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Abstract: Due to the differences in raw materials and production processes, the quality of the same
type of drug produced by different manufacturers is different. In drug supervision, determining
the manufacturer can help to trace drug quality issues. In this study, a method for the quick
identification of drug manufacturers based on laser-induced breakdown spectroscopy (LIBS) was
proposed for the first time. We obtained the LIBS spectra from 12 samples of three types of penicillin
(phenoxymethylpenicillin potassium tablets, amoxicillin capsules, and amoxicillin and clavulanate
potassium tablets) produced by 10 manufacturers. The LIBS characteristic lines of the three types
of penicillin were ranked by importance based on the decrease in the Gini index of random forest
(RF). Three classifiers—the linear discriminant analysis (LDA), support vector machine (SVM) and
artificial neural network (ANN)—were used to identify the different manufacturers of the three types
of penicillin. RF-ANN provided the best classification result and an accuracy of 100% in penicillin
manufacturer identification. The results show that LIBS combined with chemometrics could be used
in the identification of penicillin manufacturers, and this method has application potential in drug
quality supervision.

Keywords: laser-induced breakdown spectroscopy; qualitative analysis; chemometric methods

1. Introduction

Penicillins are an important group of antibiotics widely used in clinical applications
as antibacterial agents or bactericides for their high efficiency and low toxicity. Their
successful development has greatly improved the ability of humans to fight bacterial
infections. Various penicillins have been used in many situations [1]. Many factors can
cause quality differences for penicillin. There are many penicillin manufacturers in China,
and the same kind of penicillin produced by different manufacturers also shows quality
differences, which are caused by differences in raw materials or other factors. In order to
ensure the medicinal effects of penicillin, the safety of people and the development of the
whole pharmaceutical industry, it is necessary to accurately identify the quality of penicillin,
prevent counterfeiting and low-quality products, and ensure the uniformity of varieties
and efficacy. It is of great significance to study the identification of drug manufacturers for
drug quality control, drug inspection and drug supervision [2].

There are several techniques that can be used to detect pharmaceuticals, such as high-
performance liquid chromatography (HPLC), DNA barcoding, near-infrared spectroscopy
(NIRS) and Raman spectroscopy. HPLC is mostly used to analyze differences in medicinal
components, such as fritillaria alkaloids, and has certain advantages for fundamentally
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identifying the similarity of the pharmacological effects [3]. DNA barcoding is suitable
for large-scale species identification. Efficient and standardized operation procedures are
conducive to the construction of whole-species barcode information libraries [4]. The
sample processing for HPLC and DNA barcoding is complex and time consuming, and
both techniques are commonly performed in the laboratory [5].

NIRS is a fast technique that is well suited for the detection of pharmaceuticals [6].
Portable NIRS scanners have been used to detect drugs [7]. Scafi et al. tested a variety of
drugs to explore the potential of NIRS, which showed that NIRS can be used to identify
drugs, even if the composition differences are very small [8]. Raman spectroscopy is often
used to identify molecules in chemistry [9]. It can also be used for the rapid analysis of
genuine and counterfeit drugs [6]. This technique does not require sample preparation. De
et al. used Raman spectroscopy to distinguish genuine and fake artesunate samples [10].
The spectral signals of NIRS and Raman spectroscopy are weak, and they are easily affected
by background light [11].

Laser-induced breakdown spectroscopy (LIBS) is a technique based on atomic emission
spectroscopy [12,13], and it can be used to analyze all material states (gas, liquid and solid).
It allows for the fast, real-time, in situ, and simultaneous detection of multiple elements
and is thus widely used in areas including the detection of explosives [14,15], biomedical
analysis [16,17], heavy metal detection in soil [18,19], geological analysis [20,21], coal
quality detection [22,23] and food safety analysis [24,25].

