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Abstract: Cross-calibration using an autocollimator and a polygon is the traditional method for
calibrating a rotary encoder. These angles, which can be calibrated using this method, are limited
by the pitch angle of the polygon, which is 15◦ for a 24-faced polygon. In this work, we propose a
new shift-angle method using the same setup as the traditional method. However, the new method
can measure smaller than the pitch angle of the polygon, which is the measurement limitation of the
traditional method. The proposed method can calibrate every angle of the rotary encoder. In the
experiment, we use an autocollimator and a 24-faced polygon to calibrate the SelfA rotary encoder
to verify the proposed shift-angle method. The SelfA rotary encoder, which comprises one rotary
encoder and 12 read heads, is calibrated using self-calibration. The difference between the calibration
results obtained by applying these two methods to the same SelfA rotary encoder is smaller than
±0.1".

Keywords: cross-calibration; shift-angle method; rotary encoder

1. Introduction

The angle standard is based on the circle closure principle: the sum of the angles of a
full circle must be 2π. Therefore, the circle closure principle is widely used to calibrate many
reference angle standards and working angle standards, such as angle gauges, polygons,
and rotary encoders. Rotary encoders are widely used in laboratories and factories in the
field of measurement and manufacturing. The angle errors of the rotary encoders affect
the measurements and manufacturing quality. For the precise calibration of the rotary
encoders, two methods are widely used: self-calibration and cross-calibration.

In self-calibration, it is unnecessary to use an external standard to calibrate rotary
encoders [1]. The sensor heads and rotary encoders are installed inside a rotary table. The
sensor heads read out the measured angles distributed at different angles corresponding
to the rotary encoder. According to the circle closure principle, a rotary encoder can
self-calibrate. Many self-calibration methods have been proposed. Masuda et al. [2]
proposed a calibration rotary encoder system in which six read-heads were unevenly
spaced around a rotary encoder to self-calibrate its accuracy. Probst et al. [3–5] developed
an angle comparator that was constructed using one rotary encoder and 16 read-heads in
which eight read-heads were uniformly distributed and eight read-heads were arranged
pairs. In this system, a new method for self-calibration of divided circles calibrated the
rotary encoders. In addition, Jiao et al. [6,7] indicated an optimization-based arrangement
of reading heads for self-calibration. Watanabe et al. [8–11] developed the SelfA rotary
encoder for calibrating rotary encoders. The SelfA encoder consists of a rotary encoder and
several groups of sensor heads.

Cross-calibration is widely used to calibrate angle standards. With this method, an
auxiliary reference angle standard is used in conjunction with an equation based on the
circle closure principle. The angle errors of the reference angle standard and the calibrated
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angle standard can be measured simultaneously. Many studies have demonstrated that
such measurements involve the use of a polygon as the reference angle standard. Pavlov
et al. [12,13] proposed the four-sided polygon as the reference angle standard to calibrate the
laser dynamic goniometer. Akgoz et al. [14] indicated the 36-sided optical polygon as the
reference angle standard to calibrate the index table. Many previous studies have employed
different-faced polygons, such as 12 faces, 24 faces, and 36 faces, as the reference angle
standard to calibrate the rotary encoder [15–20]. However, this method has a measurement
limitation in terms of the pitch angle of the polygon.

In this paper, we present a new shift-angle method for calibrating rotary encoders at
every angle. The introduction section presents the related research papers and techniques.
Next, the theory and configuration section describes the proposed shift-angle method,
which can be used to calibrate angles smaller than the pitch angle of the polygon. In the
experiment, an autocollimator and a 24-faced polygon are used to calibrate the SelfA rotary
encoder that is equipped with a rotary encoder and multi-arranged sensor heads. The
SelfA rotary encoder can be calibrated by using self-calibration. The experiment shows the
difference between the results of self-calibration and the proposed shift-angle method for
the same SelfA rotary encoder. The results indicate that the proposed shift-angle method is
feasible and can be validated. Then, the uncertainty evaluation of the shift-angle method is
analyzed. Finally, a discussion and conclusions are presented.

