friried applied
e sciences

Article

Parallel Bidirectionally Pretrained Taggers as
Feature Generators

Ranka Stankovié¢ L*(© Mihailo Skori¢ 't

check for
updates

Citation: Stankovi¢, R.; Skori¢, M.;
Sandrih Todorovié, B. Parallel
Bidirectionally Pre-Trained Taggers

as Feature Generators. Appl. Sci. 2022,
12,5028. https://doi.org/10.3390/
app12105028

Academic Editors: Evgeny Nikulchev

and Vladimir Borisovich Barakhnin

Received: 19 March 2022
Accepted: 1 May 2022
Published: 16 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Branislava Sandrih Todorovi¢ 2

Faculty of Mining and Geology, University of Belgrade, Djusina 7, 11120 Belgrade, Serbia;
mihailo.skoric@rgf.bg.ac.rs

Faculty of Philology, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia;
branislava.sandrih@fil bg.ac.rs

Correspondence: ranka.stankovic@rgf.bg.ac.rs

t These authors contributed equally to this work.

Abstract: In a setting where multiple automatic annotation approaches coexist and advance separately
but none completely solve a specific problem, the key might be in their combination and integration.
This paper outlines a scalable architecture for Part-of-Speech tagging using multiple standalone
annotation systems as feature generators for a stacked classifier. It also explores automatic resource
expansion via dataset augmentation and bidirectional training in order to increase the number of
taggers and to maximize the impact of the composite system, which is especially viable for low-
resource languages. We demonstrate the approach on a preannotated dataset for Serbian using nested
cross-validation to test and compare standalone and composite taggers. Based on the results, we
conclude that given a limited training dataset, there is a payoff from cutting a percentage of the initial
training set and using it to fine-tune a machine-learning-based stacked classifier, especially if it is
trained bidirectionally. Moreover, we found a measurable impact on the usage of multiple tagsets to
scale-up the architecture further through transfer learning methods.

Keywords: annotation; natural language processing; feature extraction; composite structures; part of
speech

1. Introduction

Automatic assignment of elements of the Part-of-Speech (POS) category, such as
nouns, verbs, adjectives, etc., to words or text chunks is well-known and is one of the
most common Natural Language Processing (NLP) tasks. POS-tagging has applications
in many NLP pipelines, including Document Classification, Named Entity Recognition,
Sentiment Analysis, and Question answering [1]. Task-performing software, usually labeled
POS-tagger, can be either rule-based using lookup-tables, dictionaries, and/or extracted
linguistic rules [2]; stochastic-based using various machine learning technologies from
support vector machines [3] to the recurrent neural network (RNN) [4] and Deep Neural
Networks [5]; or hybrid, combining the two, with an example being the TreeTagger, a
software employing both lookup tables and dictionaries with the Hidden Markov Models
(HMM) stochastic approach [6].

For Serbian, TreeTagger has long been deemed the optimal tagging approach [7]. It
relies on rich lexical data being available for language [8], but the spaCy framework [9],
which uses a more contemporary machine learning technology seems to be a promising
alternative [10]. Experiments with other taggers, such as the Natural Language Toolkit
(NLTK) library POS-tagger [11] have not produced satisfying results [12]. Stanford’s new
conditional random fields (CRF)-based Stanza system [13] also utilizes additional pre-
trained resources, like word embedding models and dependency trees, in order to achieve
an improved performance. It was remastered for Serbian under the name Classla [14] and
achieved quite good, but not out of the ballpark, results for POS-tagging.

Appl. Sci. 2022, 12, 5028. https:/ /doi.org/10.3390/app12105028

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105028
https://doi.org/10.3390/app12105028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5123-6273
https://orcid.org/0000-0003-4811-8692
https://orcid.org/0000-0002-2714-427X
https://doi.org/10.3390/app12105028
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105028?type=check_update&version=1

Appl. Sci. 2022,12, 5028

20f17

1.1. Related Work

The first comparative analysis of POS-taggers applied to texts in Serbian was con-
ducted using 10-fold cross validation and compared three different taggers [15]. The study
reported a high performance by both TnT (Trigrams’N'Tags) [16] and the TreeTagger [6]
tool (accuracy on the training set, 93.86% and 91.78%, respectively), whilst SVMTool [3]
was shown to have a somewhat better performance in certain special cases. The author
also noted the possibility of combining different tagging methods and tools and integrating
these with other NLP environments to open a wide area for further investigations and
experiments regarding these solutions.