In drug testing, scholars have performed some studies using the LIBS technique. Al-
dakheel et al. analyzed the contents of nutritional, harmful and pharmacologically active
elements in Rhatany roots, using calibration-free laser-induced breakdown spectroscopy
(CF-LIBS), and verified the values obtained using inductively coupled plasma optical
emission spectroscopy (ICP-OES). The results from the latter method agree with the LIBS
data, showing relatively high accuracy [26]. Dastgeer et al. used LIBS to qualitatively and
semi-quantitatively analyze calcium tablets. They identified Ca, Mg, Fe and Zn in the
samples, and determined the approximate content of each element using the intensity of
the respective spectral peak [27]. Doucet et al. used LIBS combined with chemometrics to
predict formulation excipients and active pharmaceutical ingredients in complex pharma-
ceutical formulations. The results show that the relative deviation of magnesium stearate
was less than 4% and that of lactose was less than 15% [28]. Wei et al. introduced learning
vector quantization (LVQ) in LIBS for the first time to differentiate Fritillaria cirrhosa from
non-Fritillaria cirrhosa. The classification accuracy was 99.17% [5]. Wang et al. used LIBS
and the hyperspectral technique combined with partial least squares discriminant analysis
(PLS-DA) to determine the species, origins and ages of ginseng samples. The classification
accuracy was above 93%, 94% and 99%, respectively [29]. Zhang et al. applied LIBS with
principal component analysis (PCA), linear discriminant analysis (LDA) and support vector
machine (SVM) to the spectral analysis of ginkgo leaves at eight different locations in Xi’an.
The first 30 principal components extracted using PCA were used as new input variables
for identification with LDA and SVM. The classification accuracy was 97.50% and 96.25%,
respectively [30]. Zheng et al. used LIBS technology combined with the random forest
(RF) algorithm to perform grade classification for Dendrobium. The classification accuracy
was 96.46% [31]. However, to the best of our knowledge, there has not yet been any study
that has investigated and analyzed chemically synthesized or naturally derived drugs
using LIBS combined with machine learning. Considering penicillins as an example, we
attempted to identify the different penicillin manufacturers.

In this paper, we propose LIBS technology as a potential tool for identifying penicillin
manufacturers for the first time. A total of 12 samples of three types of penicillin (each type
produced by four manufacturers) were used in this experiment. LIBS was adopted with
feature selection and three commonly used classifiers (LDA, SVM and ANN) to identify
penicillin manufacturers. The purpose of this study was to test the feasibility of using LIBS
combined with machine learning in penicillin manufacturer identification.
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2. Materials and Methods
2.1. LIBS Experimental Setup

The schematic of the experimental setup for LIBS-based penicillin sample detection
is shown in Figure 1. We used a He–Ne laser (λ = 632.8 nm) to calibrate the optical
path. Laser pulses were generated by using a Q-switched Nd:YAG laser (λ = 1064 nm,
pulse frequency f = 1 Hz, beam diameter φ = 6 mm, pulse duration τ = 5 ns, and pulse
energy E = 40 mJ/pulse). We used three plane mirrors (M1, M2 and M3) to modulate the
propagation direction of the laser beam, and the laser beam was focused on the sample
surface by using a convex lens with a 100 mm focal length. The penicillin sample was fixed
on a three-dimensional motorized stage. The laser interacted with the sample to produce
plasma radiation, which was collected in a 600 µm-diameter optical fiber using a lens with
a 36 mm focal length. The optical fiber was connected to a dual-channel spectrometer
(AvaSpec 2048-2-USB2, Avantes, Apeldoorn, The Netherlands). The resolution of the
spectrometer was 0.2–0.3 nm. The wavelength range was 190–1100 nm. The spectrometer
was integrated with a charge-coupled device (CCD) camera. A detector was used to detect
the laser pulse and trigger the delay generator (DG535). DG535 triggered the CCD after a
preset time, and the spectral acquisition delay time was set to 1.28 µs to reduce continuous
radiation. The integration time was 2 ms. The Avasoft 7.6 software was used to control the
collection of the penicillin LIBS spectra by the spectrometer.
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2.2. Sample Preparation and Measurement of Penicillin Samples