2. Theory and Configuration
2.1. Shift-Angle Method for Polygon

Figure 1a shows a schematic of the calibration setup. An autocollimator is placed
in front of a rotary encoder. A 24-faced polygon is mounted at the center of the rotary
encoder. The 24-faced polygon is used in this study to illustrate the related theory and to
conduct experiments [15]. A polygon with any number of faces can be used in practice.
The polygon has 24 reflecting faces as the measuring faces. The autocollimator is aligned
and collimated to reflect the faces of the polygon.
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Figure 1. (a) Diagram of the 24-faced polygon. (b) Enlarged view of the red circle highlighted in (a).

In the ideal polygon, the measuring faces are the same as the nominal faces. The
measuring face (R) and the nominal face (N) are slightly tilted with respect to each other,
as indicated in Figure 1b. For the 24-faced polygon, it is assumed that one full circle is
divided into 24 nominal faces. The angle interval between two consecutive nominal faces is
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15◦, which is called the nominal pitch angle. The pitch angle deviation βi is the difference
between the angle values of two adjacent measuring faces and the nominal pitch angle of
15◦. Each measuring face has a different pitch angle deviation. Therefore, in our case, the
24-faced polygon exhibits 24 angle deviations. According to the circle closure principle, the
summation of all the angle deviations must be zero.

24

∑
i=1

βi= 0 (1)

The rotary encoder is calibrated to determine the angle error α (θ), which is the angle
deviation between the measured and true angles. As illustrated in Figure 2, the angle
error α (θ + S) is the angle error of the rotary encoder at (θ + S)◦, where S is the shift-angle.
Traditionally, the 24-faced polygon can be used to measure rotary encoder angles θ of 0◦,
15◦, . . . , 345◦ in steps of 15◦. In contrast, with the proposed shift-angle method, rotary
encoder angles of 0◦ + S, 15◦ + S, . . . , 345◦ + S in steps of 15◦ can be measured. According
to the circle closure principle, the summation of the angle errors α (θ + S) for a full circle
must be zero:

24

∑
i=1

α{ (i− 1)× 15◦ + S }= 0 (2)
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Figure 2. Schematic of the calibration value determination.

The angle error of the rotary encoder cannot be measured directly by using an autocol-
limator and a polygon, because the measured values using an autocollimator contain the
angle error of the rotary encoder, the pitch angle deviation of the 24-faced polygon, and
setup errors.

The misalignment between the rotary encoder and the polygon causes setup errors,
which remain constant at different angle positions. The rotary encoder is rotated with 0◦ + S
as the starting angle. The first face of the 24-faced polygon, as the starting face, is adjusted
to a starting angle of 0◦ + S. The autocollimator measures the angle error α (0◦ + S), the
pitch angle deviation β1, and the setup error U1. The rotary encoder is rotated in one step
at 15◦. The autocollimator then measures the angle error α (15◦ + S), the summation of the
pitch angle deviations (β1 + β2), and the setup error U1. Overall, the rotary encoder rotates
to an angle of 345◦ + S in 23 steps. In this case, the autocollimator measures the angle error
α (345◦ + S), the summation of the pitch angle deviations of the first to the 24th faces, and
the setup error U1. When the measurement starts from the jth face, the polygon has to be
shifted on the rotary encoder so that different setup errors Uj depending on the j number
occur.
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The measured value using the autocollimator contains the angle error of the rotary
encoder, the summation of the pitch angle deviations, and the setup error, as follows:

εij= α{(i− 1)× 15◦ + S}+
MOD[(j+i−1),24]

∑
k=j

βk + Uj (3)

where εij is the value measured by the autocollimator at an angle of i × 15◦, and i is the
number of steps of rotation of the rotary encoder. i equals 1 at a starting angle of 0◦. S
denotes the shift-angle. j denotes the jth face of the 24-faced polygon as the starting face.
MOD, modulo operation, calculates the remainder of (j + i − 1) divided by 24. Uj denotes
the setup error, starting from the jth face.

