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Abstract: The current article explains the 3-D MHD fluid flow under the impact of a magnetic field
with an inclined angle. The porous sheet is embedded in the flow of a fluid to yield the better
results of the problem. The governing PDEs are mapped using various transformations to convert in
the form of ODEs. The yielded ODEs momentum equation is examined analytically to derive the
mass transpiration and then it is used in the energy equation and solved exactly by using various
controlling parameters. In the case of multiple solutions, the closed-form exact solutions of highly
non-linear differential equations of the flow are presented as viscoelastic fluid, which is classified as
two classes, namely the second order liquid and Walters’ liquid B fluid. The results can be obtained
by using graphical arrangements. The current work is utilized in many real-life applications, such as
automotive cooling systems, microelectronics, heat exchangers, and so on. At the end of the analysis,
we concluded that velocity and mass transpiration was more for Chandrasekhar’s number for both
the stretching and shrinking case.

Keywords: Walters’ liquid B; inclined MHD; similarity transformation; porous media; heat transfer;
radiation

1. Introduction

The challenges on stretching sheets are helpful for engineering and industrial ap-
plications for manufacturing plastic, polymers, and more. In the present paper we are
discussing the three-dimensional flow over a porous body on the non-Newtonian fluid
in the presence of MHD and an inclined angle. Sakiadis [1] examined the behavior of the
laminar and turbulent boundary layer flow of continuously moving solid surface and flat
surface. This work is extended by Crane [2], considering fluid with a stretching sheet, after
experiencing many challenges conducted on stretching sheet problems. Andersson [3,4]
has examined the problem with viscous flow with uniform magnetic field; this work is
properly valid for any Reynolds number. Wang [5], studied the stagnation point flow. Fang
and Zhang [6] examined the heat transfer analysis on the basis of an analytical method.
Miklavcic and Wang [7] discussed the asymmetric cases of two-dimensional flow in the
presence of a suction parameter with multiple solutions. Turkyilmazoglu et al. [8,9] worked
on Jeffrey fluid with a stagnation point. Mahabaleshwar et al. [10] examined the problems
on a stretching surface by considering MHD Newtonian hybrid nanofluid flow due to
superlinear stretching sheet. Very recently, Vishalakshi et al. [11] studied the stretching
sheet problem by using Rivlin-Ericksen fluid by using mass transpiration and thermal
communication. Mahabaleshwar et al. [12] investigated stretching sheet problems by
considering different aspects of parameters, such as the Brinkmann ratio, thermal radi-
ation, porous medium parameter, and so on. Apart from these studies, some research
was conducted on porous sheets while under the impact of magnetic parameter. Porous
medium and magnetic parameters contributed a major role in the study of stretching sheet
problems. There are many equations available to describe the porous medium. Many
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investigations conducted on porous medium occurred under the impact of a magnetic field.
Khan et al. [13] worked on the fluid flow with MHD, as well as the transfer of mass with
a porous medium. Nadeem et al. [14] worked on the numerical results of MHD Casson
nanofluid. Mahabaleshwar [15] conducted the work on magneto-convection electrically
conducting micropolar liquids. Mahabaleshwar et al. [16–18] worked on fluid flow with
heat transfer by considering different fluids using different parameters in the presence of
porous medium. Mahabaleshwar et al. [19–21] reviewed the flow of Casson fluid, couple
stress fluid, and nanofluid with heat transfer under the impact of MHD with various
parameters. See some the recent investigations on MHD and porous medium in [22–27].

Inspired by the above literatures, this current work is the study of 3-D flow with
transpiration and radiation. The novelty of the present work is to explain the three-
dimensional flow of a fluid with heat transfer under the impact of magnetic field and in
the presence of a porous medium. Resulting ODEs are obtained by changing PDEs by
using suitable variables. Analytical results can be conducted by using different controlling
parameters. Temperature equations can be examined analytically and exhibit in gamma
functions. Results can be obtained with the help of different physical parameters. The
results of skin friction and Nusselt number is also discussed. The present work contains
many industrial applications as well as its argument with the work of Vishalakshi et al. [28].

