Determining the Tightrope Tightening Force for Effective Fixation of the Tibiofibular Syndesmosis during Osteomeatal Synthesis of Fibula Injuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Scheme of Research
2.2. Analytical Model of a Fibula Bone Influenced by Localized Transverse Loading
- -
- expression for transverse forces:
- -
- expression for bending moments:
2.3. Assessment of Transverse Stiffness of the Broken Fibula, Fixed with an Extracortical Plate
- -
- expression for rotation angles of cross-sections:
- -
- expression for deflections:
3. Results and Discussion
- -
- for a tall person: l = 0.37 m; t = 0.26 m; a = 0.31 m; b = 0.06 m; D = 0.011 m; d = 0.004 m; s = 0.32 m;
- -
- for a small person: l = 0.26 m; t = 0.14 m; a = 0.21 m; b = 0.05 m; D = 0.008 m; d = 0.0035 m; s = 0.22 m;
3.1. Numerical Assessment of Intact Fibula Displacements Influenced by Localized Transverse Loading
3.2. Numerical Assessment of Broken Fibula Deflections, Which Is Fixed with an Extracortical Plate
- -
- the tightening force is sufficient for reliable fixation of the distal fibula syndesmosis;
- -
- the tightening force is such that the tightrope material works within the limits of elasticity and the fixation is actually elastic;
- -
- the fibula displacements, caused by the tightrope tightening force, do not exceed the permissible values.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Lesser, E.A.; Gozani, S.N. Nerve conduction studies: Clinical challenges and engineering solutions. IEEE Eng. Med. Biol. Mag. 2010, 29, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rozin, V. From Engineering and Technological Process to Post-Cultural Technology. Future Hum. Image 2020, 15, 99–109. [Google Scholar] [CrossRef]
- Ye, D.; Peramo, A. Implementing tissue engineering and regenerative medicine solutions in medical implants. Br. Med. Bull. 2014, 109, 3–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claes, L.; Recknagel, S.; Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143. [Google Scholar] [CrossRef]
- Khmel, I. Humanization of Virtual Communication: From Digit to Image. Philos. Cosmol. 2021, 27, 126–134. [Google Scholar] [CrossRef]
- Bäcker, H.C.; Vosseller, J.T. Intramedullary fixation of fibula fractures: A systematic review. J. Clin. Orthop. Trauma 2021, 18, 136–143. [Google Scholar] [CrossRef]
- Park, Y.U.; Kim, S.J.; Kim, H.N. Minimally invasive plate osteosynthesis using the oblong hole of a locking plate for comminuted distal fibular fractures. J. Orthop. Surg. Res. 2021, 16, 281. [Google Scholar] [CrossRef]
- Hollensteiner, M.; Sandriesser, S.; Hilmar Krauss, H.; Greinwald, M.; Stuby, F.; Augat, P. Three internal fixation methods for Danis-Weber-B distal fibular fractures: A biomechanical comparison in an osteoporotic fibula model. Foot Ankle Surg. 2021, in press. [CrossRef]
- Regauer, M.; Mackay, G.; Nelson, O.; Böcker, W.; Ehrnthaller, C. Evidence-Based Surgical Treatment Algorithm for Unstable Syndesmotic Injuries. J. Clin. Med. 2022, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.; Githens, M.; Rothberg, D.; Higgins, T.; Barei, D.; Nork, S. Syndesmosis and Syndesmotic Equivalent Injuries in Tibial Plafond Fractures. J. Orthop. Trauma 2019, 33, e74–e78. [Google Scholar] [CrossRef] [PubMed]
