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Abstract: In recent years, object detection in remote sensing images has become a popular topic in
computer vision research. However, there are various problems in remote sensing object detection,
such as complex scenes, small objects in large fields of view, and multi-scale object in different
categories. To address these issues, we propose DFPN-YOLO, a dense feature pyramid network for
remote sensing object detection. To address difficulties in detecting small objects in large scenes,
we add a larger detection layer on top of the three detection layers of YOLOv3, and we propose
Dense-FPN, a dense feature pyramid network structure that enables all four detection layers to
combine semantic information before sampling and after sampling to improve the performance of
object detection at different scales. In addition, we add an attention module in the residual blocks of
the backbone to allow the network to quickly extract key feature information in complex scenes. The
results show that the mean average precision (mAP) of our method on the RSOD datasets reached
92%, which is 8% higher than the mAP of YOLOv3, and the mAP increased from 62.41% on YOLOv3
to 69.33% with our method on the DIOR datasets, outperforming even YOLOv4.

Keywords: remote sensing object detection; dense feature pyramid network; attention module;
improved residual block; YOLO

1. Introduction

In recent years, with the development of machine learning and deep learning, object
detection, which can be used in navigation [1], disaster warning [2], building detection [3],
and other fields, has gradually become a popular research topic in computer vision. Object
detection requires identifying and locating a specific object, such as an aircraft, a car, a
pedestrian or another object, in an image scene. Object detection is a fundamental problem
in the field of computer vision, along with typical tasks such as image classification [4],
image segmentation [5], motion estimation [6], and object tracking [7], and it has prompted
the development of a number of classical algorithms. However, it is still a difficult task
to make machines learn to detect objects in remote sensing images [8], which have the
problems of complex scenes, large scenes but small objects, and multi-scale objects [9]
in different categories, and these make remote sensing object detection suffer from the
problems of difficult detection of small objects and low accuracy of multiscale objects.

Traditional object detection method, such as the deformable parts model (DPM) [10,11],
the histogram of oriented gradients [12]-support vector machine [13] (HOG-SVM), and
the HOG-Cascade [14], are not ideal when applied directly to remote sensing object de-
tection. Although these methods perform better when detecting common objects such
as pedestrians and vehicles, because remote sensing images have complex backgrounds,
large-scale differences of objects, and small objects, traditional detection algorithms are
ineffective when detecting remote sensing objects. With the rapid development of computer
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technology and deep learning, researchers have applied convolutional neural networks
(CNNs) [15] to remote sensing object detection and achieved good results. J Redmon et al.
proposed YOLOv3, an incremental improvement [16] over previous detection methods.
Z Cui et al. proposed dense attention pyramid networks for multiscale ship detection
in SAR images [17]. W Huang et al. proposed CF2PN [18], a cross-scale feature fusion
pyramid network-based method for remote sensing object detection. D Xu et al. proposed
FE-YOLO [19], a feature-enhancement network for remote sensing object detection. Com-
pared with traditional object detection algorithms, object detection algorithms based on
CNNs are more accurate, allowing them to detect multiscale objects and small objects in
remote sensing images with high accuracy.

CNNs can extract spatial context information and have been widely used to detect
objects in remote sensing images. At present, the most common neural networks for
object detection are neural networks based on region proposal and neural networks based
on anchor box regression. Most region proposal-based neural networks are two-stage
networks that first determine the approximate object location based on the region proposal
network and then accurately predict the object class and regress to the exact bounding box.
While this step-by-step learning strategy improves the detection accuracy of these networks,
it also increases the detection time and the difficulty in achieving efficient processing, and
the training time is too long for remote sensing images with large input image sizes. Some
typical examples of such networks include R-CNN [20], Fast R-CNN [21], and Faster R-
CNN [22]. Most neural networks based on anchor box regression are one-stage networks
that treat the whole prediction process as a regression process. This simplification of the
process not only maintains the accuracy but also increases the speed; examples of such
networks include the SSD [23–25], YOLO [26–28] series, and Efficientdet [29,30]. Among
them, YOLO series networks are typical neural networks based on anchor box regression,
and several versions, such as YOLOv2 [31], YOLOv3 [16], YOLOv4 [32], and YOLOv5 [33],
have been open-sourced. Among these versions, YOLOv3, YOLOv4, and YOLOv5 achieve
a good balance between speed and accuracy when faced with the demands of traditional
object detection applications, and they can achieve both efficient processing and good
performance. However, when these methods are applied directly to remote sensing image
detection, there are various problems, such as a lower detection accuracy for objects with
large-scale differences and difficulty detecting small objects in complex scenes. Therefore,
the network results of the YOLO series for remote sensing object detection need to be
improved further to achieve better detection performance.

