
Citation: Patel, H.; Patel, D.;

Ahluwalia, J.; Kapoor, V.;

Narasimhan, K.; Singh, H.; Kaur, H.;

Reddy, G.H.; Peruboina, S.S.; Butakov,

S. Evaluation of Survivability of the

Automatically Obfuscated Android

Malware. Appl. Sci. 2022, 12, 4969.

https://doi.org/10.3390/

app12104969

Academic Editor: Gianluca Lax

Received: 8 April 2022

Accepted: 8 May 2022

Published: 14 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Evaluation of Survivability of the Automatically Obfuscated
Android Malware
Himanshu Patel, Deep Patel, Jaspreet Ahluwalia, Vaishali Kapoor, Karthik Narasimhan, Harmanpreet Singh,
Harmanjot Kaur , Gadi Harshitha Reddy, Sai Sushma Peruboina and Sergey Butakov *

Information Systems Security and Assurance Management, Concordia University of Edmonton,
Edmonton, AB T5B 4E4, Canada; hcpatel@student.concordia.ab.ca (H.P.); dpatel6@student.concordia.ab.ca (D.P.);
jahluwal@student.concordia.ab.ca (J.A.); vkapoor@student.concordia.ab.ca (V.K.);
knarasim@student.concordia.ab.ca (K.N.); hsingh35@student.concordia.ab.ca (H.S.);
hkaur19@student.concordia.ab.ca (H.K.); greddy@student.concordia.ab.ca (G.H.R.);
speruboi@student.concordia.ab.ca (S.S.P.)
* Correspondence: sergey.butakov@concordia.ab.ca

Featured Application: Findings of the paper can be implemented in malware detection applications.

Abstract: Malware is a growing threat to all mobile platforms and hundreds of new malicious
applications are being detected every day. At the same time, the development of automated software
obfuscation techniques allows for the easy production of new malware variants even by attackers
with entry-level programming skills. Such obfuscation techniques can evade the signature-based
mechanism implemented in current antimalware technology. This paper presents the results of a
study that examined how automated obfuscation techniques affect malicious and benign applications
by two widely used malware detection approaches, namely static and dynamic analyses. The research
explored 5000 samples of malware and benign programs and evaluated the impact of automated
obfuscation on Android applications. The experimental results indicated that (1) up to 73% of the
reviewed applications “survived” the automated obfuscation; (2) automated obfuscation reduced the
detection ratio to 65–85% depending on the obfuscation method used. These findings call for a more
active use of advanced malware detection methods in commonly used antivirus platforms.

Keywords: malware; software obfuscation; static analysis; dynamic analysis; malware detection

1. Introduction

The Android platform is one of the most popular mobile device platforms, with
installation on billions of devices worldwide [1]. As the popularity of smartphones has
grown, so has the number of malware applications targeting such devices and alternative
Android application repositories that distribute such applications. Consumers typically use
anti-malware programs to protect their mobile devices, which scan apps for malicious code.
However, these products have not always been able to detect malware. Malware creators
frequently rely on code obfuscation to prevent detection. Code obfuscation [2] converts
code into a format that is more complicated to decipher, interpret and reverse engineer for
humans and computers. Such a modification does not alter the semantics of the code. Code
obfuscation may be minor or sophisticated, such as bytecode encryption or the addition of
unused code [3]. There are several commercial and open-source obfuscators available on
the market, such as Proguard, DexGuard, Obfusapk, etc. [4,5]. They provide the ability to
employ single or multiple code obfuscation strategies to the application code to prevent
the reverse engineering of code and to protect the proprietary code. However, malware
developers leverage the same tools to perform code obfuscation with the malicious code
and to inject it inside the benign application to bypass anti-malware tools. The accessibility

Appl. Sci. 2022, 12, 4969. https://doi.org/10.3390/app12104969 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104969
https://doi.org/10.3390/app12104969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6627-7393
https://orcid.org/0000-0001-6235-8858
https://doi.org/10.3390/app12104969
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104969?type=check_update&version=1

Appl. Sci. 2022, 12, 4969 2 of 18

of reverse engineering tools in conjunction with rich bytecode semantics has led to an
exponential increase in malware for all types of mobile platforms.

Consequently, substantial attempts have been made to establish strategies to identify
Android malware. Anti-malware products, based on the detection methodology used, can
be classified based on the following two broad categories: static and dynamic detection.
Static detection analyzes the application code through reverse engineering techniques
without the need to run the Android application (APK). The dynamic detection technique
analyzes the application’s run time behavior to detect potentially malicious system calls.

This project discusses (1) the effects of single and combined obfuscation techniques on
the detection capability of anti-malware products through multiple obfuscation tools, (2)
the accuracy of anti-malware products to differentiate between malicious and benign apps
after transformation, (3) the impact of time on the identification of individual items by an
obfuscated app and (4) the “survival” ratio of malware after being subjected to obfuscation.

1.1. Background
1.1.1. Android Platform

Android supports the Java language and enables developers to build an application
using the available Java libraries. The Android architecture consists of the following
five layers: application, application framework, libraries and Dalvik virtual machines,
Android runtime, and Linux kernel [6]. The Linux kernel handles the functionalities
related to storage, power, application and device drivers, network, memory, and process
management. The application developer uses the Linux kernel to perform various tasks,
ranging from process management to security. While developing an Android application,
developers make use of these services to perform the intended activities [7]. The layer that
interacts with the end user is an Application, for example, Browser, Music player, Photo
album, etc. The security and privacy concerns related to the developed application must
be overseen by the application developer while other components of the architecture are
used to enforce security settings. Structure of the Android application file is presented in
Figure 1 [8]. For example, the androidmanifest.xml file defines the permissions that can
be used by an application. This file will be explored in detail in the analysis performed in
this research.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 18

prietary code. However, malware developers leverage the same tools to perform code
obfuscation with the malicious code and to inject it inside the benign application to by-
pass anti-malware tools. The accessibility of reverse engineering tools in conjunction
with rich bytecode semantics has led to an exponential increase in malware for all types
of mobile platforms.

Consequently, substantial attempts have been made to establish strategies to identi-
fy Android malware. Anti-malware products, based on the detection methodology used,
can be classified based on the following two broad categories: static and dynamic detec-
tion. Static detection analyzes the application code through reverse engineering tech-
niques without the need to run the Android application (APK). The dynamic detection
technique analyzes the application′s run time behavior to detect potentially malicious
system calls.

This project discusses (1) the effects of single and combined obfuscation techniques
on the detection capability of anti-malware products through multiple obfuscation tools,
(2) the accuracy of anti-malware products to differentiate between malicious and benign
apps after transformation, (3) the impact of time on the identification of individual items
by an obfuscated app and (4) the ′′survival′′ ratio of malware after being subjected to ob-
fuscation.