- Golovakha, M.; Kozhemyaka, M.; Maslennikov, S. Evaluation of the results of surgical treatment of ankle fractures with the tibiofibular syndesmosis injury. Zaporozhye Med. J. 2016, 6, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Bafna, K.R.; Jordan, R.; Yatsonsky, D.; Dick, S.; Liu, J.; Ebraheim, N.A. Revision of Syndesmosis Screw Fixation. Foot Ankle Spec. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Ræder, B.W.; Figved, W.; Madsen, J.E.; Frihagen, F.; Jacobsen, S.B.; Andersen, M.R. Better outcome for suture button compared with single syndesmotic screw for syndesmosis injury: Five-year results of a randomized controlled trial. Bone Jt. J. 2020, 102-B, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.L.; Moriarty, T.F.; Zalavras, C.; Morgenstern, M.; Jaiprakash, A.; Crawford, R.; Burch, M.A.; Boot, W.; Tetsworth, K.; Miclau, T.; et al. The influence of biomechanical stability on bone healing and fracture-related infection: The legacy of Stephan Perren. Injury 2021, 52, 43–52. [Google Scholar] [CrossRef]
- Cici, H.; Ozmanevra, R.; Bektas, Y.E.; Ciklacandir, S.; Demirkiran, N.D.; Isler, Y.; Erduran, M.; Basci, O. Biomechanical Comparison of a Closed-Loop Double Endobutton to a Lag Screw in Fixation of Posterior Malleolar Fractures. J. Foot Ankle Surg. 2021, in press. [CrossRef] [PubMed]
- Reva, N. Logic, Reasoning, Decision-Making. Future Hum. Image 2018, 10, 76–84. [Google Scholar] [CrossRef]
- Popov, V.L. Contact Mechanics and Friction: Physical Principles and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Rendenbach, C.; Fischer, H.; Kopp, A.; Schmidt-Bleek, K.; Kreiker, H.; Stumpp, S.; Thiele, M.; Duda, G.; Hanken, H.; Beck-Broichsitter, B.; et al. Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months. Mater. Sci. Eng. C 2021, 129, 112380. [Google Scholar] [CrossRef]
- Saakiyan, L.S.; Efremov, A.P.; Ropyak, L.Y.; Gorbatskii, A.V. A method of microelectrochemical investigations. Sov. Mater. Sci. 1987, 23, 267–269. [Google Scholar] [CrossRef]
- Saakiyan, L.S.; Efremov, A.P.; Ropyak, L.Y. Effect of stress on the microelectrochemical heterogeneity of steel. Prot. Met. 1989, 25, 185–189. [Google Scholar]
- Ropyak, L.Y.; Pryhorovska, T.O.; Levchuk, K.H. Analysis of Materials and Modern Technologies for PDC Drill Bit Personufacturing. Prog. Phys. Met. 2020, 21, 274–301. [Google Scholar] [CrossRef]
- Bulat, A.; Osіnnii, V.; Dreus, A.; Osіnnia, N. Mathematical modelling of thermal stresses within the borehole walls in terms of plasma action. Min. Miner. Depos. 2021, 15, 63–69. [Google Scholar] [CrossRef]
- Bazaluk, O.; Dubei, O.; Ropyak, L.; Shovkoplias, M.; Pryhorovska, T.; Lozynskyi, V. Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well. Energies 2022, 15, 83. [Google Scholar] [CrossRef]
- Sola, A.; Bellucci, D.; Cannillo, V. Functionally graded materials for orthopedic applications–An update on design and personufacturing. Biotechnol. Adv. 2016, 34, 504–531. [Google Scholar] [CrossRef] [PubMed]
- Shatskyi, I.P.; Ropyak, L.Y.; Makoviichuk, M.V. Strength optimization of a two-layer coating for the particular local loading conditions. Strength Mater. 2016, 48, 726–730. [Google Scholar] [CrossRef]
- Codescu, M.M.; Vladescu, A.; Geanta, V.; Voiculescu, I.; Pana, I.; Dinu, M.; Kiss, A.E.; Braic, V.; Patroi, D.; Marinescu, V.E.; et al. Zn based hydroxyapatite based coatings deposited on a novel FeMoTaTiZr high entropy alloy used for bone implants. Surf. Interfaces 2022, 28, 101591. [Google Scholar] [CrossRef]
- Popadyuk, O.Y.; Malyshevska, O.S.; Ropyak, L.Y.; Vytvytskyi, V.S.; Droniak, M.M. Study of nano-containing biopolymer films therapeutic and physical-mechanical properties. Nov. Khirurgii 2019, 27, 16–25. [Google Scholar] [CrossRef]
