
Atanh (p) | - | −1.3407 *** (0.2809) | |
p | - | −0.8718 (0.0674) | |
Likelihood ratio test for p = 0 | 21.42 *** | - | |
Wald x2 | 42.55 *** | - | |
Log-likelihood | −777.88 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Ray, R.L.; Kassem, H.S.; Zhang, S. Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers. Appl. Sci. 2022, 12, 4902. https://doi.org/10.3390/app12104902
Khan N, Ray RL, Kassem HS, Zhang S. Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers. Applied Sciences. 2022; 12(10):4902. https://doi.org/10.3390/app12104902
Chicago/Turabian StyleKhan, Nawab, Ram L. Ray, Hazem S. Kassem, and Shemei Zhang. 2022. "Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers" Applied Sciences 12, no. 10: 4902. https://doi.org/10.3390/app12104902
APA StyleKhan, N., Ray, R. L., Kassem, H. S., & Zhang, S. (2022). Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers. Applied Sciences, 12(10), 4902. https://doi.org/10.3390/app12104902