To address the problems of complex scenes in remote sensing images, multi-scale
objects in different categories, and large scenes with small objects, we propose DFPN-YOLO,
a dense feature pyramid network structure based on YOLO. Since the YOLO series became
more integrated after version v3, the structure changes of network were not significant.
Therefore, we use YOLOv3 as a baseline to easier compare the accuracy before and after
altering the structure of network. First, we add a spatial groupwise enhancement [34] (SGE)
attention module to the residual block [35] of the backbone to increase the efficiency of the
backbone in extracting meaningful semantic information from complex scenes; then, we
add a large detection layer to improve the accuracy in detecting small objects in remote
sensing images; and finally, we propose Dense-FPN, a dense feature pyramid network
structure that combines the semantic information of the feature layers to improve the ability
to detect objects at different scales.

The remainder of this paper is organized as follows: related work on YOLO, in
particular the framework structure of YOLOv3, is discussed in Section 2. In Section 3, our
methodology is described in detail. In Section 4, an experimental validation is presented,
introducing the datasets used as well as the relevant evaluation metrics. Finally, the
conclusions are given in Section 5.
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2. Related Work

YOLO was first proposed by Joseph Redmon et al. in 2015, and the official version has
been updated from YOLOv1 to YOLOv3. It is worth noting that YOLOv4 and YOLOv5
are not official versions. The YOLO series network directly regresses the information of a
grid cell bounding box to the final feature map, yielding three prediction values for each
bounding box: (1) the probability of the object being in the grid; (2) the coordinates of the
bounding box, and (3) the object class and its probability. For each grid cell, the predicted
values include five parameters: x, y, w, h, and cf, where x, y, w, and h denote the x and y
coordinates, height, and width of the center point of the enclosing box, respectively, and
cf denotes the confidence of the bounding box. Therefore, the loss function of the whole
network can be written as shown in Equation (1):

loss= rcoord∑s2
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In the equation, s2 represents the number of grids, B represents the number of anchors,
and γ

obj
ij represents whether the corresponding anchor box is responsible for detecting

the object. If it is responsible, γobj
ij is 1; otherwise, it is 0. Ĉj

i represents the ground truth,
which is determined by whether or not the bounding box of the grid is responsible for
predicting an object. If this is the case, Ĉj

i is 1; otherwise, it is 0. When calculating the
multi-classification loss, we regard it as multiple two-classification tasks. For each category,
the ground truth P̂j

i is 1 if the object belongs to this category; otherwise, it is 0, and the
prediction Pj

i indicates the probability that the object belongs to this category. Our approach
follows the loss function of YOLOv3, which will not be described in subsequent sections.

The backbone of YOLOv3 is Darknet53 [36], which downsamples each input image
five times, with the last three downsampled layers transmitted to the detection layer for
object detection after feature fusion. The structure of the YOLOv3 is shown in Figure 1.
For a 416 × 416 input image, the three scales of the detection layers are 13 × 13, 26 × 26,
and 52 × 52, which are responsible for detecting objects at different scales. The deep layer
contains a large amount of semantic information, while the shallow feature-mapping layer
contains a large amount of fine-grained information. Therefore, the network uses a feature
pyramid to perform feature fusion, where the downsampled 32-fold feature map is first
upsampled to the same size as the downsampled 16-fold feature map, and then, the feature
maps are cascaded together. Similarly, the same process is performed for the downsampled
16-fold feature map and the downsampled 8-fold feature map.