2. Problem Statement and Solution

A 3-D fluid flow was named Walter’s liquid B, due to a porous sheet with inclined
angle, transpiration, and thermal radiation. Fluid flow moved towards the x-axis and y-axis
and was placed normally to it. Let σ indicate electrical conductivity, assuming the flow of a
fluid, along with strength, B0. A porous medium was placed inside the flow of a fluid and
schematically the present flow was indicated in Figure 1.
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Using these assumptions, the modelled governing equations are defined as follows [29–31]

ux + vy + wz = 0, (1)

uux + vuy + wuz = νuzz −
(

ν

k1
+

σB0
2

ρ
sin2(τ)

)
u

−k{uuxzz + wuzzz − (uxuzz + uzwzz + 2uzuxz + 2wzuzz)}
(2)
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uvx + vvy + wvz = νvzz −
(

ν

k1
+

σB0
2

ρ
sin2(τ)

)
v

−k{vvxzz + wvzzz − (vxvzz + vzwzz + 2vzvxz + 2wzvzz)}
(3)

uTx + vTy + wTz = αTzz −
1

ρCP
(qr)z, (4)

along with B. Cs (see [32])

u = ax + luz, v = by + lvz, w = w0, at z = 0
u→ 0, uz → 0, v→ 0, as z→ ∞

}
(5)

where, u, v, and w indicate the velocities along the x, y, and z direction, respectively, and
τ indicates the inclined angle; ν is the kinematic viscosity, l indicates slip factor, ρ is the
density, α is the thermal diffusivity, w0 indicates wall transfer velocity, and k indicates
permeability of the porous medium. Next we introduce the suitable variables as follows:

η =

√
|a|
ν

z, u = |a|x fη(η), v = |a|ygη(η), w = −
√
|a|ν( f (η) + g(η)) (6)

by using the similarity transformation Equation (1) converted as follows:

fηηη + ( f + g) fηη − fη
2 −

(
Q sin2 τ +

1
Da

)
fη+

K
[
( f + g) fηηηη +

(
fηη + gηη

)
fηη − 2

(
fη + gη

)
fηηη

]
= 0

(7)

gηηη + ( f + g)gηη − gη
2 −

(
Q sin2 τ +

1
Da

)
gη+

K
[
( f + g)gηηηη +

(
fηη + gηη

)
gηη − 2

(
fη + gη

)
gηηη

]
= 0

(8)

Therefore, B. Cs defined in Equation (5) becomes:

f (0) = VC, fη(0) = d + Γ fηη(0), g(0) = 0 (9)

fη(∞)→ 0, fηη(∞)→ 0, gη(∞)→ 0, gηη(∞)→ 0 (10)

where the d =
b
|a| indicates stretching/shrinking sheet parameter, mass flux velocity is

given by VC = − w0√
|a|ν

, viscoelasticity is K =
|a|k

ν
, Chandrasekhar’s number is to be

Q =
σB2

0
|a|ρ , Darcy number is Da−1 =

ν

k1|a|
, and Γ = l

√
|a|
ν

is the velocity slip parameter.

3. Exact Solutions of Momentum Equation

Let us consider the solution of Equations (7) and (8) are as follows:

f (η) = VC + d
(

1− exp(−λη)

λ(1 + Γλ)

)
, g(η) = d

(
1− exp(−λη)

λ(1 + Γλ)

)
. (11)

where VC indicates mass transpiration, if VC > 0 indicates suction and VC < 0 indicates injection.
By using the Equation (11) in Equations (7) and (8) to get the following resulting

equations:

2Kλ2 − 1 = 0,

(1 + Γλ)

((
Q sin2 τ +

1
Da

)
− λ

(
VC − λ + KVCλ2))− 2d

(
1 + Kλ2) = 0,

(12)
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After solving Equation (7) we get:

λ = ± 1√
2k1

,

VC =

(
Q sin2 τ +

1
Da

)
(1 + Γλ)− 2d

(
1 + Kλ2)+ λ2(1 + Γλ)

λ(1 + Kλ2)(1 + Γλ)
,

(13)

Skin friction co-officiants are also modified in the following form:

fηη(0) = gηη(0) = −
dλ

1 + Γλ
. (14)

4. Exact Solutions of Energy Equation

This problem is essentially forced into a convection problem with the following
boundary conditions:

T = Tw, at z = 0
T → T∞ as z→ ∞.

(15)

By using Rosseland’s approximation, qr is defined as follows (see
Mahabaleshwar et al. [33–35]):

qr =
−4σ∗

3k∗

(
∂T4

∂z

)
. (16)

where σ∗ is the Stefan-Boltzmann constant, k∗ is the coefficient of mean absorption, and
T is the temperature of the fluid.

The term T4 can be expanded as

T4 = T4
∞ + 4T3

∞(T − T∞) + 6T2
∞(T − T∞)2 + . . . . . . , (17)

some higher order series ignore to get the result as:

T4 = −3T4
∞ − 4T3

∞T. (18)

Using Equation (18) in Equation (16) to yield the result as:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 . (19)

By using the transformations defined in Equations (6) and (19) in Equation (4) to yield
the following result:

ωθηη(η) + Pr( f (η) + g(η))θη(η) = 0, (20)

where f (η) is given in Equation (11), we consider ω =
3N + 4

3N
, N =

−4σ∗T3
∞

3k∗κ f
, and

Pr =
κ f

µCp
.

