Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement
Abstract
:1. Introduction
2. Simulation Model and Methods
2.1. Model Development
2.2. Computational Details
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
Nomenclature | |
A | Total heat transfer surface area of the heat sink (m2) |
Amp | Peak-to-peak amplitude (m) |
Av | Vibrational amplitude (Amp/2) (m) |
b | Fin spacing (m) |
cp | Constant specific heat (J/(kg K)) |
f | Vibrational frequency (Hz) |
h | Height of the fins (m) |
kfin | Thermal conductivity of the fin material (W/(m K)) |
kfluid | Thermal conductivity of the fluid (W/(m K)) |
Lfin | Length of the fins (m) |
Nu | Nusselt number of heat sink at the normal condition with fin effect |
Time-averaged Nusselt number | |
NuA | Area-averaged Nusselt number |
Nuideal | Ideal Nusselt number |
P | Hydrostatic pressure (Pa) |
Pr | Prandtl number |
Re | Reynolds number (ρUb/μ) |
T | Temperature (K) |
t | Time (s) |
tfin | Thickness of the fin (m) |
U | Inlet velocity (m/s) |
u, v, w | Velocities along the x, y, and z directions, respectively (m/s) |
x, y, z | Cartesian coordinates (m) |
Y | Displacement at any time (m) |
Greek Symbols | |
μ | Fluid viscosity (Pa.s) |
ρ | Fluid density (Kg/m3) |
τ | Cycle time (s) |
Δt | Time step (s) |
α | Thermal diffusivity of the fin material (m2/s) |
Abbreviations | |
PRRe | Percentage reduction in Reynolds number |
References
- Gururatana, S. Heat transfer augmentation for electronic cooling. Am. J. Appl. Sci. 2012, 9, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Duan, F. A review of two-phase submerged boiling in thermal management of electronic cooling. Int. J. Heat Mass Transf. 2020, 150, 119324. [Google Scholar] [CrossRef]
- He, Z.; Xi, H.; Ding, T.; Wang, J.; Li, Z. Energy efficiency optimization of an integrated heat pipe cooling system in data center based on genetic algorithm. Appl. Therm. Eng. 2021, 182, 115800. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, C.L.; Chao, S.M.; Liang, G.F. Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int. J. Heat Mass Transf. 2013, 67, 666–677. [Google Scholar] [CrossRef]
- Dey, S.; Chakrborty, D. Enhancement of convective cooling using oscillating fins. Int. Commun. Heat Mass Transf. 2009, 36, 508–512. [Google Scholar] [CrossRef]
- Ur Rehman, T.; Ali, H.M.; Saieed, A.; Pao, W.; Ali, M. Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. Int. J. Heat Mass Transf. 2018, 127, 381–393. [Google Scholar] [CrossRef]
- Ur Rehman, T.; Ali, H.M. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: An experimental investigation for electronic cooling. J. Therm. Anal. Calorim. 2020, 140, 979–990. [Google Scholar] [CrossRef]
- Leon, O.; de Mey, G.; Dick, E.; Vierendeels, J. Comparison between the standard and staggered layout for cooling fins in forced convection cooling. J. Electron. Packag. Trans. ASME 2003, 125, 442–446. [Google Scholar] [CrossRef]
- Yang, K.S.; Li, S.L.; Chen, I.Y.; Chien, K.H.; Hu, R.; Wang, C.C. An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int. J. Heat Mass Transf. 2010, 53, 5675–5681. [Google Scholar] [CrossRef]
- Leon, O.; de Mey, G.; Dick, E. Study of the optimal layout of cooling fins in forced convection cooling. Microelectron. Reliab. 2002, 42, 1101–1111. [Google Scholar] [CrossRef]
- Samadifar, M.; Toghraie, D. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl. Therm. Eng. 2018, 133, 671–681. [Google Scholar] [CrossRef]
- Cheng, J.C.; Tsay, Y.L.; Liu, C.T.; Chang, S. Heat transfer enhancement of microchannel heat sink with longitudinal vortex generators and bypass jet flow. Numer. Heat Transf. Part A Appl. 2020, 77, 807–819. [Google Scholar] [CrossRef]
- Moraveji, A.; Toghraie, D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. Int. J. Heat Mass Transf. 2017, 113, 432–443. [Google Scholar] [CrossRef]
- Léal, L.; Miscevic, M.; Lavieille, P.; Amokrane, M.; Pigache, F.; Topin, F.; Nogarède, B.; Tadrist, L. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int. J. Heat Mass Transf. 2013, 61, 505–524. [Google Scholar] [CrossRef]