Appl. Sci. 2022, 12, 4997 4 of 17Appl. Sci. 2022, 12, 4997 4 of 17 
 

 
Figure 1. The structure of YOLOv3. BN in the figure represents batch normalization. 

3. Methods 
Even the YOLOv3 has a poor performance in remote sensing object detection. Be-

cause remote sensing images are characterized by complex scenes, small objects, and 
multi-scale objects in different categories, additional detection layers are necessary in re-
mote sensing object detection to extract features more efficiently without deepening the 
network. For this purpose, we propose the DFPN-YOLO. The structure of DFPN-YOLO 
is shown in Figure 2. 

 
Figure 2. The structure of DFPN-YOLO. BN in the figure represents batch normalization. 

Figure 1. The structure of YOLOv3. BN in the figure represents batch normalization.

3. Methods

Even the YOLOv3 has a poor performance in remote sensing object detection. Because
remote sensing images are characterized by complex scenes, small objects, and multi-scale
objects in different categories, additional detection layers are necessary in remote sensing
object detection to extract features more efficiently without deepening the network. For this
purpose, we propose the DFPN-YOLO. The structure of DFPN-YOLO is shown in Figure 2.
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The specific methods are as follows: first an attention module is added to the residual
block of the backbone to allow the network to more effectively extract features in complex
scenes. Second, a larger detection layer is added on top of the original three detection
layers to allow the network to detect small objects. The four detection layers correspond to
4×, 8×, 16×, and 32× downsampling of the original image, and the feature information
of small objects is fully retained on the feature map with 4× downsampling. Finally, a
dense feature pyramid network structure is used to combine the scales of the four feature
layers, allowing the fused feature layers to combine semantic information before and after
sampling, improving the object detection performance at different scales.

3.1. Attention-Based Feature Extraction Network

Darknet53, the backbone of YOLOv3, is mainly composed of residual units, and
because of the way these residuals are combined, Darknet53 can be trained effectively
even when stacked to 53 layers, with no gradient explosions or gradient disappearance.
However, because the residual block stacking is very deep, the training is slow, and the
shortcut in the individual residual blocks causes the perceptual field to capture only detail
information and not global characteristics. Thus, in complex scenes, the features in each
layer are not extracted sufficiently or effectively, and complex scenes in remote sensing
image object detection and the simple stacking of residual units to deepen the network do
not significantly improve the feature extraction ability. In order to solve the problem, which
is difficult to extract features under the complex background of remote sensing images, we
add the spatial groupwise enhancement (SGE) attention module to the residual unit. SGE is
based on SE-Net and combined with the idea of grouping so that it is a lightweight attention
module that increases the classification and detection performance with nearly no increase
in the number of parameters or the computational cost. A complete feature is composed of
many subfeatures, which are distributed in groups in each layer; however, these subfeatures
are all processed in the same manner and are all affected by background noise, which can
lead to incorrect recognition and localization results. Therefore, the addition of the SGE
module can generate an attention factor in each group, allowing the importance of each
subfeature to be obtained and each group to learn and suppress noise as follows:

1. The feature map is divided into G groups based on the channel dimension;
2. The attention factor of each group is determined;
3. Global average pooling is performed on each group to obtain the vector g;
4. The vector g is element-wise dotted with the original group feature;
5. The vector is normalized, sigmoid activated, and element-wise dotted with the original

group feature;
6. Finally, the enhanced feature map is generated.

A feature map was obtained from the original image after continuous processing
of multiple convolutions, and then, it is divided into several groups along the channel
dimension and processed by SGE module. The attention factor of each group of features
was obtained and mapped to the corresponding feature map. Finally, after semantic feature
enhancement, the feature map was generated. The SGE structure diagram is shown in
Figure 3.