1.1. Background
1.1.1. Android Platform

Android supports the Java language and enables developers to build an application
using the available Java libraries. The Android architecture consists of the following five
layers: application, application framework, libraries and Dalvik virtual machines, An-
droid runtime, and Linux kernel [6]. The Linux kernel handles the functionalities related
to storage, power, application and device drivers, network, memory, and process man-
agement. The application developer uses the Linux kernel to perform various tasks,
ranging from process management to security. While developing an Android applica-
tion, developers make use of these services to perform the intended activities [7]. The
layer that interacts with the end user is an Application, for example, Browser, Music
player, Photo album, etc. The security and privacy concerns related to the developed
application must be overseen by the application developer while other components of
the architecture are used to enforce security settings. Structure of the Android applica-
tion file is presented in Figure 1 [8]. For example, the androidmanifest.xml file defines
the permissions that can be used by an application. This file will be explored in detail in
the analysis performed in this research.

assets/

(asset files)

META-INF/

(signatures)

lib/

(libraries)

classes.dex

(bytecode)

res/

(resource files)

resources.arsc

(compiled resources)

androidmanifest.xml

(manifest file)

Figure 1. APK file structure.

Applications running on the Android platform can call or use an element of other
installed or running applications. This function can be achieved by essential components
such as activity, services broadcast receivers, and content providers [9]. The subclass for
each activity is written, and each activity is inherited from the activity class, making it

Appl. Sci. 2022, 12, 4969 3 of 18

the base class. Services are also considered the main component of any application, and
they run in the background while an application is in use. The components of the outlined
architecture form the Android attack surface.

An attack surface is a primary attribute used to classify if a specific target is vulnerable
to attack based on risk. An attack vector applies to the way an intruder targets a device.
In other words, a vulnerable code can be considered an attack surface. Unlike an attack
vector, an attack surface does not depend on the attacker’s actions or require a vulnerability
to exist; instead, it describes the places in the code where vulnerabilities may be present.
Additionally, a remote attack surface is one of the most common attack methodologies used
by attackers to gain local or root access to the Android terminal [10].

An example of a local attack on the platform can include changes to the permissions
specified in the androidmanifest.xml file required by the Android application. APK tem-
pering is a vulnerability that, if exploited, can be mitigated by adding an application
code-signing mechanism [11]. The Android OS allows developers to sign their applications
using a certificate provided by the company that developed the application. After an
application is signed, the certificate is used to identify the application, and during com-
munication between the application and the other applications, trust between the two is
established.

1.1.2. Malware Analysis

A malware analysis is the process of analyzing malware and studying the components
and behavior of malware. The commonly used malware analysis techniques are static and
dynamic analysis [12]. Static analysis is a process in which the analysis is performed without
running the malware, and it is also more secure when compared to dynamic analysis. In
contrast, dynamic analysis is a process of analyzing the malware by running the code, and
typically the process should be performed in a more secure/isolated environment [13].

Static analysis is a technique that involves viewing the APK file without inspecting
the impact of actual instructions. This type of analysis can verify whether the data is
malicious, present information about its functionality, and sometimes provide information
to create some uncomplicated network signature. Malware detection here is divided into
various phases such as detection, the pre-processing phase, the extraction phase, and the
feature-analysis phase [14]. The feature-extraction phase extracts the critical information by
parsing the application’s source code to form patterns for classifying malicious applications.

Dynamic Analysis: A few checks are typically run during this process, for example,
API calls, system calls, network calls, etc. This technique of detection aims to evaluate
malware in a natural environment by executing the program [12]. However, antivirus
applications rarely perform this type of in-phone analysis as it may not be in the best
interest of all parties since scans require significant amounts of memory and CPU power
while mobile devices have limits on their computational resources.

Advanced malware analysis tools may employ event generators and observe suspi-
cious behaviour to flag potentially harmful applications. For example, MEGDroid proposed
by Hayyan et al. [15] can simulate an environment that triggers malicious payloads to
express harmful behaviour. However, this analysis requires an antivirus tool to actu-
ally run the suspicious application in a sandbox and therefore cannot be implemented
on user devices. This limitation means that antivirus tools rely mostly on feature-based
static analysis which, in turn, explains the successful use of obfuscation techniques by
malware developers.

1.1.3. Obfuscation Strategies

Malware developers are locked in a constant race to avoid detection from antivirus
engines. A popular method for achieving this is obfuscation which intends to modify the
executable elements and help the APK to evade detection. Obfuscation is also employed
by application developers to ensure security against malware authors and to protect the

Appl. Sci. 2022, 12, 4969 4 of 18

application from being reverse engineered. Research has been conducted by various
authors on this topic, some of which is reviewed below.

1.2. Related Works in Obfuscated Malware Analysis

Rastogi et al. [16] evaluated the efficiency of anti-malware products for detecting
malware subjected to trivial and non-trivial obfuscations. The study proved that 10 out of
10 anti-malware products used for tests failed to detect the applications that had undergone
code obfuscation. The outcomes derived from the research on the obfuscation of malware
also showed that obfuscating malware can have a disadvantage which states that the
malware loses its malicious function, causing no damage to its victim’s system. In other
words, significant mutations in the virus body may make it less harmful or not harmful at
all. Additionally, anti-malware tools such as VirusTotal lack the capability of developing
resilience against such obfuscations as they do not always update their signature database
after a malicious variant of the application is detected. Nine days elapsed before the anti-
malware tools used in their study were able to detect, analyze, and develop signatures,
leaving substantial time in which to infect mobile devices. Out of the 10 leading anti-
malware providers, only 57% of their signatures provided code-level artifacts. The study
revealed that 43% of signature identifications did not focus on code-level artifacts and that
component names in the Android manifest were the only way to identify defects. The
study also indicated that 90 percent of signatures did not require a static bytecode review
since much of the information was contained in the classes—dex file of the application with
an Android runtime code [16].

In their study, Hammad et al. [17] discovered that an anti-malware product’s detection
ability depends both on the obfuscation methodology and the tool used for obfuscation.
The detection rate by top anti-malware products dropped by about 20% after malware was
obfuscated. The same study proved that applying a specific set of transformations, both
trivial or non-trivial, along with the use of commercial obfuscation tools, can achieve a high
anti-malware evasion rate, a more extended survival period, and less accurate signature
detection [18].

Ajiri et al. [18] also looked at the effectiveness of antivirus engines against obfuscated
Android malware. The report looked at five Android malware variants that belonged to ten
different malware families before obfuscation, and their detection ratings were used. Then,
they were compared with obfuscated Android malware by applying three obfuscation
techniques, namely string encryption, renaming, and control flow both individually and in
combination. After the individual implementation of obfuscation techniques, their detec-
tion ratio decreases significantly, and when a combination of the obfuscation techniques
was applied, the likelihood of the detection rate significantly reduced. For example, the
research analysis showed that when using a combination of three obfuscation techniques
(Control flow, Renaming, String Encryption), an average of only 23.19% samples out of the
50 malware samples (five samples each under ten families) were detected by 60+ analyz-
ers under VirusTotal. Without obfuscation, the average detection rate was much higher:
54.58%. The authors also mentioned that a further step is required for this research study to
perform a dynamic analysis of obfuscated Android malware to capture their system calls
and compare their results with system calls invoked by non-obfuscated Android malware.

Another study by Malik and Khatter [19] indicated that the detection of obfuscated
malware is insufficient with static malware analysis tools and techniques. System call
analysis is a powerful technique for malware that is highly encrypted or obfuscated with
other methods. Obfuscated malware uses the same system calls (although with different
numbers) and performs the same file and network operations during the runtime. To verify
the hypothesis, the study focused more on the behavioral characteristics of malware. They
used a trace tool for system-calls extraction and extracted 345 Android malicious APKs
that belonged to ten Android malware families. In their findings, they discovered that
typically malicious applications initiate more system calls than benign apps. The study
also identified “suspicious” system calls that were actively used by malware.