For each of the three types of penicillin (phenoxymethylpenicillin potassium tablets,
PPT; amoxicillin capsules, AC; and amoxicillin and clavulanate potassium tablets, ACPT)
used in this experiment, four samples from different manufacturers were purchased in two
batches from Beijing Youkangtang Pharmacy Co., Ltd., Beijing, China. For both batches,
one box of penicillin was purchased from each manufacturer. The type, molecular formula
and manufacturer information of each penicillin sample are listed in Table 1. PPT is
available in the form of tablets with a single active ingredient. AC is available in the form of
capsules with only one active ingredient. ACPT is available in the form of tablets, and it is
a combination of amoxicillin and clavulanate potassium (CP). In the experiment, PPT and
ACPT tablets were placed directly on the three-dimensional motorized stage. Each tablet
was first ablated with 10 laser pulses at a single location to remove the sugar coating on its
surface. Forty LIBS spectra were then collected from each tablet. For each AC capsule, the
shell was first removed. Then, 0.5 g of the penicillin powder inside was weighed out on a
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piece of weighing paper using an electronic balance (Sartorius, BSA124S-CW, Göttingen,
Germany). It was then made into a round pellet with a diameter of φ 13 mm and a thickness
of 2 mm using a hydraulic machine (HY-12, Tianjin Tianguang Optical Instruments Co.,
Ltd., Tianjin, China) by applying 20 MPa of pressure for 5 min. The AC pellet was placed
on the three-dimensional motorized stage to collect 40 LIBS spectra from one tablet at
different positions. In a batch of samples, seven tablets from each manufacturer were
selected and their LIBS spectra were measured. These spectra were used as a training set to
establish classification models. In the other batch of samples, three tablets were selected
from each manufacturer and their spectra were measured. These spectra were used to test
the classification models.

Table 1. The type, molecular formula and manufacturer of each penicillin sample.

Type Molecular Formula Sample Number Manufacturer

PPT C16H17KN2O5S

PPT1 Chongqing Kerui Pharmaceutical (Group) Co., Ltd., Chongqing, China
PPT2 North China Pharmaceutical Group Co., Ltd., Shijiazhuang, China
PPT3 Hainan Sanye Pharmaceutical Factory Co., Ltd., Haikou, China
PPT4 Taiji Southwest Pharmaceutical Co., Ltd., Chongqing, China

AC C16H19N3O5S·3H2O

AC1 Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd.,
Baiyunshan Pharmaceutical General Factory, Guangzhou, China

AC2 Zhongnuo Pharmaceutical (Shijiazhuang) Co., Ltd.,
Shijiazhuang, China

AC3 North China Pharmaceutical Group Co., Ltd., Shijiazhuang, China

AC4 Chongqing Dikang Changjiang Pharmaceutical Co., Ltd.,
Chongqing, China

ACPT
C16H19N3O5S·3H2O

C8H8KNO5

ACPT1 Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd.,
Baiyunshan Pharmaceutical General Factory, Guangzhou, China

ACPT2 Zhuhai United Laboratories (Zhongshan) Co., Ltd., Zhuhai, China
ACPT3 Hainan Simcere Pharmaceutical Co., Ltd., Haikou, China
ACPT4 Santa (Zhangjiakou) Pharmaceutical Co., Ltd., Zhangjiakou, China

2.3. Data Analysis of Penicillin Samples
2.3.1. Spectral Selection and Data Preprocessing of Penicillin Samples

Some LIBS spectra could have been different from other spectra due to the variation of
the laser pulse energy and the heterogeneity of the sample. These abnormal spectra would
not have represented the characteristics of the sample and, if included in the construction
of a classification model, would have negatively impacted the classification accuracy of
the model. Therefore, before building the classification model, the LIBS spectral data were
preprocessed for each sample to eliminate any outliers in the raw dataset.

In this study, the LIBS spectra of each sample were inspected for their cosine similarity
to improve the classification performance in later steps. The LIBS spectra of one batch of
samples were used as the training set. Seven tablets were selected from each sample, and
forty LIBS spectra were collected for each tablet. The LIBS spectra of each sample were
treated as vectors in the multi-dimensional space, and we calculated the cosine value of
the angle between each spectrum and the mean spectrum. A larger cosine value indicated
greater similarity between the specific and mean spectra. The spectra were sorted based
on the ascending order of cosine values, and the most similar 50 percent of spectra were
selected [16]. For every two spectra, the mean spectrum was computed. In the end,
70 spectra were obtained for each sample, which were used as the training set. The LIBS
spectra of the other batch of samples were used as the test set. Three tablets were selected
from each sample, and 40 spectra were obtained for each tablet. We preprocessed the
spectra in the same way as the training set; 30 spectra were obtained for each sample in the
end, and they constituted the testing set.