Due to the light weight of the SGE module and its effectiveness for higher-order
semantic features, the SGE module can be perfectly integrated with Darknet53. We add the
SGE module to the residual unit to improve the ability of the backbone network to extract
features in complex scenes. In particular, the original feature map is convolved, batch
normalized and activated by the activation function, and after the second convolution and
batch normalization, the feature enhancement is performed by the SGE module, and the
enhanced feature map is summed with the original feature map by shortcut edges and
then activated by the activation function. Figure 4 shows the SGE module after it has been
inserted into the residual block.
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The residual units with attention modules are continuously stacked to form the back-
bone SGEDarknet53, whose structure is shown in Table 1.

Table 1. The parameters of SGEDarknet53, where k represents kernel size, s represents stride, and p
represents padding.

Layers Filters Size Output Size

Convolutional 32 k = 3, s = 1, p = 1 416 × 416 × 32
Convolutional 64 k = 3, s = 2, p = 1 208 × 208 × 64
Convolutional 32 k = 1, s = 1, p = 0 208 × 208 × 32
SGEresidual 64 k = 3, s = 1, p = 1 208 × 208 × 64

Convolutional 128 k = 3, s = 2, p = 1 104 × 104 × 128
2 × Convolutional 64 k = 1, s = 1, p = 0 104 × 104 × 64
2 × SGEresidual 128 k = 3, s = 1, p = 1 104 × 104 × 128
Convolutional 256 k = 3, s = 2, p = 1 52 × 52 × 256

8 × Convolutional 128 k = 1, s = 1, p = 0 52 × 52 × 128
8 × SGEresidual 256 k = 3, s = 1, p = 1 52 × 52 × 256
Convolutional 512 k = 3, s = 2, p = 1 26 × 26 × 512

8 × Convolutional 256 k = 1, s = 1, p = 0 26 × 26 × 256
8 × SGEresidual 512 k = 3, s = 1, p = 1 26 × 26 × 512
Convolutional 1024 k = 3, s = 2, p = 1 13 × 13 × 1024

4 × Convolutional 512 k = 1, s = 1, p = 0 13 × 13 × 512
4 × SGEresidual 1024 k = 3, s = 1, p = 1 13 × 13 × 1024

3.2. Detection Layer for Small Objects

YOLOv3 uses different detection layers to detect objects of various sizes. For a
416 × 416 input image, the sizes of the three detection layers are 13 × 13, 26 × 26, and
52 × 52, i.e., the feature maps of the three detection layers are downsampled 8 times,
16 times, and 32 times, respectively. The smaller the size of the feature map, the larger the
area corresponding to each grid cell in the input image; in contrast, the larger the size of
the feature map, the smaller the area corresponding to each grid cell in the input image.
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Thus, the 13 × 13 detection layer is suitable for detecting large objects, while the 52 × 52
detection layer is suitable for detecting small objects. However, when compared with the
original map, the 52 × 52 detection layer is downsampled 8 times, i.e., when the size of
the object is smaller than 8 × 8, the space it occupies in the feature map may be less than
1 pixel after the feature extraction process, which makes it difficult to detect small objects.
In general, remote sensing images contain a large number of small objects. To further
improve the detection capability of small objects in remote sensing images, one of the most
direct and effective ways is to perform object detection directly on the feature map with
larger resolution. Although it will increase the computational cost to a certain extent, but
in the feature fusion stage, the feature maps under high resolution have relatively low
dimension, the increase in the number of parameters is only concentrated in the prediction
layer so that the increase in the number of parameters is relatively limited. We add a
104 × 104 detection layer to detect small objects, and compared with the original image,
it downsampled four times. Theoretically, even the resolution is 4 × 4, the feature infor-
mation can also be retained on this detection layer, which greatly improves the detection
performance of small objects. The improved network structure with the 104 × 104 × 255
small object detection layer is called P2 layers in Figure 2.