For the rotary encoder at 0◦ + S, because i equals 1, each face of the 24-faced polygon
can be the starting face and can be measured using the autocollimator. When different faces
are used as the starting face, the setup errors differ. The measured values are as follows:

ε1,1 = α(0◦ + S) + β1 + U1

ε1,2 = α(0◦ + S) + β2 + U2

. . . (4)

ε1,23 = α(0◦ + S) + β23 + U23

ε1,24 = α(0◦ + S) + β24 + U24

All measured values are listed in Table 1. In this table, j denotes the jth face of the
24-faced polygon as the starting face in the first column. i denotes the number of rotation
steps of the rotary encoder in the first row. Equation (4) is listed in the second column of
Table 1. According to Equation (3), the rotary encoder rotates in steps of 15◦ + S, where i
equals 2. Each face of the 24-faced polygon is measured by the autocollimator at 15◦ + S.
All of the measured values, where i equals 2, are listed in the third column of Table 1. The
other columns are similar. The angle errors, from 0◦ + S, 15◦ + S, . . . , 345◦ + S in steps of
15◦, can be measured by following the same procedure. A total of 576 measured values are
presented in Table 1.

Table 1. Shift-angle method for rotary encoders.

The Measured Value
(
εij
)

i
1 2 . . . 23 24

j

1 α(0 + S) + β1 + U1 α(15 + S) +
2
∑

k=1
βk + U1

. . . α(300 + S) +
23
∑

k=1
βk + U1 α(345 + S) +

24
∑

k=1
βk + U1

2 α(0 + S) + β2 + U2 α(15 + S) +
3
∑

k=2
βk + U2

. . . α(300 + S) +
24
∑

k=2
βk + U2 α(345 + S) +

1
∑

k=2
βk + U2

. . . . . . . . . . . . . . . . . .

23 α(0 + S) + β23 + U23 α(15 + S) +
24
∑

k=23
βk + U23

. . . α(300 + S) +
21
∑

k=23
βk + U23 α(345 + S) +

22
∑

k=23
βk + U23

24 α(0 + S) + β24 + U24 α(15 + S) +
1
∑

k=24
βk + U24

. . . α(300 + S) +
22
∑

k=24
βk + U24 α(345 + S) +

23
∑

k=24
βk + U24

The pitch angle deviations of the 24-faced polygon are calculated using the measured
values. The difference between the two measured values δlmn can be calculated as follows:

δlmn= εln−εmn (5)

where l and m denote the different i values in Equation (3). n denotes the different j values
in Equation (3). As shown in Table 1, the values listed in the third column εi2 reduce the
values listed in the second column, εi1. The different measured values are listed in the
second column of Table 2. The value of n varies from 24, 23, to 1 in the first column of
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Table 2. According to the same procedure, the values listed in the fourth column εi3 reduce
the values listed in the third column εi2 in Table 1. The different measured values are listed
in the fourth column of Table 2. The value of n varies from 23, 24, and 1 to 22 in the third
column of Table 2. All measured values are listed in Table 2. The second row contains 24
measured values as follows:

δ2,1,24 = ε2,24 − ε1,24 = α(15◦ + S)− α(0◦ + S) + β1
δ3,2,23 = ε3,23 − ε2,23 = α(30◦ + S)− α(15◦ + S) + β1

. . .
δ24,23,2 = ε24,2 − ε23,2 = α(345◦ + S)− α(330◦ + S) + β1

δ25,24,1 = ε25,1 − ε24,1 = α(0◦ + S)− α(345◦ + S) + β1

(6)

Table 2. Shift-angle method for polygons.

The Different Measured Value
(
δlmn

)
l,m
n 2,1 l,m

n 3,2 . . .
l,m
n 24,23 l,m

n 25,24 The Average of
the Row

24 α(15◦ + S)− α(0◦ + S) + β1 23 α(30 + S)− α(15◦ + S) + β1 . . . 2 α(345◦ + S)− α(330◦ + S) + β1 1 α(0◦ + S)− α(345◦ + S) + β1 β1

1 α(15◦ + S)− α(0◦ + S) + β2 24 α(30 + S)− α(15◦ + S) + β2 . . . 3 α(345◦ + S)− α(330◦ + S) + β2 2 α(0◦ + S)− α(345◦ + S) + β2 β2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22 α(15◦ + S)− α(0◦ + S) + β23 21 α(30 + S)− α(15◦ + S) + β23 . . . 24 α(345◦ + S)− α(330◦ + S) + β23 23 α(0◦ + S)− α(345◦ + S) + β23 β23

