Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Water Activity (aw) and pH
2.2.2. The Water Holding Capacity (WHC)
2.2.3. The Water Solubility Index (WSI)
2.2.4. Instrumental Color Measurement
2.2.5. Evaluation of the Taste Profile
2.2.6. Preparation of Extracts for Antioxidant Properties and Total Polyphenol Content Analysis
2.2.7. Total Polyphenolic Compounds
2.2.8. Tannins Content
- —the tannin content in the entire volume of the controlled brew (175 mL), [g]
- (a − b)—the difference in the amount of Na2S2O3 at a concentration of 0.1 mol/L between the proper and control samples, [mL]
- V—the volume of the controlled infusion (175 mL), [mL]
- 0.01039—conversion factor.
- A—the tannin content expressed in g/100 g of powders d.m.
- X—the tannin content in the entire volume of the controlled brew (175 mL), [g]
- V—the volume of the controlled infusion (175 mL), [mL]
- V1—the initial amount of boiling water used to pour the powders (250 mL), [mL]
- m—the amount of powder weighed out to prepare the sample, based on the dry matter content (about 6 g), [g].
2.2.9. Antioxidant Properties
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of the Seed Powders
3.2. Taste Profile of Seed Powders Using an “Electronic Tongue”
3.3. Color Analysis Using the “Electronic Eye”
3.4. Content of Bioactive Compounds in Seed Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jawad, A.H.; Alkarkhi, A.F.M.; Jason, O.C.; Easa, A.M.; Nik Norulaini, N.A. Production of the lactic acid from mango peel waste–Factorial experiment. King Saud Univ. Sci. 2013, 25, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Soong, Y.-Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Chai, K.F.; Adzahan, N.M.; Karim, R.; Rukayadi, Y.; Ghazali, H.M. Fat properties and antinutrient content of rambutan (Nephelium lappaceum L.) seed during solid-state fermentation of rambutan fruit. Food Chem. 2019, 274, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Berry phenolic antioxidants—implications for human health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Legesse, M.B.; Emire, S.A. Functional and physicochemical properties of mango seed kernels and wheat flour and their blends for biscuit production. Afr. J. Food Sci. 2020, 3, 193–203. [Google Scholar]
- Zero Waste International Allince. 2018. Available online: https://zwia.org/zero-waste-definition (accessed on 23 March 2022).
- Ojha, P.; Raut, S.; Subedi, U.; Upadhaya, N. Study of Nutritional, Phytochemicals and Functional Properties of Mango Kernel Powder. J. Food Sci. Technol. 2020, 11, 32–38. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Azzatul, F.S.; Sharifudin, M.S.; Norliza, M.J.; Hasmadi, M.; Lee, J.S.; Patricia, M.; Jinap, S.; Ramlah George, M.R.; Firoz Khan, M.; et al. Functional and nutritional properties of rambutan (Nephelium lappaceum L.) seed and its industrial application: A review. Trends Food Sci Technol. 2020, 99, 367–374. [Google Scholar] [CrossRef]
- Dakare, M.A.; Danladi, A.A.; Abel, S.A.; Sunday, E.A. Effects of processing techniques on the nutritional and antinutritional contents of mango (Mangifera indica) seed kernel. World J. Young Res. 2012, 2, 55–59. [Google Scholar]
- Kumoro, A.C.; Alhanif, M.; Wardhani, D.H. A critical review on tropical fruits seeds as prospective sources of nutritional and bioactive compounds for functional foods development: A case of indonesian exotic fruits. Int. J. Food Sci. 2020, 2020, 4051475. [Google Scholar] [CrossRef]
- Dinesh, P.; Boghra, V.R.; Sharma, R.S. Effe ct of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of ghee (butter fat). Food Sci. Technol. 2020, 37, 6–10. [Google Scholar]