- Bosco, R.; Van Den Beucken, J.; Leeuwenburgh, S.; Jansen, J. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces. Coatings 2012, 2, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Ropyak, L.Y.; Makoviichuk, M.V.; Shatskyi, I.P.; Pritula, I.M.; Gryn, L.O.; Belyakovskyi, V.O. Stressed state of laminated interference-absorption filter under local loading. Funct. Mater. 2020, 27, 638–642. [Google Scholar] [CrossRef]
- Vladescu, A.; Surmeneva, M.A.; Cotrut, C.M.; Surmenev, R.A.; Antoniac, I.V. Bioceramic Coatings for Metallic Implants. In Handbook of Bioceramics and Biocomposites 2016; Antoniac, I., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Shatskii, I.P. Tension of a plate containing a rectilinear cut with hinged rims. J. Appl. Mech. Tech. Phys. 1989, 30, 828–830. [Google Scholar] [CrossRef]
- Shatskii, I.P. The interaction of collinear cuts with hinged rims in a plate under tension. J. Sov. Math. 1993, 67, 3355–3358. [Google Scholar] [CrossRef]
- Shatskii, I.P. A periodic system of parallel slits with contacting edges in a distended plate. J. Math. Sci. 1995, 76, 2370–2373. [Google Scholar] [CrossRef]
- Mohammadi, S.; Yousefi, M.; Khazaei, M. A review on composite patch repairs and the most important parameters affecting its efficiency and durability. J. Reinf. Plast. Compos. 2020, 40, 3–15. [Google Scholar] [CrossRef]
- Shatskyi, I.P.; Makoviichuk, M.V.; Shcherbii, A.B. Equilibrium of cracked shell with flexible coating. In Shell Structures: Theory and Applications; CRC Press: Leiden, The Netherlands, 2018; Volume 4, pp. 165–168. [Google Scholar] [CrossRef]
- Shats’kyi, I.; Makoviichuk, M.; Shcherbii, A. Influence of a flexible coating on the strength of a shallow cylindrical shell with longitudinal crack. J. Math. Sci. 2019, 238, 165–173. [Google Scholar] [CrossRef]
- Shatskyi, I.P.; Makoviichuk, M.V.; Shcherbii, A.B. Influence of flexible coating on the limit equilibrium of a spherical shell with meridional crack. Mater. Sci. 2020, 55, 484–491. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Dalyak, T.; Shatskyi, I.; Venhrynyuk, T.; Velychkovych, A. Stress Analysis in Damaged Pipeline with Composite Coating. Appl. Sci. 2021, 11, 10676. [Google Scholar] [CrossRef]
- Nassar, M.; Mohamed, S.; Matbuly, M.; Bichir, S. Analytical Solution of Cracked Shell Resting on Elastic Foundation. Acta Mech. Solida Sin. 1996, 9, 306–319. [Google Scholar]
- Shats’kyi, I.P.; Makoviichuk, M.V. Contact interaction of the crack edges in the case of bending of a plate with elastic support. Mater. Sci. 2003, 39, 371–376. [Google Scholar] [CrossRef]
- Sylovanyuk, V.P.; Yukhim, R.Y. Material strengthening by crack and cavity healing. Strength Mater. 2011, 43, 33–41. [Google Scholar] [CrossRef]
- Shatskyi, I.; Kurtash, I. Strength of plate with the filled crack under multiparameter loading. Procedia Struct. Integr. 2018, 13, 1482–1487. [Google Scholar] [CrossRef]
- Panasyuk, V.V.; Sylovanyuk, V.P.; Marukha, V.I. Injection Technologies for the Repair of Damaged Concrete Structures; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Shats’kyi, I.P. Limiting equilibrium of a plate with partially healed crack. Mater. Sci. 2015, 51, 322–330. [Google Scholar] [CrossRef]
- Shatskyi, I.P.; Perepichka, V.V.; Ropyak, L.Y. On the influence of facing on strength of solids with surface defects. Metallofiz Noveishie Tekhnol. 2020, 42, 69–76. [Google Scholar] [CrossRef]
- Bulbuk, O.; Velychkovych, A.; Mazurenko, V.; Ropyak, L.; Pryhorovska, T. Analytical estimation of tooth strength, restored by direct or indirect restorations. Eng. Solid Mech. 2019, 7, 193–204. [Google Scholar] [CrossRef]