23 α(15◦ + S)− α(0◦ + S) + β24 22 α(30 + S)− α(15◦ + S) + β24 . . . 1 α(345◦ + S)− α(330◦ + S) + β24 24 α(0◦ + S)− α(345◦ + S) + β24 β24

The average of Equation (6) yields the pitch angle deviation of the first face of the
24-faced polygon. With the values listed in the third row, the pitch angle deviation of the
second face can be calculated. The pitch angle deviations of all faces can be calculated
using Table 2.

2.2. Shift-Angle Method for Rotary Encoders

Using Table 2, all of the pitch angle deviations of the 24-faced polygon can be calculated.
In the second row of Table 1, the summation of all the measured values is expressed as
follows:

24

∑
i=1

εi1 =
24

∑
i=1

α{(i− 1)× 15◦ + S}+
24

∑
i=1

(25− i)βi+24U1 (7)

The first term on the left-hand side of the equation denotes the measured values.
According to Equation (2), the first term on the right-hand side of this equation must be
zero. The second term on the right-hand side can be determined from Table 2. Consequently,
setup error U1 is calculated. Therefore, using Equation (3), the angle errors, from α (0◦ + S),
α (15◦ + S), . . . , α (345◦ + S) in steps of 15◦, can be calculated.

2.3. Self-Calibration

Self-calibration for calibrating the rotary encoder is used to verify the utility of the
shift-angle method. The theory behind self-calibration of the SelfA rotary encoder was
described in the literature [8–11]; here, we present only a brief review. Self-calibration is
used to analyze the angular deviation from the angle values of multiple sensors located
at equal angular intervals around the same rotary encoder. Figure 3 shows a schematic of
the NH units of the sensor heads. Aj is the sensor head label, and j is the number of each
sensor head. NG is the number of grating lines in the rotary encoder. All the sensor heads
receive the angle value simultaneously during rotation. The received angle represents the
angular deviation, which represents the difference from the ideal angle value at a specific
grating line. ai denotes the angular deviation at the grating number i. During rotation, the
first sensor head A1 receives the grating number i, and the jth sensor head Aj receives the
grating number i + (j − 1)NG/NH. However, the angular deviation ai cannot be measured
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directly. The measured angular value between sensor head A1 and sensor head Aj can be
expressed as follows:

δi,(1,j) = ai − ai+(j−1)NG/NH (8)
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The average value at the angular position from 0◦ to 360◦ is represented as follows:

µi =
1

NH

NH

∑
j=1

δi,(1,j) = ai −
1

NH

NH

∑
j=1

δi+(j−1)NG/NH (9)

where µi denotes the results of rotary encoder self-calibration.