Appl. Sci. 2022, 12, 4969 5 of 18

Wu et al. [20] proposed contrastive learning to detect obfuscated malware. They tested
the approach on 8000+ malware samples achieving a 99% detection ratio and obfuscation
resilience. Unfortunately, similar to [17], the study did not indicate the success of their
method of obfuscation in terms of if the obfuscated malware was actually functional
after obfuscation.

In their work, Sihag et al. [21] looked at the ways developers of legitimate applica-
tions and developers of malware can protect their products from reverse engineering or
detection. They provided a comprehensive taxonomy of obfuscation techniques that have
been proposed in the research literature but the practical evaluation of these techniques
and their combinations were not in the scope of the review. That leaves open the question
of the applicability of various obfuscation techniques in actual complex applications. Even
though these techniques do not change the main logic of the application in theory, their
automated implementation with existing tools may actually incapacitate the applications.

All the works reviewed above indicated that obfuscation tools are readily available
for application developers and obfuscation techniques indeed significantly reduce the
malware detection ratio. Even though some experimental malware detection tools achieve
better detection rates they are still not the mainstream solutions used in the industry.
Unfortunately, the reviewed research on malware obfuscation did not focus on the question
of the intrinsic quality of automated malware obfuscation. In other words, it is not clear if
after the automated application of obfuscation techniques advanced applications such as
malwares are still functional and harmful.

The research project presented in this paper aims to study the impact of obfuscation
on the malware functionality and detection ratio. The impact of obfuscation on malware
functionality can be studied through the analysis of the installability and runability of the
obfuscated software. In other words, such an analysis would detect whether obfuscated
malware can be actually installed on an Android platform and if it can be launched
without an immediate crash. This is crucial information because automated tools perform
“blind” obfuscations that may incapacitate the malware. This research aims to answer the
following questions:

1. Can feature extraction prove helpful in identifying APKs that have been subjected to
obfuscation?

2. What is the most effective obfuscation method out of the ones being implemented?
3. Which obfuscation method produces the most installable and runnable APKs?
4. Which obfuscation method produces the most non-installable and runnable APKs?

2. Materials and Methods

The approach implemented in this study uses static and dynamic analyses in a large
sample set of original and obfuscated Android applications. The applications included in
the sample set comprise malware and benign software. To automate the research steps and
minimize human errors, Python script was used to perform automated data gathering and
data transfer between various stages of the experiment. A detailed diagram of the research
steps and the data flow between them is presented in Figure 2. The description of the steps
provided below details all the actions and obtained results.

Appl. Sci. 2022, 12, 4969 6 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

gram of the research steps and the data flow between them is presented in Figure 2. The
description of the steps provided below details all the actions and obtained results.

Figure 2. Research Methodology.

2.1. APK Gathering
Android Applications for this experiment were collected from the AndroZoo app

database. AndroZoo is a growing collection of pre-analyzed Android apps that are
sourced from several sources, including the official Google Play application market [22].
Apart from AndroZoo, the sources of applications included Google Play Store, SlideMe
App store, and Anzhi App market. These markets were included for better coverage of
applications available for the Android operating system.

For the experiment, 5000 APKs from 2013 to 2016 were selected from AndroZoo.
They were filtered by their vt_detection = [0.30+] attribute which indicates the results of
detection from Virus Total, where 0 represents benign applications and values above 30
represent applications marked as malware by 30+ anti-virus scanners.
2.2. Obfuscation

The process of performing transformations on an Android application is called ob-
fuscation. These transformations can either be in the form of a single or polymorphic
transformation. The Android ecosystem has established a categorization of obfuscation
techniques into the following two main groups: trivial and non-trivial [20].
2.2.1. Trivial Techniques

The trivial obfuscation techniques do not change the semantics of the code but can
help malware evade signature-based detection by the anti-malware products. In this ex-
periment, the following four trivial techniques were used as presented in Table 1: Align,
Re-sign, Rebuild, and Randomize Manifest [5].

Figure 2. Research Methodology.

2.1. APK Gathering

Android Applications for this experiment were collected from the AndroZoo app
database. AndroZoo is a growing collection of pre-analyzed Android apps that are sourced
from several sources, including the official Google Play application market [22]. Apart
from AndroZoo, the sources of applications included Google Play Store, SlideMe App store,
and Anzhi App market. These markets were included for better coverage of applications
available for the Android operating system.

For the experiment, 5000 APKs from 2013 to 2016 were selected from AndroZoo. They
were filtered by their vt_detection = [0.30+] attribute which indicates the results of detection
from Virus Total, where 0 represents benign applications and values above 30 represent
applications marked as malware by 30+ anti-virus scanners.

2.2. Obfuscation

The process of performing transformations on an Android application is called ob-
fuscation. These transformations can either be in the form of a single or polymorphic
transformation. The Android ecosystem has established a categorization of obfuscation
techniques into the following two main groups: trivial and non-trivial [20].

2.2.1. Trivial Techniques

The trivial obfuscation techniques do not change the semantics of the code but can help
malware evade signature-based detection by the anti-malware products. In this experiment,
the following four trivial techniques were used as presented in Table 1: Align, Re-sign,
Rebuild, and Randomize Manifest [5].

Appl. Sci. 2022, 12, 4969 7 of 18

Table 1. Trivial Obfuscation Techniques.

Method Transformations

NewAlignment Application code is realigned

NewSignature A new custom signature can be used to re-sign the application

Rebuild The application is rebuilt using the new obfuscated parameters

RandomManifest The entries in the manifest file are reordered randomly

2.2.2. Non-Trivial Techniques

In contrast to straightforward trivial techniques, non-trivial techniques may offer a
lower detection rate and greater robustness. Resources, including bytecode and other
such resources (XMLs, asset files, and external libraries), are the targets of non-trivial
obfuscation [5]. In this research, three subcategories of non-trivial obfuscation techniques,
namely Renaming, Encryption, and Code [5] were used as shown in Table 2.

Table 2. Non-Trivial Obfuscation Techniques–Rename.

Method Transformations

ClassRename Replace the package name and rename classes
FieldRename Fields are renamed

MethodRename Methods are renamed

Renaming: Source code, and subsequently Java bytecode, should have meaningful
names for identifiers such as variables, functions, and so on to enhance code maintainability.
The exact names, however, may expose code functionality. In addition, as the package
name uniquely identifies an application, a change to the package name essentially means
that the app is being placed into the Android ecosystem as a new application. Thus, each
identifier is renamed into an obscure and meaningless one, using the renaming technique
presented in Table 2 [5].

Encryption: In an APK file, the developer can specify what resources to request at
each run time. For example, a string or a native Android library might be run. With
the encryption obfuscation, both the code and resources can be encrypted in application
packages and decrypted during the execution phase by applying secret keys of obfuscation
tools. Table 3 shows details of the encryption methods used in the experiments [20,21].

Table 3. Non-Trivial Obfuscation Techniques–Encryption.