In LIBS measurement, the fluctuation of the laser pulse energy can affect the stability
of the laser beam. There is a certain degree of fluctuation between the spectra, which affects
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the repeatability of the collected penicillin LIBS spectra, and it in turn affects subsequent
analysis and identification. To reduce the influence of the above fluctuation on the penicillin
LIBS spectra, it is necessary to normalize the obtained penicillin LIBS spectra. Maximum
normalization was used in this study. For each spectrum, first, we calculated the integrated
intensity of each spectral line, and then, we divided the integrated intensity of all the
spectral lines by the maximum integrated intensity among the spectral lines. Maximum
normalization can effectively reduce the fluctuation between the spectra and reduce the
difference between the same type of spectra. Maximum normalization is also a commonly
used normalization method in LIBS spectral preprocessing [32–34], but there might be a
better choice. Our purpose was not to compare the preprocessing methods, but to compare
the performance of classification algorithms.

2.3.2. Methods

Some methods have been applied to the classification and recognition of LIBS spectra,
such as LDA [35–37], SVM [38–40] and ANN [41,42]. In this study, they were used to build
models for the identification of different penicillin manufacturers. Some publications have
introduced these three algorithms, and we only provide a brief description in this section.

LDA is a classic linear discriminant analysis method [17]. It can quickly and sim-
ply handle two-label and multi-label classification problems without the requirement of
parameter optimization [5].

SVM can handle both linear and nonlinear classification by transforming the kernel
functions. The basic concept of the SVM classification method is to find the best hyper-
plane to maximize the classification interval from the point in the sample dataset to this
hyperplane, that is, to maximize the boundary between classes [16]. SVM has a variety of
kernel functions. In this study, the commonly used radial basis function (RBF) was used as
the kernel function. The penalty parameter c and the RBF kernel function parameter g were
optimized using the particle swarm optimization (PSO) algorithm.

ANN is a nonlinear classifier. The basic structure of the commonly used multi-layer
feedforward neural network, the multi-layer perceptron, includes three layers: the input
layer, where the number of neurons is equal to the number of input variables; the hidden
layer, where the number of neurons is optimized based on Equation (1); and the output
layer, where the output of the neuron represents the predicted categories. The number of
neurons in the hidden layer, l, is determined by the following equation [17]:

l =
√

n + m + α (1)

where n is the number of neurons in the input layer, a is a constant between one and ten,
and m is the number of neurons in the output layer.

3. Results and Discussion
3.1. LIBS Spectra

The mean spectrum of 70 LIBS spectra in the training set sample from each penicillin
manufacturer is shown in Figure 2. We analyzed the spectral lines of penicillin with a
wavelength of 200–900 nm and intensities greater than 500 counts. The corresponding
wavelengths of the elements or molecular bands in the penicillin LIBS spectra are listed
in Table 2. We used the National Institute of Standards and Technology (NIST) atomic
emission database to identify the elements corresponding to these spectral lines. It can
be observed from Figure 2 that the LIBS spectral intensities of AC are lower than those of
PPT and ACPT. This might be because the AC samples were prepared through powder
compression, and their density and hardness were lower than those of the PPT and ACPT
tablet samples.
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Figure 2. The mean spectrum of 70 LIBS spectra in the training set sample from each type of
penicillin manufacturer.

It can be observed from Table 1 that the main elements shared by the three types of
penicillin are C, H, O, N and S. The element of S was not detected in the LIBS spectra of the
three types of penicillin. This is mainly because the content of S is relatively low, and the
element of S is difficult to excite. There were two sources of C, H, O and N. On one hand,
they came from the penicillin samples themselves, and on the other hand, as the penicillin
LIBS experiments were performed in the air, the intensities of the spectral lines of these
elements might be partially triggered by the excitation of the air.
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Table 2. Corresponding wavelengths of the elements or molecular bands in the penicillin LIBS spectra.