- Velychkovych, A.S.; Andrusyak, A.V.; Pryhorovska, T.O.; Ropyak, L.Y. Analytical model of oil pipeline overground transitions, laid in mountain areas. Oil Gas. Sci. Technol. 2019, 74, 65. [Google Scholar] [CrossRef] [Green Version]
- Matayev, A.; Abdiev, A.; Kydrashov, A.; Musin, A.; Khvatina, N.; Kaumetova, D. Research into technology of fastening the mine workings in the conditions of unstable masses. Min. Miner. Depos. 2021, 15, 78–86. [Google Scholar] [CrossRef]
- Bazaluk, O.; Slabyi, O.; Vekeryk, V.; Velychkovych, A.; Ropyak, L.; Lozynskyi, V. A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies 2021, 14, 3514. [Google Scholar] [CrossRef]
- Velychkovych, A.; Bedzir, O.; Shopa, V. Laboratory experimental study of contact interaction between cut shells and resilient bodies. Eng. Solid Mech. 2021, 9, 425–438. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Shopa, V.M.; Velychkovych, A.S. Development of full-strength elastic element section with open shell. Strength Mater. 2021, 53, 277–282. [Google Scholar] [CrossRef]
- Yelemessov, K.; Krupnik, L.; Bortebayev, S.; Beisenov, B.; Baskanbayeva, D.; Igbayeva, A. Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web Conf. 2020, 168, 00018. [Google Scholar] [CrossRef]
- Baskanbayeva, D.D.; Krupnik, L.A.; Yelemessov, K.K.; Bortebayev, S.A.; Igbayeva, A.E. Justification of rational parameters for manufacturing pump housings made of fibroconcrete. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2020, 5, 68–74. [Google Scholar] [CrossRef]
- Bedzir, A.A.; Shatskii, I.P.; Shopa, V.M. Nonideal contact in a composite shell structure with a deformable filler. Int. Appl. Mech. 1995, 31, 351–354. [Google Scholar] [CrossRef]
- Zaczyk, M.; Jasińska-Choromańska, D. Contact phenomena modeling in biological structures on the example of the implant-bone. Lat. Am. J. Solids Struct. 2019, 16, e172. [Google Scholar] [CrossRef] [Green Version]
- Pelekhan, B.; Dutkiewicz, M.; Shatskyi, I.; Velychkovych, A.; Rozhko, M.; Pelekhan, L. Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue. Materials 2022, 15, 2398. [Google Scholar] [CrossRef] [PubMed]
- Velychkovych, A.; Ropyak, L.; Dubei, O. Strength Analysis of a Two-Layer PETF-Concrete Column with Allowance for Contact Interaction between Layers. Adv. Mater. Sci. Eng. 2021, 2021, 4517657. [Google Scholar] [CrossRef]
- Tatsiy, R.M.; Pazen, O.Y.; Vovk, S.Y.; Ropyak, L.Y.; Pryhorovska, T.O. Numerical study on heat transfer in multilayered structures of main geometric forms made of different materials. J. Serb. Soc. Comput. Mech. 2019, 13, 36–55. [Google Scholar] [CrossRef] [Green Version]
- Pasichnyk, V.; Kryvenko, M.; Burburska, S.; Haluzynskyi, O. Design and Engineering Assurance for the Customized Implants Production Using Additive Technologies. In Design, Simulation, Manufacturing: The Innovation Exchange; Springer: Cham, Switzerland, 2021; pp. 81–94. [Google Scholar] [CrossRef]
- Izonin, I.; Tepla, T.; Danylyuk, D.; Tkachenko, R.; Duriagina, Z.; Lemishka, I. Towards an Intelligent Decision Making of Ti-based Powders Selection for Medical Personufacturing. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application, DASA-2020, Sakheer, Bahrain, 8–9 November 2020. [Google Scholar] [CrossRef]
- Perren, S.M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. J. Bone Jt. Surg. 2002, 84, 1093–1110. [Google Scholar] [CrossRef]
- Perren, S. Fracture healing: Fracture Healing Understood as the Result of a Fascinating Cascade of Physical and Biological Interactions. Part II. Acta Chir. Orthop. Et Traumatol. Cechoslov. 2015, 82, 13–21. [Google Scholar]