Method Transformations

AssetEncryption Asset files are encrypted

ConstStringEncryption Constant strings in the overall code are encrypted

LibEncryption Native libraries are encrypted

ResStringEncryption Resource strings inside the code are encrypted

Code: Code obfuscation techniques involve modifications to the source code that
affect instructions inside the classes.dex file. Several different techniques have been devel-
oped to hide the application’s behavior, each addressing a different aspect of the code [5].
Techniques used in the experiment are described in Table 4.

Appl. Sci. 2022, 12, 4969 8 of 18

Table 4. Non-Trivial Obfuscation Techniques–Code.

Method Transformations

Reflection
Existing code is examined to find invocations of the main application

method while ignoring the Android framework calls. This method can be
called using the Reflection APIs.

AdvancedReflection Using reflection, dangerous APIs from the Android Framework
are invoked.

ArithmeticBranch
Uses the junk code insertion technique. A branch instruction is crafted in
such a way that the branch is never taken, which results in a piece of junk

code composed of arithmetic computations and branch instructions.

CallIndirection Adds new methods that invoke the original ones. Modifies the
control-flow graph without touching the code semantics.

DebugRemoval The debug meta-data are removed.

GoTo
The software will insert a GoTo into the method and a second GoTo after

the first GoTo at the end of the method so that the control-flow graph
is modified.

MethodOverload This exploits the Java overloading feature to return different methods
with the same name but with varying arguments.

Nop Random Nop (No Operations) instructions are inserted into every
method implementation.

Reorder The order of blocks changes in this technique. An inverted condition and
reordered basic blocks are created when a branch instruction is found

Table 5 outlines the six different obfuscation strategies implemented for conducting
this research. The obfuscation was performed by using the Obfuscapk tool [5].

Table 5. Obfuscation Strategies.

Obfuscation Strategy Methods

Encryption AssetEncryption, ConstStringEncryption, LibEncryption,
ResStringEncryption

Code AdvancedReflection, ArithmeticBranch, CallIndirection,
DebugRemoval, Goto, MethodOverload, Nop, Reflection, Reorder

Rename ClassRename, FieldRename, MethodRename

Low ClassRename, AssetEncryption, AdvancedReflection,
MethodOverload, Goto

Medium
ClassRename, FieldRename, ConstStringEncryption,

ResStringEncryption, AssetEncryption, AdvancedReflection,
MethodOverload, ArithmeticBranch, CallIndirection

High

ClassRename, FieldRename, MethodRename, ConstStringEncryption,
ResStringEncryption, AssetEncryption, AssetEncryption,

AdvancedReflection, MethodOverload, ArithmeticBranch,
CallIndirection, DebugRemoval

2.3. Static Analysis

In the static analysis stage, the application is decompiled to obtain the following
four features that are used to classify the application: permissions, native-permissions,
intent-priority, and sensitive functions [23]. The Android operating system provides a
control mechanism by which to restrict application permissions [24] as a security feature but
associative functions can be abused if the application wants to execute a specific function
without declaring the appropriate permission in the manifest.xml file. Permissions are
used to control applications’ functions and to manage the resources of the mobile phone.

Appl. Sci. 2022, 12, 4969 9 of 18

Given these relatively mild restrictions, the Android OS can be seen as a relatively open
environment and some malware developers may utilize this feature to hide the real purpose
of applications or embed malicious functions within normal ones for malicious purposes.
Table 6 lists permissions that can be seen as dangerous as they can be misused by application
developers to perform functions that are not declared in the application description [24].
For example, the INSTALL_PACKAGES permission may be used by a seemingly benign
application to install malware.

Table 6. Dangerous permissions.

Permission Name Permission Name

ACCESS_BACKGROUND_LOCATION [Added: API
level 1] USE_SIP [Added: API level 9]

ACCESS_COARSE_LOCATION [Added: API level 1] MODIFY_PHONE_STATE [Added: API level 1]

ACCESS_FINE_LOCATION [Added: API level 1] WRITE_CALENDAR [Added: API level 1]

CALL_PHONE [Added: API level 1] INSTALL_PACKAGES [Added: API level 1]

READ_PHONE_STATE [Added: API level 1] WRITE_CONTACTS [Added: API level 1]

READ_SMS [Added: API level 1] READ_CALENDAR [Added: API level 1]

RECEIVE_MMS [Added: API level 1] GET_ACCOUNTS [Added: API level 1]

RECEIVE_SMS [Added: API level 1] READ CONTACTS [Added: API level 1]

RECEIVE_WAP_PUSH [Added: API level 1] READ_CALL_LOG [Added: API level 16]

READ_EXTERNAL_STORAGE [Added: API level 16] WRITE_APN_SETTINGS [Added: API level 1]

ACCESS_MEDIA_LOCATION [Added: API level 29] RECORD_AUDIO [Added: API level 1]

ACTIVITY_RECOGNITION [Added: API level 29] CAMERA [Added: API level 1]

ANSWER_PHONE_CALLS [Added: API level 26] SEND_SMS [Added: API level 1]

BODY_SENSORS [Added: API level 20] WRITE_CALL_LOG [Added: API level 16]

READ_PHONE_NUMBERS [Added: API level 26] PROCESS_OUTGOING_CALLS
[Added: API level 1, Deprecated: API level 29]

Another area examined with the static analysis includes intent priority analysis. The
Manifest.xml file in an Android application defines intent-priority, which identifies the
priority of program activities [8]. For example, Application A has a higher intent-priority
value than Application B. In that case, related messages will be sent first to A. Most malware
raises the intent-priority value to ensure they see information before normal software. Static
analysis also examines function calls made by sensitive functions. As part of the static
analysis, this study analyzes how often sensitive functions are utilized by an application.
Table 6 listed the most common permissions that can be seen as dangerous during a static
analysis review.

Manual verification was also used to verify if any parameters (permissions, activities,
services) had changed while comparing the original APK to the obfuscated APK. For
instance, the manifest files of the original APK and the obfuscated APK were compared
to identify if any permissions were added or deleted in the new manifest file of the obfus-
cated application. Random APKs were selected from the dataset and the comparison was
performed between the manifest files of the original APK and the obfuscated version of the
same APK.

2.4. Dynamic Analysis
2.4.1. Automatic Dynamic Analysis

For the dynamic analysis using VirusTotal API [25], the original and obfuscated APKs
were submitted to VirusTotal and results were retrieved thereafter. The results were based
on the execution behavior analyzed by any two of the Android Sandboxes, namely R2DBox
and Droidy, used by VirusTotal. The process of submitting and retrieving results was
performed with the help of custom Python scripts to facilitate a large number of sample

Appl. Sci. 2022, 12, 4969 10 of 18

submissions and analyses. The analysis achieved the following two goals: (1) estimating the
detection ratio for the obfuscated malware and (2) evaluating the installability/“survival”
ratio of the obfuscated software as automated obfuscation may potentially damage the
functionality of the applications. Of course, automated checkups by sandboxes may provide
false-positive and false-negative results for the installability of the obfuscated software.
To address this potential issue, random sample sets of the obfuscated applications were
subjected to manual dynamic verification.