Type Element Line/Band Wavelength (nm)

PPT

CN 358.0, 384.8, 385.7, 386.5, 388.0
Ca 393.1, 396.8, 420.7, 422.6, 429.9, 443.1, 732.6
Fe 404.1, 445.1, 453.2, 577.7, 579.6, 580.7, 582.8, 648.9, 714.8, 849.8, 853.8

C2
497.7, 498.5, 499.6, 500.1, 501.0, 503.2, 505.9, 516.8, 518.7, 520.6, 522.0, 550.9,

553.9, 558.5
Na 588.9
O 611.3, 615.8, 645.8, 671.8, 691.0, 693.6, 720.2, 777.4, 844.7
H 656.2
N 742.3, 744.2, 746.8, 818.8, 821.6, 822.3, 824.2, 862.9, 865.6, 868.0
K 766.4, 769.9

AC

C 247.8
Mg 279.1, 279.7, 284.7
CN 358.0, 384.8, 385.7, 386.5, 388.0, 414.5, 416.2, 417.6, 419.1
Ca 393.1, 396.8, 420.7, 422.6
C2 497.7, 498.5, 499.6, 500.1, 501.0, 503.2, 505.9, 516.8, 518.7, 520.6, 522.0
Na 588.9
O 777.4, 844.7
H 656.2
N 742.3, 744.2, 746.8, 818.8, 821.6, 822.3, 824.2, 862.9, 868.0

ACPT

CN 358.0, 384.8, 385.7, 386.5, 388.0
Ca 393.1, 395.7, 422.6, 429.9
Fe 445.1, 453.2

C2
497.7, 498.5, 499.6, 501.0, 503.2, 505.9, 516.8, 518.7, 520.6, 522.0, 550.9, 553.9,

558.5
Na 588.9
O 691.0, 693.6, 777.4, 844.7
H 656.2
N 742.3, 744.2, 746.8, 818.8, 821.6, 822.3, 824.2, 862.9, 868.0
K 766.4, 769.9

We can see that the LIBS spectra of PPT and ACPT contain the element of K from
Figure 2, while the LIBS spectra of AC do not. K is a metallic element, which is easily
excited by lasers. The spectral lines of K in the LIBS spectra of PPT were saturated, and in
the subsequent identification of different PPT manufacturers, the spectral lines of K were
not used as the input data for the classification algorithms.

Some trace elements (Mg, Ca, Fe and Na) were also detected in the LIBS spectra of
penicillin. The element of Mg was not detected in the samples of PPT or ACPT, but it was
detected in the samples of AC. The Ca element was detected in the samples of PPT2, PPT3,
PPT4, AC1, ACPT1, ACPT2 and ACPT3, but not in other samples. The element of Fe was
detected in the samples of PPT, ACPT1, ACPT2 and ACPT3; however, it was not detected
in the samples of AC or ACPT4. The Na element was detected in the samples of PPT, AC1,
AC4 and ACPT, but not in other samples. The types and quantities of trace elements in
penicillin produced by different manufacturers are different, which is also a standard for
identifying different penicillin manufacturers.

3.2. Feature Selection

The LIBS spectra of penicillin contain a large amount of information, much of which
may not be relevant for the identification of different penicillin manufacturers. In previous
literature, it was confirmed that it is necessary to perform feature selection on LIBS spectral
data to filter interference or redundant information, to facilitate the analysis of LIBS spectral
data and improve the accuracy of spectral classification [17,43]. In this study, we evaluated
the importance of each PPT, AC and ACPT spectral line for the manufacturer identification
based on the decrease in the Gini index of RF. A significant decrease in the Gini index
indicates that the spectral line is more important for classification. The RF algorithm was
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introduced in a previous study [16]. As shown in Figure 2, there were 44 spectral peaks in
the LIBS spectra of PPT. We calculated the integrated intensities of the 44 spectral peaks
and normalized the 44 data using the maximum normalization method. The 44 normalized
data were used as the inputs of RF to obtain 44 Gini indices.