- Palanisamy, U.; Cheng, H.M.; Masilamani, T.; Subramaniam, T.; Ling, L.T.; Radhakrishnan, A.K. Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants. Food Chem. 2008, 109, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Flores-Gallegos, A.C.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J.A. Rambutan (Nephelium lappaceum L.): Nutritional and functional properties. Trends Food Sci. Technol. 2019, 85, 201–210. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; BelmaresCerda, R.E.; Aguilar, C.N. Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Sánchez-Quezada, V.; Campos-Vega, R.; Loarca-Piña, G. Prediction of the physicochemical and nutraceutical characteristics of ‘hass’ avocado seeds by correlating the physicochemical avocado fruit properties according to their ripening state. Plant Foods Hum. Nutr. 2021, 76, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ahmad, S. The impact of natural antioxidants on human health. In Functional Food Products and Sustainable Health; Springer: Singapore, 2020; pp. 11–24. [Google Scholar] [CrossRef]
- Sadowska, A.; Żebrowska-Krasuska, M.; Świderski, F. Przeciwutleniacze w żywności. Postępy Tech. Przetwórstwa Spożywczego 2012, 2, 98–102. [Google Scholar]
- Olędzki, R.; Hristova, A. Składniki bioaktywne w produktach funkcjonalnych i ich rola w żywieniu człowieka. Nauk. Inżynierskie I Technol. 2017, 1, 40–61. [Google Scholar]
- Skotnicka, M.; Golan, M.; Szmukała, N. Rola naturalnych przeciwutleniaczy pochodzenia roślinnego w profilaktyce nowotworowej. Ann. Acad. Med. Gedan. 2017, 47, 119–127. [Google Scholar]
- Mikołajczuk-Szczyrba, A.; Młynarczyk, I.; Misiewicz, A. Naturalne źródła flawonoidów i ich wpływ na zdrowie człowieka. Przemysł Spożywczy 2016, 1, 38–40. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Bartoszek, A. Bioaktywne fito związki w chemoprewencji przewlekłych chorób niezakaźnych—Owoce i warzywa czy suplementy diety? Żywn Nauka Technol. Jakość. 2019, 26, 5–14. [Google Scholar]
- Marfil, P.H.M.; Santos, E.M.; Telis, V.R.N. Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT-Food Sci. Technol. 2008, 41, 1642–1647. [Google Scholar] [CrossRef]
- Soysal, Y. Microwave drying characteristics of parsley. Biosyst. Eng. 2004, 89, 167–173. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtagaza, M.H. Evaluation of energy consumption in different drying methods. Energy Convers. Manag. 2011, 52, 1192–1199. [Google Scholar] [CrossRef]
- Nireesha, G.R.; Divya, L.; Sowmya, C.; Venkateshan, N.; Niranjan Babu, M.; Lavakumar Annales Academiae Medicae Gedanensis, V. Lyophilization: Freeze drying—An review. Int. J. Nov. Trends Pharm. Sci. 2013, 4, 87–98. [Google Scholar]
- Karam, M.C.; Petit, J.; Zimmer, D.; Djantou, E.B.; Scher, J. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdylo, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Yousf, N.; Nazir, F.; Salim, R.; Ahsan, H.; Adnan Sirwal, A. Water solubility index and water absorption index of extruded product from rice and carrot blend. J. Pharmacogn. Phytochem. 2017, 6, 2165–2168. [Google Scholar]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhao, Y.F.; Feng, X. Exergy analysis for a freeze-drying process. Appl. Therm. Eng. 2008, 28, 675–690. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Trelea, I.C.; Fonseca, F.; Passot, S. Dynamic modeling of the secondary drying stage of freeze drying reveals distinct desorption kinetics for bound water. Dry. Technol. 2016, 34, 335–345. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Appl. Sci. 2020, 10, 4706. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Rakowska, R.; Hallmann, E. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Sci. Biotechnol. 2019, 28, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.F.; Huang, Y.L. Characterization of passion fruit seed fibres—A potential fibre source. Food Chem. 2004, 85, 189–194. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (E-nose) and electronic tongue (E-tongue) in food quality-related properties determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Arudnitskaya, A.; Legin, A.; Makarychev-Mikhailov, S.; Goryacheva, O.; Vlasov, Y. Quality Monitoring of Fruit Juices Using an Electronic Tongue. Anal. Sci. 2001, 17, 309–312. [Google Scholar]