3.3. Multiscale Feature Fusion Based on Dense Feature Pyramids

In the feature fusion stage, YOLOv3 uses a feature pyramid network [37] (FPN) to
laterally combine the semantic information of the last three feature layers sampled; the
feature pyramid network structure is shown in Figure 5.
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However, when a P2 detection layer is added, the FPN has four layers, and the simple
horizontal connection does not combine the semantic feature information well. Thus, we
propose a dense feature pyramid network called Dense-FPN. Dense-FPN continuously
samples and combines the feature maps of the C2, C3, C4, and C5 layers to generate the P2,
P3, P4, and P5 layers. The specific approach is to upsample and combine the feature maps
of the C3, C4, and C5 layers and then upsample and combine the fused feature maps with
the previous layers until the top layer, C2, is reached, thus generating the middle hidden
layers H2, H3, H4, and H5. After that, the feature maps of the middle hidden layers, H2,
H3, and H4, are downsampled and fused with the feature maps of the next layer. The fused
feature maps are downsampled and fused with the next layer until layer H5 is reached,
thus generating the final layers, P2, P3, P4, and P5. We also connect the input feature layer,
the hidden layer, and the output layer with a jump connection to achieve feature reuse.
This connection is more conducive to gradient backpropagation, as it better utilizes the
feature information and improves the information transfer efficiency between the layers.
The Dense-FPN structure is shown in Figure 6.
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3.4. K-Means for Anchor Boxes

We use the k-means algorithm to generate anchors for the four detection layers. The
k-means algorithm generates anchors that have large IOUs with the ground truth, which is
more conducive to network convergence. The specific method is as follows:

1. Randomly select some points as centroids of cluster for the initial aggregation, with the
centroid of the cluster corresponding to the center of the sample that we will approach;

2. For each sample in the datasets, calculate the ground truth to the centroid of each
cluster, and classify the sample into the cluster with the smallest distance, as shown in
Equations (2) and (3), where bbox represents the bounding box, and d(bbox, centriod)
represents the distance between the centroid of the cluster and the center of the bbox;

d(bbox, centriod) := 1− IOU(bbox, centriod) (2)

IOU :=
Soverlap

Sunion
(3)

3. Recalculate the cluster center for each cluster;
4. Repeat steps 2 and 3 until the clusters converge.

For resolution 416 × 416 input images, with the k-means algorithm, we generated
12 anchor boxes for the four detection layers: (21, 25), (25, 31), (33, 39), (44, 51), (59, 81),
(84, 95), (104, 116), (119, 148), (161, 184), (221, 201), (246, 213), and (259 278). The anchor
boxes (21, 25), (25, 31), and (33, 39) were designed for the added 104 × 104 detection layer,
and they can be used to detect small objects, which are usually only a few pixels in size, in
remote sensing images. For medium-sized objects, a slightly larger anchor can be used on a
52 × 52 or 26 × 26 feature map. The anchor boxes (221, 201), (246, 213), and (259 278) were
designed for the big objects on 13 × 13 feature map. Therefore, even if an image contains
objects of different sizes, as shown in Figure 7, the anchor of hierarchical designed can
match the objects.
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4. Experiments and Results

To verify the effectiveness of our proposed method, we conduct comparison experi-
ments using the publicly available RSOD [38] datasets and DIOR [39] datasets with different
versions of YOLO, some classical detection algorithms, and our proposed method. In this
section, we present the datasets used, the evaluation metrics, the experimental procedures,
and the experimental results.

4.1. Datasets

The RSOD datasets are open object detection datasets for object detection in remote
sensing images. The datasets include aircraft, fuel tanks, sports fields, and overpasses that
have been annotated in the format of PASCAL VOC [40] datasets. The datasets are divided
into four folders as follow:

1. 4993 aircraft in 446 images;
2. 191 playgrounds in 189 images;
3. 180 overpasses in 176 images;
4. 1586 oil tanks in 165 images.

Some example images from the RSOD datasets are shown in Figure 8.
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We randomly divided the datasets into a training set, a validation set, and a test
set according to a 6:2:2 ratio, i.e., 580 images for training, 197 images for validation, and
199 images for testing, as shown in Table 2.
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Table 2. Training, validation, and test sets for each category of the RSOD datasets.