2.4.2. Manual Dynamic Analysis

For manual verification, original and obfuscated APKs were installed and executed in
the Android Studio to check if the APKs had survived the different obfuscation methods
and had been executed in the same way as the original ones or not. During the manual
execution of applications, the following parameters were captured: package names under
which apps were running and system calls APKs were calling in the original and obfuscated
APKs. For the system calls, the following characteristics were captured: system call
name, time percentage for the call, number of times the call was invoked, frequency,
and errors [26]. System calls help a malware analyst to understand the behaviour of the
application. This data extraction was performed with the help of the Strace tool in the
adb (Android debugger) shell. For the manual dynamic analysis, 74 APK samples were
randomly selected from the dataset of obfuscated and original APKs.

2.5. Data Extraction

Data extraction was embedded as a part of the static and dynamic analyses. The Quark
Framework was used to generate results in the JSON format for static analysis and in the
dynamic analysis, Excel spreadsheets were employed to record the results.

2.6. Installability Verification

The original and obfuscated applications were installed on Android emulators [27]
to check their installability and verify the number of working applications produced by
every obfuscation method. For successful execution and analysis, Anbox and Android
Studio were used for loading the applications. Python scripts were constructed based on a
methodology that was customized to the specific requirements.

The code continuously works in a loop by downloading the APKs from the AndroZoo
using API calls. Upon successfully downloading the APK file, the function “static analysis”
was executed. This function uses the Quark Framework, which performs the static analysis
and generates the report for a particular APK. A report generated by the function is stored
in the folder “Report”. After a static analysis of the APK has been completed, the APK
can then be imported into an analysis function called “dynamic analysis” that uses the
Cuckoodroid [28] to analyze and create a report.

Once the APK File was analyzed both statically and dynamically, it passed through
the Obfuscation function, producing six different obfuscated APK files using six different
Obfuscation techniques (Rename, Encryption, Code, Low, Medium, High). To accomplish
this step, a modular Python tool, Obfuscapk was used. APK files obfuscated by these
programs were again submitted for dynamic and static analysis and reporting purposes. In
addition, these files were imported into an emulator to verify whether they survived the
obfuscation. A Python module was used for the Android bridge driver. Afterward, the user
receives a CSV file showing the installed applications and those that were not installed. The
source code of the script is available at https://github.com/ddeepp109/Android-Malware-
Analysism (accessed on 1 May 2022) [29].

3. Results
3.1. Findings: Obfuscation Strategies

Table 7 shows how different types of obfuscation have a varying impact on the malware
detection ratio. The original dataset was obfuscated using Obfuscapk with varying levels

https://github.com/ddeepp109/Android-Malware-Analysism
https://github.com/ddeepp109/Android-Malware-Analysism

Appl. Sci. 2022, 12, 4969 11 of 18

of obfuscation methods as described in Table 5 in the previous section. The outcome of the
experiments indicated that the detection rate of VirusTotal for the original set of malicious
applications was 91%. This detection rate dropped to 71% on altered apps where the
Medium obfuscation strategy was used. It dropped further to 66% on obfuscated apps
when the Encryption strategy was used, and to 65% when the High obfuscation strategy
was used. It was also observed that the Low obfuscation strategy had less of an impact on
malware detection.

Table 7. Detection Ratio based on Obfuscation Strategies.

Obfuscation Technique Detection Ratio Percentage

Encryption 3498/5299 66.03%

Code 3602/5299 67.98%

Rename 3815/5299 72.00%

High 3443/5299 64.99%

Medium 3867/5299 72.99%

Low 4132/5299 77.98%

Another noticeable outcome derived in this work was that the impact of trivial and
non-trivial obfuscation techniques had almost similar detection rates. A counterintuitive
conclusion that can be derived by considering an Android APK is that an archive with a
large number of files and a malicious component can be found almost anywhere, and it
is not possible to determine which of the above-mentioned techniques should be used if
automated obfuscation is applied.

3.2. Findings: Impact of Obfuscation on Static Analysis

A random sample of 2000 applications from the benign and malicious sample sets
was selected for the static analysis. Each APK was decompiled using Quark [30] to extract
the following five features: (1) permissions requested; (2) native API calls; (3) certain
combinations of native API calls; (4) sequence of native API calls; and (5) API calls that
handle the same register. In the total 2000 APKs submitted for static analysis, Quark
detected all the malware APKs in the original files. However, the detection ratio decreased
to 82% for monomorphic obfuscation techniques while producing the lowest detection ratio
for High obfuscation of 72%, in which polymorphic obfuscation strategies had been enabled.
Table 8 shows the detection ratio of the static analysis for varying levels of obfuscation.

Table 8. Detection Ratio based on Static Analysis.

Obfuscation Method APKs Tested APKs Detected Percentage

Encryption 5299 4371 82.50%

Rename 5299 4398 83%

Code 5299 4191 79.10%

High 5299 3831 72.30%

Medium 5299 3974 75%

Low 5299 4451 84%

The manifest files were compared to determine the impact of obfuscation on the
permissions listed in the original APKs. Random APKs were selected from a dataset of
30,000 APKs to check if the permissions were added or deleted from the obfuscated file
compared to the original file. Meld [31], a static-analysis tool, was used to perform two-way
and three-way comparisons of the files. It was confirmed that all APK’s from the sample
set have the same permissions in both the original and obfuscated manifest files. However,

Appl. Sci. 2022, 12, 4969 12 of 18

in some APKs, the obfuscation impacted the number of times each permission was used.
Table 9 provides a sample of such applications.

Table 9. Comparison of permissions in the manifest file of the original APK with the obfuscated APK.

APK Permissions in the Original APK Permissions in the Obfuscated Apk

xxxxB917 23 21

xxxxD1C8 5 4

xxxx7C07 15 9

xxxx93FF 10 10

xxxxD60C 10 10

A special feature of Android since API Level 23 is dynamic permission support [32],
which allows apps to request, acquire, and revoke permissions as they run. According
to this new runtime-permission mechanism, static approaches will not be able to detect
abnormal permission requests and grants made during runtime. In addition, users may
revoke dangerous permissions after their apps are installed, which could lead to a false
positive from anti-malware software.

3.3. Findings: VirusTotal Dynamic Analysis Findings

Table 10 shows the results after the samples were uploaded to VirusTotal and after
behavioral reports were fetched from the following two VirusTotal Sandboxes: R2DBox and
Droidy. All the results are available on the supplementary website: https://sites.google.
com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls (ac-
cessed on 1 May 2022). The analysis performed using VirusTotal shows that out of all
the obfuscations, Medium and High levels of obfuscations had the highest impact on the
executability of obfuscated samples, as 70% were found to be showing signs of life–e.g.,
sandboxes produced some results. In contrast, Low obfuscations showed greater executabil-
ity as almost 77% of samples produced behavioral results. The single-technique obfuscation
strategies—Code, Rename, and Encryption—were shown to exhibit the greatest execution
ratio, with 79% of samples producing results. Thus, the ability of obfuscators to produce
different variants of a malware sample with fewer detection capabilities and good survival
ratios can act as a detrimental tool with which to bypass specific mechanisms deployed
for the detection of and protection against suspicious packages. Essentially, it means that
malicious actors with medium-level programming skills can produce malware variants at
scale with the use of widely available obfuscation tools.

Table 10. Executability of Obfuscated samples seen under VirusTotal Droidy and R2DBox results.