- Krzykowski, A.; Domin, M.; Dziki, D.; Kupryaniuk, K. Wpływ parametrów konwekcyjnego i sublimacyjnego suszenia owoców bzu czarnego (Sambucus nigra L.) na kinetykę procesu i barwę suszu. Zesz. Probl. Post. Nauk Roln. 2018, 593, 39–48. [Google Scholar] [CrossRef]
- Coimbra, M.A.; Nunes, C.; Cunha, P.R.; Guiné, R. Amino acid profile and Maillard compounds of sun-dried pears. Relation with the reddish brown colour of the dried fruits. Eur. Food Res. 2011, 233, 637. [Google Scholar] [CrossRef]
- Abdalla, A.E.M.; Darwish, S.M.; Ayad, E.H.E.; El-Hamahmy, R.M. Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chem. 2017, 103, 1134–1140. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Fidrianny, I.; Fikayuniar, L.; Insanu, M. Antioxidant activities of various seed extracts from four varieties of rambutan (Nephelium lappaceum) using 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) assays. Asian J. Pharm. Clin. 2015, 8, 227–231. [Google Scholar]
- Chunglok, W.; Utaipan, T.; Somchit, N.; Lertcanawanichakul, M.Y.; Sudjaroen, Y. Antioxidant and antiproliferative activities of nonedible parts of selected tropical fruit. Sains Malays. 2014, 43, 689–696. [Google Scholar]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, leaf, peel and seed of avocado fruit: A review of bioactive compounds and healthy benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Durling, N.; Catchpole, O.; Grey, J.; Webby, R.; Mitchell, K.; Foo, L.; Perry, N. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. J. Food Sci. 2012, 77, 80–88. [Google Scholar] [CrossRef]
- Krawczyk, P.; Drużyńska, B. Porównanie oznaczenia zawartości katechin w liściach zielonej i czarnej herbaty metodą wanilinową i metodą HPLC. Żywn Nauka Technol. Jakość. 2007, 5, 260–266. [Google Scholar]
- Tabasum, S.; Ahmad, S.; Akhlaq, N.; Rahman, K. Estimation of tannins in different food products. Int. J. Agric. Biol. 2001, 3, 529–530. [Google Scholar]
- Khasnabis, J.; Rai, C.; Roy, A. Determination of tann. in content by titrimetric method from different types of tea. J. Chem. Pharm. 2015, 7, 238–241. [Google Scholar]
- Atanassova, M.; Christova-Bagdassarian, V. Determination of tannins content by titrimetric method for comparison of different plant species. J. Chem. Technol. Metall. 2009, 4, 413–415. [Google Scholar]
Powders | Water Activity [aw] | WHC [g H2O/1 g of Powder] | WSI [%] | pH |
---|---|---|---|---|
MSCD | 0.21 b ± 0.002 | 1.57 a ± 0.13 | 12.6 a ± 0.08 | 6.18 ± 0.02 |
MSFD | 0.03 a ± 0.001 | 1.59 b ± 0.11 | 17.4 b ± 0.06 | 6.21 ± 0.02 |
RSCD | 0.23 B ± 0.002 | 1.29 B ± 0.16 | 9.5 A ± 0.12 | 7.02 ± 0.01 |
RSFD | 0.03 A ± 0.001 | 1.22 A ± 0.13 | 11.2 B ± 0.10 | 7.06 ± 0.02 |
Powders | L* | a* | b* |
---|---|---|---|
MSCD | 73.15 a ± 0.03 | 4.75 b ± 0.02 | 24.01 b ± 0.01 |
MSFD | 82.09 b ± 0.02 | 4.00 a ± 0.02 | 19.81 a ± 0.03 |
RSCD | 68.06 A ± 0.04 | 5.20 B ± 0.04 | 37.35 A ± 0.01 |
RSFD | 68.79 B ± 0.04 | 4.76 A ± 0.03 | 38.82 B ± 0.03 |
Powders | Total Polyphenols [mg GAE/1 g d.m.] | Tannins [g/100 g] | Antioxidant Activity [mmol Trolox/100 g d.m.] |
---|---|---|---|
MSCD | 42.92 a ± 0.47 | 0.33 a ± 0.12 | 93.40 a ± 0.62 |
MSFD | 111.67 b ± 0.29 | 0.49 b ± 0.09 | 143.85 b ± 0.15 |
RSCD | 1.18 A ± 0.12 | 2.25 B ± 0.22 | 50.96 A ± 0.14 |
RSFD | 2.69 B ± 0.10 | 1.66 A ± 0.10 | 67.60 B ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siol, M.; Sadowska, A.; Król, K.; Najman, K. Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods. Appl. Sci. 2022, 12, 4995. https://doi.org/10.3390/app12104995
Siol M, Sadowska A, Król K, Najman K. Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods. Applied Sciences. 2022; 12(10):4995. https://doi.org/10.3390/app12104995
Chicago/Turabian StyleSiol, Marta, Anna Sadowska, Katarzyna Król, and Katarzyna Najman. 2022. "Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods" Applied Sciences 12, no. 10: 4995. https://doi.org/10.3390/app12104995
APA StyleSiol, M., Sadowska, A., Król, K., & Najman, K. (2022). Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods. Applied Sciences, 12(10), 4995. https://doi.org/10.3390/app12104995