3. Experiments
3.1. Shift-Angle Method

Figure 4 shows a photograph of the experimental setup. The working environment is
stabilized in which the temperature is 20 ± 1 ◦C and relative humidity is 45 ± 10%. The
24-faced polygon is mounted at the center of the SelfA rotary encoder (e-motionsystem,
Inc., Shinagawa City, Japan, SCMS-127). The SelfA rotary encoder is equipped with 12 head
sensors and a rotary encoder, which has 36,000 graduation lines at intervals of 36◦. The
SelfA rotary encoder is controlled by a servo motor with an air bearing. The autocollimator
(MOLLER-WEDEL OPTICAL GmbH, ELCOMAT 3000) is fixed outside the SelfA rotary
encoder and aligned to the polygon.
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The shift-angle S is 0◦. The first face of the 24-faced polygon is the starting face located
at 0◦ of the SelfA rotary encoder, as illustrated in Figure 5a. The collimated beam of the
autocollimator is aligned to the first face. The angle of the autocollimator is adjusted
to approximately 0. Then, as the SelfA rotary encoder is rotated by 15◦ in one step, the
autocollimator collimates the second face of the polygon. The autocollimator collimates
successive faces of the polygon. The autocollimator measures 24 values corresponding
to 0◦, 15◦, . . . , 345◦ in steps of 15◦. The measured values are listed in the second row of
Table 1. Then, as illustrated in Figure 5b, the second face is aligned with the 0◦ of the SelfA
rotary encoder, and the autocollimator should not be moved. The SelfA rotary encoder
and the autocollimator repeat the previously described procedure. The autocollimator
measures 24 values corresponding to 0◦, 15◦, . . . , 345◦ in steps of 15◦, which are listed in
the third row of Table 1. Each face of the polygon is set as the starting face. The measured
values (576 total) are listed in Table 1. These 576 measured values are used to calculate the
different measured values listed in Table 2. All the pitch-angle deviations of the polygon
can be calculated, as illustrated in Figure 6. The measured values are listed in the second
row of Table 1. All the pitch angle deviations calculated using Equation (3) are listed in
Table 2. The setup error, U1, is calculated. The angle errors, from α (0◦), α (15◦), . . . , α (345◦)
in steps of 15◦, are calculated, as illustrated in Figure 7.
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As depicted in Figure 8a, the shift-angle is 5◦. As the starting face, the first face is
located at 5◦ of the SelfA rotary encoder. The SelfA rotary encoder is rotated in 23 steps.
The angle positions are 5◦, 20◦, . . . , 350◦ in steps of 15◦. The second row of Table 1 lists
the measured values containing the angle errors, the pitch angle deviations, and the setup
error. The pitch angle deviations are calculated in the previous measurement, where S is
0◦. The setup error U can be calculated using Equation (7). Therefore, the angle errors,
corresponding to 5◦, 20◦, . . . , 350◦ in steps of 15◦, can be calculated, as illustrated in
Figure 7. According to Figure 8b, the shift-angle S is 10◦. As the starting face, the first face
is located at 10◦ of the SelfA rotary encoder. The SelfA rotary encoder rotates in 23 steps.
The angle positions are 10◦, 35◦, . . . , 355◦ in steps of 15◦. SelfA angle errors, from 10◦, 35◦,
. . . , 355◦ in steps of 15◦, are calculated by following the same calculation procedure, as
illustrated in Figure 7.
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To check the setup error U, another method uses the curve fitting least square method.
The angle error can be expressed as a Fourier series because the angle error is a periodic
function in one rotation. The first term on the right-hand side of Equation (9) averages the
measured angular value by the two heads. The curve fitting function can be expressed as
the second periodic function as α(θ) = A*sin(2*θ + B) + U(fitting), as illustrated in Figure 9.
For a shift-angle S of 0◦, the measured values are fitted as A = 1.0314", B = −2.4233, and
U0(fitting) is 0.9596". For a shift-angle S of 5◦, the A and B values are fixed to check the
setup error U5(fitting). The U5(fitting) value is −1.5927". For the shift-angle S 10◦, the U10
(fitting) value is 1.1545" using the same procedure. As shown in Equation (7), the setup
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error U0 is 0.9596", U5 is −1.5927", and U10 is 0.1545". The difference in the setup error is
less 10−4"using two different methods, Equation (7) and curve fitting.
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3.2. Comparison of Calibration Results Obtained Using the Shift-Angle Method
and Self-Calibration

The SelfA rotary encoder is equipped with 12 head sensors and a rotary encoder. The
12 head sensors are divided into three sets and arranged as depicted in Figure 10. The first
set consists of three head sensors numbered 1, 5, and 9, which are located at an interval of
120◦. The second set consists of four head sensors numbered 1, 3, 7, and 11 and is located at
an interval of 90◦. The third set consists of seven head sensors numbered 1, 2, 4, 6, 8, 10, and
12, which are located at an interval of approximately 51.42◦. The measured angles using
sensors 1 and 7 are averaged and denoted by ai in Equation (9). ai+(j−1)NG/NH denotes
the measured angles using the other sensor heads. According to Equation (9), the angles
measured using the 12 head sensors can be used to calibrate the angle errors µi of the rotary
encoder.
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Figure 10. Schematic SelfA rotary encoder of sensor heads setup. The first set is the triangle NH of 3,
the second set is the square NH of 4, and the third set is the circle NH of 7 [10].