Another study [7] experimented with three different taggers, namely the TreeTagger,
TnT, and Unitex [17], for the purpose of annotating the Corpus of Contemporary Serbian
(SrpKor2013) [18]. After an exhaustive evaluation and discussion, the author named
TreeTagger as the best candidate and applied it for annotation of the SrpKor2013. This
choice was justified by the fact that TreeTagger assigns the information about the lemma,
which is an especially desired feature in the task of corpus tagging.

We also recently compared several versions of TreeTagger and spaCy for Serbian [19] and
found that each system has specific pros and cons. While spaCy’s RNN-based contemporary
approach to training gives it a slight edge when there is a high token overlap between
the training and test sets, it underperforms compared with TreeTagger when dealing with
unfamiliar words. When TreeTagger is in such a situation, a dictionary look-up is performed,
but spaCy lacks such an instrument in its out-of-the-box form. The main question remaining
is what is the best way to combine the pros of these taggers to get the optimal results.

An experiment combining multiple POS-taggers for Swedish [20] concluded that most
types of combination algorithms work better than the best standalone tagger. Another
combination attempt was done for Icelandic [21], where the accuracy was improved by
nearly two percent using multiple taggers and simple combination algorithms. These
papers established a basic set of combining techniques. The baseline is voting, where the
tag with the most votes from different taggers is picked. The problem with this approach
is that it does not work at all when only two taggers are available, and even if there are
more taggers available, there is a high chance of a tie occurring, which cannot be resolved
without the implementation of another algorithm. A slight improvement is offered through
weighted voting, which applies weights to different taggers or tags, so the chance of a tie
is lowered. Other techniques, such as bidding and scoring, require taggers to output tag
probabilities. In bidding, the final tag is the one with the highest probability among all tags
from all taggers, while in scoring, probabilities for tags are summed up among taggers, and
the tag with the highest sum is selected.

The latest milestone in the development of composite POS-taggers is the stacking
technique. This approach is used to eliminate the main cause of the low performance
of composite taggers—the low-performing standalone tagger, offering high probabilities
for its choice. This approach adds another supervised classifier on top of the results of
standalone taggers, and if the classifier is well trained, it can learn that the low-performing
tagger is not to be trusted. The initial experiment using probabilities as features [22]
explored the composite system, which uses probabilistic outputs (for each tag and for each
standalone tagger) of several standalone taggers as features for an HMM stacked classifier,
which produces the final tag output.

1.2. Motivation

Based on these previously conducted experiments, we concluded that, in general, the
composite tagging approach has two fundamental requirements:

1. Multiple training and tagging technologies must be available.
2. These existing technologies must differ in their approaches or at least yield different
results (ideally including unique correct annotations).

Appl. Sci. 2022,12, 5028

30f17

The first requirement is undoubtedly true, as different POS-taggers achieve good
results, but for the second requirement requires the testing of different taggers and the
attempt to procure which ones will contribute the most in a composite environment.
Our preliminary analysis for this experiment, which was in the form of a comparison
of mislabeled tokens between TreeTagger and spaCy, supported the hypothesis that our
existing taggers do provide different results, despite their similar levels of performance.
TreeTagger correctly guessed about 8% of tags that spaCy missed, while SpaCy correctly
guessed about 3% of tags that TreeTagger did not, which is an indicator that further
improvement is possible.