Samples Obfuscation Execution Ratio

5299 Encryption 79.39%

5299 Rename 79.36%

5299 Code 79.48%

5299 High 70.48%

5299 Medium 70.04%

5299 Low 77.65%

3.4. Findings: Manual Dynamic Analysis

The goal of this stage was to manually confirm the results obtained at the automated
dynamic-analysis stage. The system calls were extracted to compare the behavior of original
and obfuscated APKs, as all requests from malicious apps move through the system call
interface before being processed.

https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls
https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls

Appl. Sci. 2022, 12, 4969 13 of 18

The APKs that were not executed at all called only nine basic system calls such as read
app files, open app files, get process id, get file status, read the clock, and write operations
on the files stored in the external storage. The original and malicious APKs that survived
the obfuscation actively used process-related functions such as futex, getpid, getuid, gettid,
sigprocmask, and prctl. These APKs used sendto() and recvfrom() system calls that are
responsible for sending and receiving data from remote servers. Other heavily used system
calls that were noticed while performing the manual dynamic analysis were related to
accessing data and performing read–write operations on files stored in the external storage
and performing memory functions such as read, write, open, close, fcntl64, dup, mmap,
munmap, stat64, fstat64, etc. These malicious system calls were used by both original and
obfuscated malicious APK samples.

Table 11 indicates the executability of APK samples manually analyzed with the Strace
tool in Android Studio. For detailed results, refer to the supplementary website: https://sites.
google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls
(accessed on 1 May 2022). It shows that all obfuscation methods—High, Low, and
Medium—impacted the executability of malicious APK samples. The Medium obfus-
cation method affected the executability the most and decreased it by 15.7%. The following
two obfuscation strategies, High and Low, decreased executability by 12.8% and 10%,
respectively. Surprisingly, the High strategy had less of an impact on the survival ratio
compared to the Medium strategy. This can be explained by the relatively small sample that
underwent manual verification. All other methods had a percentage of executability that
was almost the same, i.e., near 70%. Moreover, some obfuscated APKs were successfully
executed but affected the working of the Android OS. For instance, while analyzing the
APK samples manually, it was noted that 7 % of APKs obfuscated using the High strat-
egy, 5% were obfuscated using the Rename strategy, 4% with Encryption, and Medium
obfuscated APKs froze or drastically slowed down the emulator. Furthermore, the system
calls generated by the original and obfuscation methods were also recorded to identify any
changes in their frequency. It was observed that APK samples obfuscated with High and
Medium methods generated more system calls in 9% of the APK samples as compared to
the original and other obfuscation techniques. The encryption method was intermediate
because it generated system calls more often in 7% of the APKs and least in 9% of the APKs
as compared to the original and other obfuscation methods. System calls for the remaining
majority of the APK samples were almost the same.

Table 11. Executability of APK samples checked with Strace tool in Android Studio.

Sample APKs Original
Obfuscation Methods

Code Encryption High Low Medium Rename

1 14 86% 86% 86% 86% 86% 86% 86%

2 10 100% 100% 80% 80% 80% 80% 80%

3 10 70% 60% 60% 40% 50% 40% 60%

4 10 60% 60% 60% 40% 40% 40% 60%

5 10 60% 70% 80% 40% 70% 60% 80%

6 10 70% 80% 70% 40% 50% 30% 70%

7 10 50% 60% 70% 30% 50% 50% 60%

AVG 74 70.8% 73.7% 72.3% 58% 60.8% 55.1% 70.8%

Summarizing the above, it can be stated that the manual dynamic analysis confirmed
a high survival ratio of malware after non-specific obfuscation. In turn, it confirms that ma-
licious actors with even medium-level programming skills can use obfuscators to produce
Android malware variants.

https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls
https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls

Appl. Sci. 2022, 12, 4969 14 of 18

3.5. Finding: Application Installation and Runnability

To check the “survival” ratio of applications subjected to obfuscation, they were tested
for installability and runnability. To verify the installability of the applications, seven
sample sets of applications were prepared. Sample 1 consisted of 14 randomly selected
applications and Samples 2 to 7 included 10 randomly selected applications. Samples
were relatively small due to the following two factors: (a) manual verification of the
results and (b) the need to contain potential errors in installation to a smaller population of
applications. For all the samples, the selection included benign and malicious applications.

Each sample set was subjected to six of the various obfuscation strategies described
earlier. Samples from the Sample 1 set that were obfuscated were first installed in Anbox
Application Manager using the automated script. Out of the 14 applications that were
randomly selected for every obfuscation method, 12 applications were successfully in-
stalled every time. The other two applications could not be installed. However, these
12 applications were not runnable on Anbox. The applications froze Anbox every time they
were loaded into the emulator. Additionally, these applications were manually installed in
Android Studio. All 14 applications were successfully installed and were runnable.

From samples 2–7, the obfuscated applications did not successfully install in the Anbox
application manager. The reason for this may be the higher API level that Anbox runs
on. This reason was identified because the obfuscated applications were also installed
on Android Studio with a higher- and a lower-level API machine. The applications were
successfully installed on the virtual Android device with a lower API level of 22 and were
not installed on the Android device with a higher API level of 24. It is also worthy of note
that the original applications were successfully installed in Anbox and Android Studio.
It was clear that blind obfuscation may not always work, and potential attackers would
need to pay attention to the API level/version when they prepare obfuscated malware.
Table 12 provides detailed information on the results of the installability tests for all seven
sets of applications.

The review of data obtained from the installability analysis shows that the obfuscation
strategy “Code” produced the highest number of valid applications post obfuscation with
73.71% valid applications. The “Encryption” method produced 72.28% valid applications.
The “Rename” method produced 70.85% valid applications. The “Low” method produced
60.85% valid applications. The “Medium” method produced 55.14% valid applications,
and the “High” method produced the lowest number of valid applications by producing
just 50.85% valid applications.

These results clearly indicate that trivial obfuscation strategies provide better chances for
automated obfuscation while the automated application of more sophisticated/polymorphic
obfuscation strategies may produce applications that are not actually functional. Figure 3
compares the results obtained from the static and dynamic analyses along with an in-
stallability check. It was observed that the application of multiple levels of polymorphic
obfuscation bypassed both the static and dynamic detection algorithms and at the same time
caused a greater degree of changes in the application semantics resulting in non-functional
malware APK. On the other hand, trivial and monomorphic obfuscation produced APKs
with a higher detection ratio but maintained the semantics of the APKs. Overall, the Code
obfuscation strategy produced the most optimum results with a lower detection ratio and
higher installation probability.

Appl. Sci. 2022, 12, 4969 15 of 18

Table 12. Installability of Obfuscated Applications.