Class Train Val Test

Aircraft 268 88 90
Oil tank 93 36 36

Overpass 106 35 35
Playground 113 38 38

Total 580 197 199

The DIOR datasets are large-scale benchmark datasets for object detection in optical
remote sensing images. The datasets includes 23,463 images of different seasons and
weather patterns, with 190,288 object instances, a uniform image size of 800 × 800, and
resolutions ranging from 0.5 m to 30 m. The DIOR datasets officially provided helped us
divide the training set, verification set, and test set according to the ratio of 2.5:2.5:5 as
shown in Table 3 [39]. Note that one image may contain multiple object classes, so the
column totals do not simply equal the sums of each corresponding column. The number of
each category represents the object number, not the number of images, and the “Total” in
last line represents the number of images in each set.

Table 3. Training, validation and test sets for each category of the DIOR datasets.

Class Train Val Test

Airplane 344 338 705
Airport 326 327 657

Baseball field 551 557 1312
Basketball court 336 329 704

Bright 379 495 1302
Chimney 202 204 448

Dam 238 246 502
Expressway service area 279 281 565
Expressway toll station 285 299 634

Golf field 216 239 491
Ground track field 536 454 1322

Harbor 328 332 814
Overpass 410 510 1099

Ship 650 652 1400
Stadium 289 292 619

Storage tank 391 384 839
Tennis court 605 630 1347
Train station 244 549 501

Vehicle 1556 1558 3306
Windmill 403 404 809

Total 5862 5863 11,738

Some example images from the DIOR datasets are shown in Figure 9.
As shown in the figure, the scenes in the DIOR datasets and RSOD datasets are

relatively complex, including scenes such as mountains, lakes, grasslands, farms, docks,
and airports. The scales of the different object categories vary greatly, ranging from small
objects such as airplanes and cars, with sizes less than 30 × 30, to playgrounds and golf
courses, with sizes larger than 500 × 500. The scales of similar objects, such as ships and
airplanes, also vary greatly.
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4.2. Evaluation Metrics

In this paper, we use the mean average precision [41] (mAP) as an evaluation metric.
The mAP is an important metric for evaluating object detection performance. We divide the
samples into true-positive (TP), false-positive (FP), true-negative (TN), and false-negative
(FN) cases to calculate the precision (P) and recall (R) as shown in Equation (4).

P =
TP

TP + FP
, R =

TP
TP + FN

(4)



Appl. Sci. 2022, 12, 4997 12 of 17

The precision and recall are two mutually constrained and balanced metrics. To
measure these two metrics, we introduce the mAP, which is defined as the area under the
average PR curve of each category at different confidence levels as shown in Equation (5).

mAP =
1

NC

NC

∑
i=1

∫ 1

0
Pi(Ri)dRi (5)

where NC represents the number of categories in the datasets.

4.3. Experimental Design

We trained the RSOD datasets and DIOR datasets using Faster RCNN, SSD, YOLOv2,
YOLOv3, YOLOv3-SPP, YOLOv4, and DFPN-YOLO in the PyTorch framework and per-
formed data augmentation uniformly for the unbalanced categories of the original datasets.
All experiments were performed on four NVDIA GTX 2080Ti with 11 GB of RAM, and to
ensure the fairness of the comparison experiments, we used stochastic gradient descent [42]
(SGD) to optimize the model with a momentum of 0.843 and a weight decay of 0.00036.

4.4. Results and Analysis
4.4.1. Experimental Results of DFPN-YOLO

DFPN-YOLO achieved a high performance when it was tested on the RSOD datasets
and DIOR datasets. The result of each categories as shown in Figure 10.
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The above figures show the results of the DFPN-YOLO on the DIOR datasets and the
RSOD datasets, including the average precision of the different categories and the mAP of
the total categories. Our DFPN-YOLO model had a better detection performance on the
RSOD datasets, but the slightly lower performance on overpass images was difficult to
improve due to a fewer number of training samples. On the DIOR datasets, our model had
13 classes with AP values greater than 0.7. Some of the test results are shown in Figure 11.

However, we found that there are some categories with low detection performance on
the DIOR datasets, such as vehicles, bridges, and stadiums. According to our analysis of
the test set results, our DFPN-YOLO model had a large number of false positives for small
dense objects, such as ships and vehicles, as shown in Figure 12.