- Meeson, R.; Moazen, M.; Anita Sanghani-Kerai, A.; Osagie-Clouard, L.; Coathup, M.; Blunn, G. The influence of gap size on the development of fracture union with a micro external fixator. J. Mech. Behav. Biomed. Mater. 2019, 99, 161–168. [Google Scholar] [CrossRef]
- Shatskyi, I.; Velychkovych, A.; Vytvytskyi, I.; Seniushkovych, M. Analytical models of contact interaction of casing centralizers with well wall. Eng. Solid Mech. 2019, 7, 355–366. [Google Scholar] [CrossRef]
- Shatskyi, I.; Vytvytskyi, I.; Senyushkovych, M.; Velychkovych, A. Modelling and improvement of the design of hinged centralizer for casing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 564, 12073. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Xie, B.; Jing, Y.-F.; Xiang, L.-B.; Zhou, D.-P.; Tian, J. A Modified Technique for Fixation of Chronic Instability of the Distal Tibiofibular Syndesmosis Using a Wire and Button. J. Foot Ankle Surg. 2014, 53, 813–816. [Google Scholar] [CrossRef]
- Chuzhak, A.; Sulyma, V.; Ropyak, L.; Velychkovych, A.; Vytvytskyi, V. Mathematical Modelling of Destabilization Stress Factors of Stable-Elastic Fixation of Distal Trans- and Suprasyndesmotic Fibular Fractures. J. Healthc. Eng. 2021, 2021, 6607364. [Google Scholar] [CrossRef]
- Liao, B.; Sun, J.; Xu, C.; Xia, R.; Li, W.; Lu, D.; Jin, Z. A mechanical study of personalised Ti6Al4V tibial fracture fixation plates with grooved surface by finite element analysis. Biosurf. Biotribol. 2021, 7, 142–153. [Google Scholar] [CrossRef]
- Wang, S.P.; Lin, K.J.; Hsu, C.E.; Chen, C.P.; Shih, C.M.; Lin, K.P. Biomechanical Comparison of a Novel Implant and Commercial Fixation Devices for AO/OTA 43-C1 Type Distal Tibial Fracture. Appl. Sci. 2021, 11, 4395. [Google Scholar] [CrossRef]
- Drátovská, V.; Sedláček, R.; Padovec, Z.; Růžička, P.; Kratochvíl, A. The Mechanical Properties and Fatigue Prediction of a New Generation of Osteosynthesis Devices. Stroj. Časopis—J. Mech. Eng. 2021, 71, 101–108. [Google Scholar] [CrossRef]
- Chuzhak, A. The use of the combined stable-elastic fixation for unstable injuries of the ankle joint in trans-syndesmotic fractures of the tibia. Travma 2021, 22, 43–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaluk, O.; Chuzhak, A.; Sulyma, V.; Velychkovych, A.; Ropyak, L.; Vytvytskyi, V.; Mykhailiuk, V.; Lozynskyi, V. Determining the Tightrope Tightening Force for Effective Fixation of the Tibiofibular Syndesmosis during Osteomeatal Synthesis of Fibula Injuries. Appl. Sci. 2022, 12, 4903. https://doi.org/10.3390/app12104903
Bazaluk O, Chuzhak A, Sulyma V, Velychkovych A, Ropyak L, Vytvytskyi V, Mykhailiuk V, Lozynskyi V. Determining the Tightrope Tightening Force for Effective Fixation of the Tibiofibular Syndesmosis during Osteomeatal Synthesis of Fibula Injuries. Applied Sciences. 2022; 12(10):4903. https://doi.org/10.3390/app12104903
Chicago/Turabian StyleBazaluk, Oleg, Andriy Chuzhak, Vadym Sulyma, Andrii Velychkovych, Liubomyr Ropyak, Vasyl Vytvytskyi, Vasyl Mykhailiuk, and Vasyl Lozynskyi. 2022. "Determining the Tightrope Tightening Force for Effective Fixation of the Tibiofibular Syndesmosis during Osteomeatal Synthesis of Fibula Injuries" Applied Sciences 12, no. 10: 4903. https://doi.org/10.3390/app12104903
APA StyleBazaluk, O., Chuzhak, A., Sulyma, V., Velychkovych, A., Ropyak, L., Vytvytskyi, V., Mykhailiuk, V., & Lozynskyi, V. (2022). Determining the Tightrope Tightening Force for Effective Fixation of the Tibiofibular Syndesmosis during Osteomeatal Synthesis of Fibula Injuries. Applied Sciences, 12(10), 4903. https://doi.org/10.3390/app12104903