APK Original
Obfuscation Methods

Code Encryption High Low Medium Rename

Sample 1 14 × 7 APK

Anbox 100% 86% 86% 86% 86% 86% 86%

Android
Studio 86% 86% 86% 86% 86% 86% 86%

VirusTotal S1 0% 93% 93% 93% 93% 93% 93%

VirusTotal S2 0% 50% 64% 71% 57% 57% 64%

Sample 2 10 × 7 APK

Anbox 100% 0% 0% 0% 0% 0% 0%

Android
Studio 100% 100% 80% 80% 80% 80% 80%

VirusTotal S1 0% 70% 50% 70% 50% 80% 70%

VirusTotal S2 80% 70% 70% 60% 60% 70% 60%

Sample 3 10 × 7 APK

Anbox 70% 0% 0% 0% 0% 0% 0%

Android
Studio 70% 60% 60% 40% 50% 40% 60%

VirusTotal S1 0% 40% 40% 20% 30% 30% 40%

VirusTotal S2 60% 50% 40% 30% 50% 40% 40%

Sample 4 10 × 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android
Studio 60% 60% 60% 40% 40% 40% 60%

VirusTotal S1 0% 60% 60% 40% 60% 30% 60%

VirusTotal S2 100% 70% 60% 50% 60% 40% 60%

Sample 5 10 × 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android
Studio 60% 70% 80% 40% 70% 60% 80%

VirusTotal S1 0% 40% 50% 20% 30% 30% 40%

VirusTotal S2 70% 50% 50% 10% 20% 40% 60%

Sample 6 10 × 7 APK

Anbox 70% 0% 0% 0% 0% 0% 0%

Android
Studio 70% 80% 70% 40% 50% 30% 70%

VirusTotal S1 0% 40% 30% 30% 40% 20% 30%

VirusTotal S2 60% 50% 50% 30% 60% 30% 40%

Sample 7 10 × 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android
Studio 50% 60% 70% 30% 50% 50% 60%

VirusTotal S1 0% 40% 40% 20% 30% 30% 40%

VirusTotal S2 60% 50% 40% 40% 60% 40% 50%

Appl. Sci. 2022, 12, 4969 16 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 18

obfuscation produced APKs with a higher detection ratio but maintained the semantics
of the APKs. Overall, the Code obfuscation strategy produced the most optimum results
with a lower detection ratio and higher installation probability.

Figure 3. Comparative analysis of Static Analysis, Dynamic Analysis, and Executability of Obfus-
cated APKs.

4. Discussion
This paper evaluated the effectiveness of static and dynamic analyses against code

obfuscation and the survival ratio of malware after varying levels of obfuscation. In the
analysis presented above, it was observed that polymorphic obfuscation techniques had
a lower detection ratio as compared to monomorphic obfuscation techniques but, on an-
other hand, an automated application of advanced obfuscation may make applications
inoperational.

Key findings of the study include the following:
(1) Regardless of the technique applied, of either a dynamic or static analysis, au-

tomated obfuscation leads to a decreased detection ratio of malware by major anti-
malware products.

(2) The results obtained from the static analysis such as permissions and native API
calls produce information that can help to detect obfuscated code. Such information can
be further used to deploy an advanced analysis such as that described in [15].

(3) In most cases, a trivial transformation, such as modifying the Android manifest
file or rebuilding applications with a new signature, was effective in bypassing detection
techniques. This, in turn, indicates that most of the current anti-virus products for the
Android platform do not employ advanced detection techniques.

(4) Despite the relatively weak functionality, dynamic system calls when combined
with other features extracted through a manual analysis produce effective results, there-
by increasing the malware detection ratio.

(5) The APKs’ executability was negatively impacted by automatically applied pol-
ymorphic obfuscation strategies but most of the applications remained installable after
such obfuscations.

Figure 3. Comparative analysis of Static Analysis, Dynamic Analysis, and Executability of Obfuscated
APKs.

4. Discussion

This paper evaluated the effectiveness of static and dynamic analyses against code
obfuscation and the survival ratio of malware after varying levels of obfuscation. In the anal-
ysis presented above, it was observed that polymorphic obfuscation techniques had a lower
detection ratio as compared to monomorphic obfuscation techniques but, on another hand,
an automated application of advanced obfuscation may make applications inoperational.

Key findings of the study include the following:
(1) Regardless of the technique applied, of either a dynamic or static analysis, automated

obfuscation leads to a decreased detection ratio of malware by major anti-malware products.
(2) The results obtained from the static analysis such as permissions and native API

calls produce information that can help to detect obfuscated code. Such information can be
further used to deploy an advanced analysis such as that described in [15].

(3) In most cases, a trivial transformation, such as modifying the Android manifest
file or rebuilding applications with a new signature, was effective in bypassing detection
techniques. This, in turn, indicates that most of the current anti-virus products for the
Android platform do not employ advanced detection techniques.

(4) Despite the relatively weak functionality, dynamic system calls when combined
with other features extracted through a manual analysis produce effective results, thereby
increasing the malware detection ratio.

(5) The APKs’ executability was negatively impacted by automatically applied poly-
morphic obfuscation strategies but most of the applications remained installable after
such obfuscations.

(6) While monomorphic obfuscation techniques exhibit strong detection resilience, a
mixture of obfuscation techniques, automated polymorphic obfuscation, exhibits an even
higher level of detection resilience.

(7) Out of all the obfuscation strategies, the automated application of Code obfuscation
proved to be most effective with a lower detection ratio and higher installation probability.

The experimental setup and results obtained in the paper show that there is a need for
an improvement in Android malware detection tools with, potentially, more of an emphasis
on dynamic analysis. Ease of access to automated obfuscation tools and techniques can be

Appl. Sci. 2022, 12, 4969 17 of 18

leveraged by sophisticated attackers or script kiddies to execute a successful malware tool
that remains undetected in cases of a targeted attack campaign.

This paper presents data and features generated by the static and dynamic analysis
methods, which can be used for future work for a deeper study of how these features
can be used to improve the performance of machine learning algorithms for malware
detection purposes.

Author Contributions: Software: H.P., D.P., H.S., H.K.; Investigation: J.A., V.K., K.N., G.H.R.,
S.S.P.; Conceptualization: S.B.; Writing—Original draft: D.P., H.P.; Writing—review and editing: all
the participants; supervision: S.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The publication of this paper is supported by the Internal Research Grant provided by
Concordia University of Edmonton.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Automation script is available on GitHub: https://github.com/
ddeepp109/Android-Malware-Analysis (accessed on 1 May 2022). Raw data from the experi-
ments are available at https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/
executability-and-system-calls (accessed on 1 May 2022).

Acknowledgments: The authors would like to acknowledge support from VIRUSTOTAL (https:
//virustotal.com accessed on 1 May 2022) for providing access to its API. The authors would like
to acknowledge support from Androzoo (https://androzoo.uni.lu/ accessed on 1 May 2022) for
providing access to benign and malicious Android applications.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statcounter Global Stats. Mobile Operating System Market Share Worldwide. May 2021. Available online: https://gs.statcounter.

com/os-market-share/mobile/worldwide (accessed on 12 June 2021).
2. Behera, C.K.; Bhaskari, D.L. Different obfuscation techniques for code protection. Procedia Comput. Sci. 2015, 70, 757–763.

[CrossRef]
3. Collberg, C.; Myles, G.R.; Huntwork, A. Sandmark—A Tool for Software Protection Research; IEEE Security & Privacy: Piscataway,

NJ, USA, 2003; Volume 1, pp. 40–49.
4. Berzinskas, L. Obfuscating Android Apps: Do You Know Your Choices for Protection? 25 January 2020. Available online:

https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe (accessed on 13 May 2021).
5. Aonzo, S.; Georgiu, G.C.; Verderame, L.; Merlo, A. Obfuscapk: An open-source black-box obfuscation tool for Android apps.