Then the corresponding boundary conditions become:

θ(0) = 1, θ(∞)→ 0}, (21)

To derive a homogeneous equation of Equation (19) by the use of power series method.

The solution is θ(t) =
∞
∑

t=0
artm+r, where ar is the arbitrary constant and m is the constants

to be determined.
Where:

t =
2dk1Pre−λη

1 + Γλ
(22)
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On substituting t and also solving Equation (20) by using the B. Cs of Equation (21) to
yield the following results:

θ(η) = C1 + C2Γ

 2
3ω

(
1− 2K

(
Q sin2(τ) + Da−1

))
,

4dKPre−
η√

2
√

K

1 +
Γ√

2
√

K

 (23)

θ(η) =

Γ
( 2

3ω

(
1− 2K

(
Q sin2(τ) + Da−1)), 0

)
− Γ

 2
3ω

(
1− 2K

(
Q sin2(τ) + Da−1)), 4dKPre

− η√
2
√

K

1+
Γ√

2
√

K



Γ
( 2

3ω

(
1− 2K

(
Q sin2(τ) + Da−1

))
, 0
)
− Γ

 2
3ω

(
1− 2K

(
Q sin2(τ) + Da−1

))
, 4dKPr

1+
Γ√

2
√

K


(24)

5. Results and Discussion

In the current study, we emphasize the investigation on fluid flow with heat transfer
under the impact of an inclined angle, Chandrasekhar’s number transpiration, and radi-
ation. The PDEs of the problem are mapped into ODEs using suitable transformations,
then the resulting ODEs are solved analytically. Multiple solutions are used to analyse the
present study. The analytical results of the momentum and energy equation is obtained at
Equations (13) and (24), and the results of the momentum equation are obtained in terms
of mass transpiration. The solution domain λ linked with another parameters through
Equation (13). Analytical results of momentum and energy equation is, respectively, repre-
sented at Equations (13) and (24). By using graphical arrangements, the impact of different
parameters can be performed.

Figure 2a,b exhibits the impact of f (η) on η for various choices of Q for d = 1 and
d = −1, respectively, and keeping other parameters as τ = 90◦, k1 = 1 , and Da = 0.3.
Here, blue solid lines indicate the Γ = 1, and black dotted lines indicate the Γ = 0. From this
graph, it is cleared that f (η) is for values of Q for both d = 1 and d = −1. Figures 3 and 4
portray the effect of fη(η) on η for different choices of Γ and k1, respectively. Figure 3a,b
indicate the plots of fη(η) verses η for different choices of Γ for d = 1 and d = −1,
respectively, in this fη(η) less for more values of Γ for d = 1. It is opposite if d = −1, i.e.,
fη(η) is for more values of Γ for d = −1. Figure 4a,b indicate the plots of fη(η) verses η for
various values of k1 for d = 1 and d = −1, respectively, in this t is observed that fη(η) is
more for more choices of k1 for d = 1. This impact is opposite if d = −1. i.e., fη(η) less for
more values of k1 for d = −1. In this problem we express the analytical method in terms of
mass transpiration and the domain linked with other parameters through this equation.

Figure 5a,b portrays the plots of VC verses k1 for different choices of Q for d = 1 and
d = −1, respectively, and keeps the other parameters as τ = 90

◦
, Da = 0.3. Here, blue

solid lines indicate the Γ = 2 and black dotted lines indicate the Γ = 0. λ value connected
with k1 through Equation (13). In these graphs VC is for values of Q for both d = 1 and
d = −1.

Figure 6a,b demonstrated the impact of θ(η) on η for different values of Q for d = 1
and d = −1. In this θ(η) is for values of Q for both d = 1 and d = −1. Figure 7a,b
demonstrated the impact of θ(η) on η for various choices of N for d = 1 and d = −1, in
this it is observed that θ(η) is decreased for increasing the N for both d = 1 and d = −1. In
these graphs it is observed that there is little difference between d = 1 and d = −1. In these
figures, it is carefully observed that boundary value thickness is wider for the shrinking
sheet case when compared to the stretching sheet case. Boundary value thickness is the
velocity boundary layer; it is normally as the distance from the solid body.
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6. Concluding Remarks