For the same type of penicillin, the spectral lines of different elements had different
effects on the identification of different penicillin manufacturers. The importance of each
spectral line for the three types of penicillin is shown in Figure 3. In the LIBS spectra of
PPT, the C2 (497.7–505.9 nm) molecular band had the highest importance weight, and the
spectral line of Na (588.9 nm) ranked second. The spectral lines of Na (588.9 nm) and Mg
(279.7 nm and 279.1 nm) have relatively high importance in the LIBS spectra of AC. In
the LIBS spectra of ACPT, the spectral lines of Na (588.9 nm) and K (766.4 nm) have great
influence for the identification of different ACPT manufacturers. In the LIBS spectra of
the three types of penicillin, the spectral line of Na (588.9 nm) has a relatively significant
impact on the manufacturer identification.
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3.3. Identification of Penicillin Manufacturers

In the manufacturer identification for each type of penicillin, the most important
spectral lines were selected as the inputs of three classifiers, LDA, SVM and ANN. The
number of selected characteristic spectral lines affects the classification accuracy of the
model. Therefore, after ranking the spectral lines based on their importance from high to
low, we selected different numbers of penicillin feature lines, from the top one to the first
twenty-five, as input data. Figure 4 shows the relationship between the test set accuracies
of the three models—RF-LDA, RF-SVM and RF-ANN—and the number of characteristic
spectral lines when these models were established using the optimal parameters. We
used a computer (model: Lenovo, R9000X 2021; CPU: AMD Ryzen 7 4800 H with Radeon
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Graphics) to deal with this particular problem. When the top n feature lines were used as
the inputs of the classifiers for modeling, the classification accuracies obtained and the test
time of one spectrum were as listed in Table 3.
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types of penicillin samples ((a) PPT, (b) AC and (c) ACPT) with different numbers of characteristic
spectral lines.

Table 3. The best classification accuracy and corresponding analysis time of each model.

Type Model Top n Feature Lines Test Time (s) CCR

PPT
LDA 10 0.0017 100%
SVM 9 0.0036 100%
ANN 2 0.0049 100%

AC
LDA 4 0.0015 97.50%
SVM 16 0.0047 98.33%
ANN 6 0.0054 100%

ACPT
LDA 23 0.0021 99.17%
SVM 15 0.0045 100%
ANN 4 0.0051 100%

Figure 4a shows the test set classification accuracies of the PPT manufacturer identifi-
cation using the three models—RF-LDA, RF-SVM and RF-ANN—with different numbers
of characteristic spectral lines. The classification accuracy of the RF-LDA model reached
100% with the top ten important characteristic spectral lines. When inputting the top nine
important characteristic spectral lines and using the RF-SVM model (c = 0.1, g = 19.4909),
the classification accuracy was 100%. The classification accuracy of the RF-ANN model
(l = 4) was 100% when using the top two important characteristic spectral lines. The LIBS
spectra of four different PPT manufacturers were correctly classified. The RF-ANN model
provided an excellent classification result when using the top two important characteristic
spectral lines. It can be seen from Figure 3a that the order of the important weights of
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the first two important characteristic variables is C2 (497.7–505.9 nm) > Na (588.9 nm). C2
emission was principally fragmented directly from the samples. The molecular structure of
PPT contained some carbon–carbon bonds (C-C) and carbon–carbon double bonds (C=C).
After the high-energy laser interacted with the samples, some molecular fragments were
excited, and C2 mainly came from these molecular fragments [44]. The element of Na
came from the sodium citrate (C6H5Na3O7), which could be used as an antioxidant, in the
prescription of PPT [45].