- Go, J.S.; Kim, S.J.; Lim, G.; Yun, H.; Lee, J.; Song, I.; Pak, Y.E. Heat transfer enhancement using flow-induced vibration of a microfin array. Sens. Actuators A Phys. 2001, 90, 232–239. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Z.; Li, J.; Wen, K.; Tian, H. Forced convection heat transfer from a circular cylinder with a flexible fin. Int. J. Heat Mass Transf. 2019, 128, 319–334. [Google Scholar] [CrossRef]
- Mahalingam, R.; Glezer, A. Air cooled heat sinks integrated with synthetic jets. In Proceedings of the ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2002. [Google Scholar] [CrossRef]
- Krishna, S.E.B.; Pradesh, A.; Prasad, K.L.; Dist, K.; Pradesh, A.; Kartheek, G.; Dist, K.; Pradesh, A.; Dist, K.; Pradesh, A. Experimental Analysis of Jet Impingement on Aluminium Heat Sink. Int. J. Heat Mass Transf. 2018, 9, 1129–1140. [Google Scholar]
- Kwon, B.; Foulkes, T.; Yang, T.; Miljkovic, N.; King, W.P. Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 220–229. [Google Scholar] [CrossRef]
- Sansoucy, E.; Oosthuizen, P.H.; Refai-Ahmed, G. An experimental study of the enhancement of air-cooling limits for telecom/datacom heat sink applications using an impinging air jet. J. Electron. Packag. Trans. ASME 2006, 128, 166–171. [Google Scholar] [CrossRef]
- Wang, J.X.; Guo, W.; Xiong, K.; Wang, S.N. Review of aerospace-oriented spray cooling technology. Prog. Aerosp. Sci. 2020, 116, 100635. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Ling, Y.Z.; Zhang, X.S.; Wang, F.; She, X.H. Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling. Renew. Energy 2020, 154, 636–649. [Google Scholar] [CrossRef]
- Arasteh, H.; Mashayekhi, R.; Toghraie, D.; Karimipour, A.; Bahiraei, M.; Rahbari, A. Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 1045–1058. [Google Scholar] [CrossRef]
- Coşkun, T.; Çetkin, E. Heat Transfer Enhancement in a Microchannel Heat Sink: Nanofluids and/or Micro Pin Fins. Heat Transf. Eng. 2020, 41, 1818–1828. [Google Scholar] [CrossRef]
- Colangelo, G.; Favale, E.; Milanese, M.; de Risi, A.; Laforgia, D. Cooling of electronic devices: Nanofluids contribution. Appl. Therm. Eng. 2017, 127, 421–435. [Google Scholar] [CrossRef]
- Bahiraei, M.; Heshmatian, S. Electronics cooling with nanofluids: A critical review. Energy Convers. Manag. 2018, 172, 438–456. [Google Scholar] [CrossRef]
- Faircloth, J.M.; Schaetzle, W.J. Effect of vibration on heat transfer for flow normal to a cylinder. J. Heat Transfer. 1969, 91, 140–144. [Google Scholar] [CrossRef]
- Baxi, C.B.; Ramachandran, A. Effect of vibration on heat transfer from spheres. J. Heat Transfer. 1969, 91, 337–343. [Google Scholar] [CrossRef]
- Shalaby, M.A.; Elnegiry, E.A. Forced Convection Heat Transfer From Oscillating Horizontal Cylinder. Mansoura Eng. J. 2006, 28, 1–4. [Google Scholar]
- Pottebaum, T.S.; Gharib, M. Using oscillations to enhance heat transfer for a circular cylinder. Int. J. Heat Mass Transf. 2006, 49, 3190–3210. [Google Scholar] [CrossRef]
- Gau, C.; Wu, J.M.; Liang, C.Y. Heat transfer enhancement and vortex flow structure over a heated cylinder oscillating in the crossflow direction. J. Heat Transfer. 1999, 121, 789–795. [Google Scholar] [CrossRef]
- Karanth, D.; Rankin, G.W. A finite difference calculation of forced convective heat transfer from an oscillating cylinder. Int. J. Heat Mass Transf. 1994, 37, 1619–1630. [Google Scholar] [CrossRef]
- Gururatana, S.; Li, X. Heat transfer enhancement of small scale heat sinks using vibrating pin fin. Am. J. Sci. 2013, 10, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Tafti, D. Characterization of heat transfer enhancement for an oscillating flat. Int. J. Heat Mass Transf. 2019, 147, 119001. [Google Scholar] [CrossRef]
- Hussain, I.Y.; Amori, K. Theoretical and Experimental Investigation of Heat Transfer Enhancement for Hot Base Using Oscillating Fins. Iraqi J. Mech. Mater. Eng. 2015, 15, 667–685. [Google Scholar]
- Najim, R.; Wahib, J.H.; Jalil, S.M.; Ibrahim, M. Experimental Study of the Effect of Vertical Oscillation on Forced Convection Coefficient from Vertical Channel. Anbar J. Sci. Eng. 2013, 260, 1–13. Available online: https://www.researchgate.net/publication/303565440_9_Experimental_Study_of_the_Effect_of_Vertical_Oscillation_on_Forced_Convection_Heat_Transfer_Coefficient_of_Vertical_Channel (accessed on 8 February 2022).