A steady 3-D fluid flow over a porous sheet was taken to analyse the present study
under the impact of inclined magnetic field. Multiple slips are considered in the current
study to yield better results to the problem. The PDEs of the current problem were mapped
into ODEs using suitable variables. Then, analytical solutions were obtained using various
parameters. Graphical representations were achievable by using different parameters. With
the graphical arrangements, the following results can be deduced:

f (η) is for values of Q for both d = 1, and d = −1.
fη(η) less for values of Γ for d = 1. Also, it is for values of Γ for d = −1.
fη(η) increases with increased choices of k1 for d = 1, but it decreases with increasing

the values of k1 for shrinking sheet condition.
VC is for values of Q for both d = 1 and d = −1.
If τ = 0, φ = 0, Bi→ ∞ to get the results of Vishalakshi et al. [28].
If Q = β = Da−1 = R = L = τ = 0. to get the results of classical Crane [2].
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Nomenclature

a and b Stretching/shrinking sheet coefficient constant
[
s−1]

B0 Strength of the magnetic field
[
wm−2]

CP Specific heat
[
JKg−1K−1

]
d Length scale [−]
Da Darcy number [−]
Q Chandrasekhar’s number [−]
Pr Prandtl number [−]
k1 Permeability of porous medium m2

k Material constant of fluid [−]
K Viscoelasticity [−]
l Slip factor [−]
m Constants to be determined [−]
N Radiation parameter [−].
qr Heat flux

[
Wm−2

]
T Fluid temperature [K]
Tw Wall temperature [K]
T∞ For field temperature [K]
u v and w Axial velocity towards x axis

[
ms−1]

VC Mass transpiration [−]
w0 Wall transfer velocity [mg]
x, y and z Coordinates [m]
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Greek symbols
α Thermal diffusivity

[
m2s−1]

η Similarity variable [−]
Γ Parameter of the analytical solution [−]
λ Constant domain [−]
ν Kinematic viscosity

[
m2s−1]

ρ Density
[
kgm−3

]
σ Electrical conductivity

[
S m−1

]
τ Inclined angle [Rad]
θ Scaled fluid temperature [K]
∞ Away from the sheet [−]
γ0 Porosity [p · u]
Abbreviations
BCs Boundary conditions [−]
MHD Magnetohydrodynamics
ODEs Ordinary differential equations [−]
PDEs Partial differential equations [−]

References
1. Sakiadis, B.C. Boundary layer behaviour on continuous solid surfaces: I boundary layer equations for two dimensional and

axisymmetric flow. AIChE J. 1961, 7, 26–28. [CrossRef]
2. Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970, 21, 645–647. [CrossRef]
3. Andersson, H.I. An exact solution of the Navier-Stokes equations for magnetohydrodynamics flow. Acta Mech. 1995, 113, 241–244.

[CrossRef]
4. Andresson, H.I. Slip flow past a stretching surface. Acta Mech. 2002, 158, 121–125. [CrossRef]
5. Wang, C.Y. Stagnation flow towards a shrinking sheet. Int. J. Non-Linear Mech. 2008, 43, 377–382. [CrossRef]
6. Fang, T.G.; Zhang, J. Thermal boundary layers over a shrinking sheet: An analytical solution. Acta Mech. 2010, 209, 325–343.

[CrossRef]
7. Miklavcic, M.; Wang, C.Y. Viscous flow due to a shrinking sheet. Q. Appl. Math. 2006, 64, 283–290. [CrossRef]
8. Turkyilmazoglu, M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching

sheet. Int. J. Therm. Sci. 2011, 50, 2264–2276. [CrossRef]
9. Turkyilmazoglu, M.; Pop, I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretch-

ing/shrinking sheet in a Jeffrey fluid. Int. J. Heat Mass Transfer. 2013, 57, 82–88. [CrossRef]
10. Mahabaleshwar, U.S.; Anusha, T.; Hatami, M. The MHD Newtonian hybrid nanofluid flow and mass transfer analysis due to

super-linear stretching sheet embedded in porous medium. Sci. Rep. 2021, 11, 22518. [CrossRef]
11. Vishalakshi, A.B.; Mahabaleshwar, U.S.; Sheikhnejad, Y. Impact of MHD and mass transpiration on Rivlin-Ericksen liquid flow

over a stretching sheet in a porous media with thermal communication. Transp. Porous Media 2022, 142, 353–381. [CrossRef]
12. Mahabaleshwar, U.S.; Vishalakshi, A.B.; Azese, M.N. The role of Brinkmann ratio on non-Newtonian fluid flow due to a porous

shrinking/stretching sheet with heat transfer. Eur. J. Mech. B/Fluids 2022, 92, 153–165. [CrossRef]
13. Nadeem, S.; Haq, R.U.I.; Akbar, N.S.; Khan, Z.H. MHD three dimensional Casson fluid flow past a porous linearly stretching

sheet. Alex. Eng. J. 2013, 52, 577–582. [CrossRef]
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