SoftwareX 2020, 11, 100403. [CrossRef]
6. Google. Android Architecture Components. 24 February 2021. Available online: https://developer.android.com/topic/libraries/

architecture (accessed on 13 May 2021).
7. Android Developers. Application Fundamentals. 23 February 2021. Available online: https://developer.android.com/guide/

components/fundamentals (accessed on 14 May 2021).
8. Google. App Manifest Overview. 20 April 2021. Available online: https://developer.android.com/guide/topics/manifest/

manifest-intro (accessed on 20 May 2021).
9. Android Developers. App Manifest Overview. 20 February 2021. Available online: https://developer.android.com/guide/

topics/manifest/manifest-intro#components (accessed on 20 May 2021).
10. Kotipall, S.R.; Imran, M. Understanding the app’s attack surface. In Hacking Android; Packt: Birmingham, UK, 2016.
11. Codemagic. Android Code Signing. 15 June 2021. Available online: https://docs.codemagic.io/code-signing/android-code-

signing/ (accessed on 23 May 2021).
12. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic Malware Analysis in the Modern Era—A State of the Art Survey. ACM

Comput. Surv. 2019, 52, 1–48. [CrossRef]
13. Yusirwan, S.; Prayudi, Y.; Riadi, I. Implementation of malware analysis using static and dynamic analysis method. Int. J. Comput.

Appl. 2015, 117, 11–15. [CrossRef]
14. Bakour, K.; Unver, H.M.; Ghanem, R. The Android Malware Static Analysis: Techniques, Limitations, and Open Challenges.

In Proceedings of the 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and
Herzegovina, 20–23 September 2018.

https://github.com/ddeepp109/Android-Malware-Analysis
https://github.com/ddeepp109/Android-Malware-Analysis
https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls
https://sites.google.com/concordia.ab.ca/evaluation-obfuscated-malware/executability-and-system-calls
https://virustotal.com
https://virustotal.com
https://androzoo.uni.lu/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
http://doi.org/10.1016/j.procs.2015.10.114
https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe
http://doi.org/10.1016/j.softx.2020.100403
https://developer.android.com/topic/libraries/architecture
https://developer.android.com/topic/libraries/architecture
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro#components
https://developer.android.com/guide/topics/manifest/manifest-intro#components
https://docs.codemagic.io/code-signing/android-code-signing/
https://docs.codemagic.io/code-signing/android-code-signing/
http://doi.org/10.1145/3329786
http://doi.org/10.5120/20557-2943

Appl. Sci. 2022, 12, 4969 18 of 18

15. Hasan, H.; Ladani, B.T.; Zamani, B. MEGDroid: A model-driven event generation framework for dynamic android malware
analysis. Inf. Softw. Technol. 2021, 135, 106569. [CrossRef]

16. Rastogi, V.; Chen, Y.; Xuxian, J. Catch Me If You Can: Evaluating Android Anti-Malware Against Transformation Attacks. IEEE
Trans. Inf. Forensics Secur. 2014, 9, 99–108. [CrossRef]

17. Hammad, M.; Garcia, J.; Malek, S. A large-scale empirical study on the effects of code obfuscations on Android apps and
anti-malware products. In Proceedings of the 40th International Conference on Software Engineering, New York, NY, USA, 27
May–3 June 2018; pp. 421–431.

18. Ajiri, V.; Butakov, S.; Zavarsky, P. Detection Efficiency of Static Analysers against obfuscated Android Malware. In Proceedings of
the IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), Baltimore, MD, USA, 25–27 May 2020.

19. Malik, S.; Khattar, K. System Call Analysis of Android Malware Families. Indian J. Sci. Technol. 2016, 9, 1–13. [CrossRef]
20. Wu, Y.; Dou, S.; Zou, D.; Yang, W.; Qiang, W.; Jin, H. Obfuscation-resilient Android Malware Analysis Based on Contrastive

Learning. arXiv 2021, arXiv:2107.03799.
21. Sihag, V.; Vardhan, M.; Singh, P. A survey of android application and malware hardening. Comput. Sci. Rev. 2021, 39, 100365.

[CrossRef]
22. Allix, K.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. AndroZoo: Collecting Millions of Android Apps for the Research Community.

In Proceedings of the IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, 14–22
May 2016.

23. Tchakounte, F.; Dayang, P. System Calls Analysis of Malwares on Android. Maejo Int. J. Sci. Technol. 2013, 2, 669–674.
24. Google. Manifest.Permission. 9 June 2021. Available online: https://developer.android.com/reference/android/Manifest.

permission (accessed on 13 June 2021).
25. Virus, T. VirusTotal API Version 3 Overview. Available online: https://developers.virustotal.com/v3.0/reference#overview

(accessed on 22 March 2021).
26. Yuan, H.; Tang, Y.; Sun, W.; Liu, L. A detection method for android application security based on TF-IDF and machine learning.

PLoS ONE 2020, 15, e0238694. [CrossRef] [PubMed]
27. Google Devloper. Run Apps on the Android Emulator. Available online: https://developer.android.com/studio/run/emulator

(accessed on 17 June 2021).
28. Idanr. CuckooDroid—Automated Android Malware Analysis. 25 July 2017. Available online: https://github.com/idanr1986/

cuckoo-droid (accessed on 22 March 2021).
29. Patel, D. Evaluation of obfuscated android malware. Available online: https://github.com/ddeepp109/Android-Malware-

Analysis (accessed on 17 June 2021).
30. Quark-Engine. Available online: https://github.com/quark-engine/quark-engine (accessed on 24 March 2021).
31. Willadsen, K. Meld. Available online: https://meldmerge.org/ (accessed on 12 January 2021).
32. Google. Request App Permissions. Google. Available online: https://developer.android.com/training/permissions/requesting

(accessed on 19 February 2020).

http://doi.org/10.1016/j.infsof.2021.106569
http://doi.org/10.1109/TIFS.2013.2290431
http://doi.org/10.17485/ijst/2016/v9i21/90273
http://doi.org/10.1016/j.cosrev.2021.100365
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developers.virustotal.com/v3.0/reference#overview
http://doi.org/10.1371/journal.pone.0238694
http://www.ncbi.nlm.nih.gov/pubmed/32915836
https://developer.android.com/studio/run/emulator
https://github.com/idanr1986/cuckoo-droid
https://github.com/idanr1986/cuckoo-droid
https://github.com/ddeepp109/Android-Malware-Analysis
https://github.com/ddeepp109/Android-Malware-Analysis
https://github.com/quark-engine/quark-engine
https://meldmerge.org/
https://developer.android.com/training/permissions/requesting

	Introduction
	Background
	Android Platform
	Malware Analysis
	Obfuscation Strategies

	Related Works in Obfuscated Malware Analysis

	Materials and Methods
	APK Gathering
	Obfuscation
	Trivial Techniques
	Non-Trivial Techniques

	Static Analysis
	Dynamic Analysis
	Automatic Dynamic Analysis
	Manual Dynamic Analysis

	Data Extraction
	Installability Verification

	Results
	Findings: Obfuscation Strategies
	Findings: Impact of Obfuscation on Static Analysis
	Findings: VirusTotal Dynamic Analysis Findings
	Findings: Manual Dynamic Analysis
	Finding: Application Installation and Runnability

	Discussion
	References