The reason for the high number of false positives is that our model detects some
small objects that are not labeled but do exist, such as vehicles and ships. Since we add a
detection layer for small objects, our model detects some real objects with lower confidence,
which have an impact in the calculation of mAP despite their lower confidence, resulting
in a lower final accuracy. Figure 12b shows that although there are many small vehicles,
no vehicles are marked in the labeled figure. However, our model detects some of the
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small cars. Furthermore, there were a small number of training samples for objects such as
stadiums, increasing the difficulty of training the model for these objects.
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4.4.2. Results of the Comparison Experiment

To further validate the effectiveness of our method, we conducted comparison ex-
periments using Faster RCNN with resnet50 as backbone, SSD with vgg16 as backbone,
YOLOv2 with darknet19 as backbone, YOLOv3 with darknet53 as backbone, YOLOv3-SPP
with darknet53 and spatial pyramid pooling (SPP) module as backbone, YOLOv4 with
CSPdarknet53 as backbone, and DFPN-YOLO with SGEdarknet53 as backbone to compare
the accuracy of the algorithms based on the mAP, and the results on the DIOR datasets are
shown in Table 4.

Classes 1–20 represent the following categories: airplane, airport, baseball field, bas-
ketball court, bridge, chimney, dam, expressway service area, expressway toll station,
golf field, ground track field, harbor, overpass, ship, stadium, storage tank, tennis court,
train station, vehicle, and windmill. Similarly, we performed comparison experiments on
the RSOD datasets, with Classes 1–4 representing the oil tank, playground, aircraft, and
overpass, respectively. The results are shown in Table 5.
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The experimental results show that, based on the YOLOv3, when only the SGE atten-
tion module was added, the overall detection performance of the four categories improved
due to the enhanced feature extraction ability of the backbone. After the fourth detection
feature layer was added for small object detection, the mAP of category three, i.e., small
objects in the aircraft category, significantly increased from 88.4% to 91.4%. After the
Dense-FPN structure was added, the overall detection accuracy of the four object categories
of objects improved, which shows that the Dense-FPN structure has a strong feature fusion
capability for objects of different scales. In addition, compared with the original YOLOv3
without improvement, the mAP improved from 83.9% to 92% after adding the SGE mod-
ule, the fourth detection feature layer, and the Dense-FPN structure, demonstrating the
effectiveness of our method.

Table 4. Comparison of the AP of the different methods on the DIOR datasets.

Method Faster RCNN SSD YOLOv2 YOLOv3 YOLOv3-SPP YOLOv4 Ours

Class 1 54.5 60.1 58.5 76.2 76.7 79.1 80.2
Class 2 70.2 61.8 52.4 66.9 67.2 72.7 76.8
Class 3 63.6 67.5 70.6 72.0 71.4 73.2 72.7
Class 4 82.4 59.2 66.2 85.6 86.2 88.4 89.1
Class 5 43.1 34.5 37.1 34.2 39.6 40.2 43.4
Class 6 74.7 66.0 70.0 73.6 75.3 76.3 76.9
Class 7 59.1 46.2 51.4 55.2 62.4 66.5 72.3
Class 8 65.4 57.8 55.7 56.7 55.1 58.8 59.8
Class 9 62.8 54.3 55.9 55.2 53.9 56.0 56.4
Class 10 74.9 66.8 68.9 64.1 68.3 68.1 74.3
Class 11 75.3 70.1 66.2 71.4 72.8 72.4 71.6
Class 12 44.2 26.3 42.1 51.6 52.4 57.5 63.1
Class 13 52.9 47.2 50.9 54.3 56.0 57.2 58.7
Class 14 72.2 58.4 66.2 75.2 79.6 78.8 81.5
Class 15 57.1 51.7 51.3 37.4 42.9 38.8 40.1
Class 16 51.2 50.2 49.6 66.2 62.1 70.7 74.2
Class 17 79.8 64.5 67.4 84.3 85.5 85.4 85.8
Class 18 51.3 42.3 39.3 50.7 58.7 64.4 73.6
Class 19 45.0 37.2 40.2 41.5 42.0 46.6 49.7
Class 20 80.7 62.2 55.8 75.8 79.1 83.5 86.5
mAP (%) 63.02 54.22 55.79 62.41 64.37 66.73 69.33

Table 5. Comparison of the AP of the different methods on the RSOD datasets.