The experiment is performed on the SelfA rotary encoder using self-calibration and
the shift-angle method. Figure 11 shows a comparison of the experimental results obtained
using the two methods. In the experiment, the shift-angles are set from 0◦ to 14◦. The angle
errors range from 0◦ to 359◦ in steps of 1◦. The self-calibration method is used to calibrate
the SelfA rotary encoder at the same angle. Figure 12 depicts the difference in results using
the shift-angle method and self-calibration. The difference in results is less than ±0.1".
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3.3. Uncertainty Evaluation

According to the ISO Guide to the Expression of Uncertainty in Measurement
(GUM) [21], measurement uncertainties originate from several sources. The first step
is to build a function that relates the angle error α, the measured value ε, and the pitch
angle deviation β, as expressed in Equation (3). The combined standard uncertainty is
expressed as follows.

u2
c (α) =

(
∂α

∂ε

)2
u(ε)2 +

(
∂α

∂β

)2
u(β)2 +

(
∂α

∂U

)2
u(U)2 (10)

The measured value uncertainty u(ε) is evaluated using the repeatability of angle error
measurement, resolution of the autocollimator, traceability of the autocollimator, angle
error of the autocollimator, resolution of the SelfA rotary encoder, and residual setup error
calculation.

(1) Repeatability of angle error measurement.

Repeatability is determined using multiple measurements. The measured results
of the shift-angle method, ranging from 1◦ to 360◦, are computed as the average of six
measurement results. The maximum standard deviation of all angle errors is 0.13′′.

u = 0.13′′/
√

6= 0.0531′′

The degree of freedom is 5.

(2) Resolution of the autocollimator.

The resolution of the autocollimator is 0.001". The distribution assumes a rectangular
probability.

u = 0.001′′/2
√

3 = 0.0003′′

The relative uncertainty is estimated as 10% with 50 degrees of freedom.
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(3) Traceability of the autocollimator.

The calibration certificate declares that the uncertainty is 0.01" with a coverage factor k
of 2 (95% confidence level).

u = 0.01′′/2 = 0.0050′′

The relative uncertainty is estimated as 0% with ∞ degrees of freedom.

(4) Angle error of the autocollimator.

In the calibration certificate, the maximum error is 0.05" in the measurement range of
±1000". The distribution assumes a rectangular probability.

u = 0.07′′/
√

3= 0.0404′′

The relative uncertainty is estimated as 10% with 50 degrees of freedom.

(5) Resolution of SelfA rotary encoder.

The resolution of the SelfA rotary encoder is 0.04". The distribution assumes a rectan-
gular probability.

u = 0.04′′/2
√

3= 0.0101′′

The relative uncertainty is estimated as 10% with 50 degrees of freedom.

(6) Residual setup error calculation.

The difference between the setup error calculation, in Equation (7), and curve fitting is
less 10−4". The distribution assumes a rectangular probability.

u = 0.0001′′/2
√

3= 0.0001′′

The relative uncertainty is estimated as 10% with 50 degrees of freedom.
The measured value uncertainty u(ε), which is the root sum square of all uncertainty

contributions, is 0.0676". According to the Welch–Satterthwaite equation [21], the effective
degree of freedom νeff of the measured value uncertainty is 12.

The measured value of uncertainty u(β) is evaluated based on the repeatability of the
pitch angle deviation measurement.

(7) Repeatability of the pitch angle deviation measurement, β.

Repeatability is determined using multiple measurements. The pitch angle deviations,
from the first to the 24th face, are the average of the six measurement results. The maximum
standard deviation for all pitch angle deviations is 0.12".

u = 0.12′′/
√

6= 0.0490′′

The degree of freedom is 5.
The setup error uncertainty u(U) is caused by the noncentrality of the autocollimator

beam on the polygon face and the eccentricity of the polygon setup.

(8) Setup error of the polygon, U.