For AC manufacturer identification, Figure 4b shows that, when inputting the top
four important characteristic spectral lines and using RF-LDA to build the model, the
classification accuracy reached 97.50%. Three LIBS spectra of AC3 were misclassified into
AC2. It can also be seen from Figure 2 that the LIBS spectrum of AC3 was more similar to
that of AC2 compared to the spectra of AC1 and AC4. The classification accuracy of the RF-
SVM model (c = 60.1465, g = 39.7502) was 98.33% with the top 16 important characteristic
spectral lines. Two LIBS spectra of AC3 were misclassified into AC2. Compared with LDA
and SVM, the ANN classifier has higher accuracy when inputting the same number of
characteristic spectral lines. When inputting the top six important characteristic spectral
lines and using the RF-ANN (l = 13) model, the classification accuracy reached 100%,
successfully identifying different AC manufacturers. It can be seen from Figure 3b that
the order of the important weights of the first six important characteristic variables is Na
(588.9 nm) > Mg (279.7 nm) > Mg (279.1 nm) > Ca (393.1 nm) > C2 (516.8–518.7 nm) > Mg
(284.7 nm). The elements of Na and Mg came from the lubricants sodium dodecyl sulfate
(C12H25SO4Na) and magnesium stearate (C36H70MgO4), respectively, in the prescription
of AC [46]. The element of Ca might come from impurities or additives introduced by
different manufacturers during the production process for AC.

Figure 4c shows that, when inputting the top 23 important characteristic spectral
lines and using RF-LDA to build the model, the classification accuracy reached 99.17%.
One LIBS spectrum of ACPT3 was misclassified into ACPT1. It can also be seen from
Figure 2 that the LIBS spectrum of ACPT3 is more similar to that of ACPT1 than the
spectra of ACPT2 and ACPT4. The classification accuracy of the RF-SVM model (c = 7.2070,
g = 6.2123) reached 100% with the top fifteen important characteristic spectral lines. When
inputting the top four important characteristic spectral lines and using the RF-ANN (l = 10)
model, the classification accuracy reached 100%. The LIBS spectra of four different ACPT
manufacturers could be correctly classified by using the SVM and ANN models. It can
be seen from Figure 3c that the order of the important weights of the first four important
characteristic variables is Na (588.9 nm) > K (766.4 nm) > CN (384.8 nm–388.0 nm) > Ca
(422.6 nm). The elements of Na and Ca might come from impurities or additives introduced
by different manufacturers during the production process for ACPT. The element of K
came from clavulanate potassium in the prescription of ACPT [47]. The molecular band of
CN had two sources. The molecular structure of the ACPT sample was destroyed by the
high-energy laser, producing some CN fragments. In addition, CN could also be formed by
a chemical reaction between the C in the sample and the N in the atmosphere [44].

For PPT, AC and ACPT manufacturer identification, the RF-LDA model failed to
reach 100% accuracy in AC and ACPT manufacturer identification; RF-SVM failed to
achieve 100% accuracy in AC manufacturer identification; RF-ANN achieved 100% accuracy
in the manufacturer identification of PPT, AC and ACPT. LDA is more suitable for the
classification of linear data. However, the penicillin LIBS data in this study are nonlinear
data. Part of the data of the penicillin LIBS spectra fall on the support vectors of SVM.
Compared with that of ANN, the learning ability of SVM is insufficient. Through the
repeated learning and training of known information, ANN can better adjust the connection
weights of neurons, has strong robustness and fault tolerance to noise, and can fully
approximate complex nonlinear relationships. Therefore, the established model is more
suitable for nonlinear systems and unclear functional relationships. Overall, compared with
RF-LDA and RF-SVM, RF-ANN was the most suitable model for penicillin manufacturer
identification in this study.
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4. Conclusions

The study mainly focused on the feasibility of using LIBS technology combined with
chemometrics to identify different penicillin manufacturers. We analyzed the LIBS spectra
of different PPT, AC and ACP manufacturers and used the decrease in the Gini index of RF
to evaluate the important weight of each spectral line for the manufacturer identification
of three types of penicillin. In the identification of four different PPT manufacturers, the
importance weight of Na ranked second. In the identification of four different AC and
ACPT manufacturers, the importance weight of Na ranked first. This indicated that Na
played an important role in the identification of penicillin manufacturers. We used three
classification algorithms—LDA, SVM and ANN—to identify different manufacturers of
PPT, AC and ACPT, respectively. The RF-ANN model achieved 100% classification accuracy
for all three test sets, successfully accomplishing penicillin manufacturer identification.
The results show that LIBS technology combined with chemometrics could be used to
identify different penicillin manufacturers. In future work, we will test the robustness and
generalization of these classification models in the application of drug detection.
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