Method Faster RCNN SSD YOLOv2 YOLOv3 YOLOv3-SPP YOLOv4 Ours

Class 1 90.4 70.6 69.3 86.2 90.6 94.3 97.6
Class 2 89.2 81.3 84.8 88.7 87.2 92.1 97.8
Class 3 87.6 77.5 70.7 86.1 91.5 94.6 93.3
Class 4 73.2 69.2 66.1 74.6 80.3 84.0 79.3

mAP (%) 85.1 74.7 72.7 83.9 87.4 91.3 92.0

On the DIOR datasets, our method has the highest mAP from the original 62.41% of
YOLOv3 to 69.33% while outperforming other advanced methods, even higher than the
66.73% of YOLOV4, and we have the best detection performance in most categories. Of the
RSOD datasets, our method is also the most accurate. Compared with 83.9% of YOLOv3,
DFPN-YOLO reaches 92%, which is even 0.7% higher than YOLOv4. Furthermore, in the
two categories of oil tank and playground, our detection performance is much higher than
other methods, with AP reaching nearly 98%.
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4.4.3. Ablation Experiments

To further validate the improved performance of Dense-FPN structure, we verified
the effective improvement introduced by each step of our method by performing ablation
experiments on the RSOD datasets. The results are shown in Table 6.

Table 6. Ablation experiments on the RSOD datasets.

Experiment Exp 1 Exp 2 Exp 3 Exp 4

SGE
√ √ √

Scale 4
√ √

DFPN
√

Class 1 86.2 90.2 91.7 97.6
Class 2 88.7 91.6 92.2 97.8
Class 3 86.1 88.4 91.4 93.3
Class 4 74.6 75.3 75.0 79.3

mAP (%) 83.9 86.4 87.8 92.0

5. Conclusions

As satellite imaging technology and deep learning technology have developed, remote
sensing object detection has become a popular research topic. To address the problems of
complex scenes, large scenes with small objects, and large-scale differences of objects in
remote sensing object detection, a dense feature pyramid network based on YOLO known
as DFPN-YOLO was proposed in this paper.

First, we added an attention module to the residual blocks of the backbone to allow
the network to quickly extract key feature information in complex scenes. Then, we
added a larger detection layer to address the difficulty of detecting small objects in large
fields of view. Finally, we proposed a dense feature pyramid network structure named
Dense-FPN, which enabled all four detection layers to combine the semantic information,
improving the object detection performance at different scales. Our proposed method
achieves a high accuracy on the RSOD datasets and DIOR datasets and outperforms
both classical algorithms and even outperforms the YOLOv4 in terms of the mAP metric.
On the DIOR datasets, our algorithm achieves a maximum mAP of 69.33%, which is
considerably higher than the 62.41% mAP of YOLOv3, and due to the Dense-FPN structure,
the detection accuracy of our algorithm is higher than the accuracies of other algorithms
in most object categories. On the RSOD datasets, the precision of our algorithm is better
than the performance of other classical algorithms, reaching an mAP of 92%, which is 8%
higher than the mAP of 83.9% of YOLOv3. From the comparison experiments, we found
that YOLOv4 with an FPN + PAN structure and DFPN-YOLO with a Dense-FPN structure
significantly outperformed YOLOv3 in terms of overall performance, demonstrating the
importance of feature fusion for detection precision. Furthermore, our method performed
slightly better than YOLOv4.

However, although our method achieves good performance on the RSOD datasets
and DIOR datasets, it has a poor detection performance on some high-noise remote sensing
images, and the detection of blurred images and high-noise remote sensing images remains
a major challenge for remote sensing object detection. We will carry out additional research
in future work.
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