The misalignment error of the polygon is 0.05". The distribution assumes a rectangular
probability.

u = 0.05′′/2
√

3= 0.0144′′

The relative uncertainty is estimated as 10% with 50 degrees of freedom.
The values of the two sensitivity coefficients ∂α/∂ε and ∂α/∂U are 1. As shown in

Table 2, the pitch angle deviations are calculated using n∗n measured values. According to
the reference paper [22], the sensitivity coefficient can be expressed as follows:

∂α

∂β
=

1
n
− 8

9n2 (11)
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where n is the number of faces of the polygon. In this case, n is 24 and ∂α/∂β is 0.0401.
In Table 3, the combined standard uncertainty of the shift-angle method, the root sum

square of all uncertainty contributions, is 0.07". The effective degree of freedom νeff of the
combined standard uncertainty is 13. Thus, the appropriate coverage factor can be set to
k = 2.31 from the t-distribution of the aforementioned effective degree-of-freedom value.
The expanded uncertainty for a confidence level of 95% in Ushift is given as follows:

Usfhift = 0.15" (k = 2.16) (12)

Table 3. Combined uncertainty for shift-angle method.

Standard Uncertainty u(Xi)
∂α

∂Xi

∣∣∣ ∂α
∂Xi

∣∣∣u(Xi) Degree of Freedom

measured value uncertainty, ε 0.0676" 1 0.0676" 12
Repeatability of angle error measurement 0.0531" 1 0.0531" 5

Resolution of the autocollimator 0.0003" 1 0.0003" 50
Traceability of the autocollimator 0.0050" 1 0.0050" 50

Angle error of autocollimator 0.0404" 1 0.0404" 50
Resolution of the rotary encoder 0.0101" 1 0.0101" 50
Residual setup error calculation 0.0001" 1 0.0001" 50

Repeatability of the pitch angle deviation
measurement 0.0490" 0.0401 0.0020" 5

setup error uncertainty 0.0144" 1 0.0144" 50

Combined standard uncertainty (u): 0.07", effective degrees of freedom (νeff): 13, expanded uncertainty (95%
confidence level): 0.15" (k = 2.16).

For self-calibration, two uncertainty sources should be considered: the resolution of
the SelfA rotary encoder and repeatability of self-calibration. The first is described above.
The self-calibration results, ranging from 1◦ to 360◦, are computed as the average of the six
measurement results. The maximum standard deviation of all angle errors is 0.01". The
standard uncertainty is 0.01"/

√
6 = 0.0041". The combined standard uncertainty, the root

sum square of the two uncertainty contributions, is 0.01". The effective degree of freedom
νeff of the combined standard uncertainty is 53. Thus, the appropriate coverage factor can
be set to k = 2.01 from the t-distribution of the aforementioned effective degree-of-freedom
value. The expanded uncertainty for a confidence level of 95% is 0.02.

The reliability of measurements by the shift-angle method is calculated as the En
number, given as follows:

En =
|α(θ)−µ|√
U2

shft−U2
self

(13)

where α (θ) is the measured results of the shift-angle method with uncertainty Ushift, and
µ is the self-calibration results with uncertainty Uself. Figure 12 shows the difference in
calibration results between self-calibration and the shift-angle method. The maximum En
number is 0.69, which is less than 1. The En number means that the shift-angle method is
considered reliable.

4. Discussion and Conclusions

In this study, we propose a shift-angle method for calibrating rotary encoders. With
this method, we use the autocollimator and the 24-faced polygon as an example. In
practice, the polygon with any number of faces can be used. The traditional method uses
an autocollimator and a 24-faced polygon, and the angles at which it can be calibrated are
limited by the pitch angle of the polygon. However, by using the shift-angle method, the
angles smaller than the pitch angle of the polygon can be calibrated.

We set-up the autocollimator and the 24-faced polygon on the SelfA rotary encoder to
verify the proposed shift-angle method. Twelve sensor heads and one rotary encoder are
installed in the SelfA rotary encoder. The SelfA rotary encoder can also be calibrated using
a self-calibration. Therefore, the SelfA rotary encoder is calibrated using the proposed
shift-angle method and self-calibration. The difference in calibration results obtained using
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the two methods is less than ±0.1". According to the ISO GUM, the expanded uncertainty
of the proposed shift-angle method is 0.15". According to the En number evaluation, the
proposed shift-angle method is feasible for practical use.
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