- Roucou, R.; Zaal, J.J.M.; Jalink, J.; de Heus, R.; Rongen, R. Effect of Environmental and Testing Conditions on Board Level Vibration. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference, Las Vegas, NA, USA, 31 May–3 June 2016. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Pitarresi, J.M. Random vibration fatigue life analysis of electronic packages by analytical solutions and Taguchi method. Microelectron. Reliab. 2019, 102, 113475. [Google Scholar] [CrossRef]
- Gharaibeh, M. Reliability assessment of electronic assemblies under vibration by statistical factorial analysis approach. Solder. Surf. Mt. Technol. 2018, 30, 171–181. [Google Scholar] [CrossRef]
- Qin, S.; Li, Z.; Chen, X.; Shen, H. Comparing and modifying estimation methods of fatigue life for PCBA under random vibration loading by finite element analysis. In Proceedings of the 2015 Prognostics and System Health Management Conference, Beijing, China, 21–23 October 2015. [Google Scholar] [CrossRef]
- Xu, F.; Li, C.R.; Jiang, T.M.; Zhang, D.P. Fatigue Life Prediction for PBGA under Random Vibration Using Updated Finite Element Models. Exp. Technol. 2016, 40, 1421–1435. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.T.; Gharaibeh, M.A.; Stewart, A.J.; Pitarresi, J.M.; Anselm, M.K. Accelerated Vibration Reliability Testing of Electronic Assemblies Using Sine Dwell with Resonance Tracking. J. Electron. Packag. Trans. ASME 2018, 140, 119–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Y.; Ding, S.; Cao, Y.; Gui, X. Effect of vibration mode on detachment of low-rank coal particle from oscillating bubble. Powder Technol. 2019, 356, 880–883. [Google Scholar] [CrossRef]
- Thomas, B.P.; Pillai, S.A.; Narayanamurthy, C.S. Investigation on vibration excitation of debonded sandwich structures using time-average digital holography. Appl. Opt. 2017, 56, F7. [Google Scholar] [CrossRef] [PubMed]
- Razfar, M.R.; Behroozfar, A.; Ni, J. Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass. Precis. Eng. 2014, 38, 885–892. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622–638. [Google Scholar] [CrossRef]
- Siriwardana, J.; Jayasekara, S.; Halgamuge, S.K. Potential of air-side economizers for data center cooling: A case study for key Australian cities. Appl. Energy 2013, 104, 207–219. [Google Scholar] [CrossRef]
- Shokouhmand, H.; Abadi, S.M.A.N.R.; Jafari, A. The effect of the horizontal vibrations on natural heat transfer from an isothermal array of cylinders. Int. J. Mech. Mater. Des. 2011, 7, 313–326. [Google Scholar] [CrossRef]
- Shokouhmand, H.; Abadi, S.M.A.N.R. Finite element analysis of natural heat transfer from an isothermal array of cylinders in presence of vertical oscillations. Heat Mass Transf. Und Stoffuebertragung 2010, 46, 891–902. [Google Scholar] [CrossRef]
- Teertstra, P.; Yovanovich, M.M.; Culham, J.R. Analytical forced convection modeling of plate fin heat sinks. J. Electron. Manuf. 2000, 10, 253–261. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, D.K.; Oh, H.H. Comparison of fluid flow and thermal characteristics of plate-fin and pin-fin heat sinks subject to a parallel flow. Heat Transf. Eng. 2008, 29, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; Yang, Y.; Ding, G.; Du, X.; Hu, Z. Optimization of Microchannel Heat Sink with Rhombus Fractal-like Units for Electronic Chip Cooling. Int. J. Refrig. 2020, 116, 108–118. [Google Scholar] [CrossRef]
- Freegah, B.; Hussain, A.A.; Falih, A.H.; Towsyfyan, H. CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile: Investigation of new designs. Therm. Sci. Eng. Prog. 2020, 17, 100458. [Google Scholar] [CrossRef]
- Masip, Y.; Campo, A.; Nuñez, S.M. Experimental analysis of the thermal performance on electronic cooling by a combination of cross-flow and an impinging air jet. Appl. Therm. Eng. 2020, 167, 114779. [Google Scholar] [CrossRef]
- Moon, J.W.; Kim, S.Y. Frequency-dependent heat transfer enhancement from rectangular heated block array in a pulsating channel flow. Int. J. Heat Mass Transf. 2005, 48, 4904–4913. [Google Scholar] [CrossRef]
- Adhikari, R.C.; Wood, D.H.; Pahlevani, M. An experimental and numerical study of forced convection heat transfer from rectangular fins at low Reynolds numbers. Int. J. Heat Mass Transf. 2020, 163, 120418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasangika, A.H.D.K.; Nasif, M.S.; Pao, W.; Al-Waked, R. Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement. Appl. Sci. 2022, 12, 4911. https://doi.org/10.3390/app12104911
Rasangika AHDK, Nasif MS, Pao W, Al-Waked R. Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement. Applied Sciences. 2022; 12(10):4911. https://doi.org/10.3390/app12104911
Chicago/Turabian StyleRasangika, Ambagaha Hewage Dona Kalpani, Mohammad Shakir Nasif, William Pao, and Rafat Al-Waked. 2022. "Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement" Applied Sciences 12, no. 10: 4911. https://doi.org/10.3390/app12104911
APA StyleRasangika, A. H. D. K., Nasif, M. S., Pao, W., & Al-Waked, R. (2022). Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement. Applied Sciences, 12(10), 4911. https://doi.org/10.3390/app12104911