We performed another experiment to uphold this point: since TreeTagger has a built-in
system for outputting probabilities for each tag (the side effect of HMM usage), we devised
a simple composite system that produces a single tag from these two taggers (Figure 1). If
the taggers disagree on an assigned tag, the final decision is made based on TreeTagger’s
probability output for the selected tag. A probability of over 50% gives it a higher weight,
and that tag is chosen as the final answer; otherwise, spaCy’s selected tag is picked. The
application of this algorithm found another 0.55% accuracy improvement over the initial
TreeTagger and another 1.03% improvement over the spaCy result, which was a green flag
for further inspection of this methodology.

tag 1 score (tag1
\ (TreeTagger) / \ favalispa) / \ probability)

[|

y

tag1=tag2 OR score>0.5

tag2 is final tag tag1 is final tag

Figure 1. Simple composition algorithm based on the outputs of the TreeTagger and spaCy POS-
taggers, together with TreeTagger’s probability outputs.

1.3. Research Questions, Aims, Means, and Novelty

In this paper, we propose a novel stacked language-independent classifier architecture.
We use probabilistic outputs of multiple bidirectionally pretrained POS-taggers (spaCy,
TreeTagger and Stanza) as inputs to an improved neural network classifier. The approach is
then evaluated on texts in Serbian with the aim of answering several research questions.

RQ1 Is bidirectional training of POS-taggers an appropriate way to create new, independent
models of unique value?

RQ2 Can composition-based POS-taggers outperform standalone pretrained taggers?

RQ3 Is the stacked classifier the optimal way to combine outputs of pretrained POS-taggers
in order to improve the overall performance and stability?

RQ4 Is bidirectional training of POS-taggers through dataset augmentation an easy and ap-
propriate way to further improve the results of the stacking architecture as compared
with standalone taggers?

To that end, we used the following steps:

1. Procure a balanced dataset of texts, preannotated for POS using at least one tagset;

2. Test several POS-taggers that are able to output the probabilities necessary for our
stacked architecture, train them bidirectionally using dataset augmentation, and de-
termine which ones would contribute most in a composite environment by measuring
their mutual entropy and their ability to produce uniquely correct annotations;

3. Train composition-based classifiers that use probabilistic outputs of selected pre-
trained standalone taggers as features;

4. Evaluate the relative performance of standalone taggers, unidirectionally and bidirec-
tionally built composite taggers, as well as several other combination techniques.

The main contributions of this paper are the following:

Appl. Sci. 2022,12, 5028

40f17

1. Anovel bidirectional training architecture, where the input is not only the verticalized

training set but its augmented, inverted variant as well;

A novel stacked tagger architecture combining off-the-shelf taggers;

3. The first bidirectional combined POS-tagger for the Serbian language, which outper-
forms the state-of-the-art taggers [19];

4. An up-to-date comparative analysis of the state-of-the-art taggers.

N

This article is structured as follows. The second section introduces the dataset that
was used for the training and evaluation of POS-taggers for this research and explores the
process of initial tagger selection. It also tackles the methodology used for the bidirectional
training of taggers and explores training, tagging, and evaluation pipelines. The third sec-
tion presents the results obtained through the evaluation process, followed by a discussion
of the results and concluding remarks, together with plans for future research.

2. Materials and Methods

Training and testing of all presented taggers were done using a publicly available
annotated corpora for Serbian, SrpKor4Tagging (https://live.european-language-grid.
eu/catalogue/corpus/9295, accessed on 11 March 2022), with 342,804 annotated tokens.
Roughly one-third of the dataset tokens originated from literary texts (novels and novel
excerpts), while the rest originated from nonliterary texts (news articles, textbooks, and
administrative texts) [19].

The dataset is segmented into sentences and pretagged with two different tagsets—the
Universal POS tagset consisting of seventeen classes (https://universaldependencies.org/
u/pos, accessed on 11 March 2022), which was mainly used in this experiment, and the Sr-
pLemKor POS tagset consisting of sixteen classes (www.korpus.matf.bg.ac.rs/SrpLemKor/
tagset.html, accessed on 11 March 2022), which was developed for Serbian morphological
dictionaries [SMD] [23], in accordance with traditional, descriptive Serbian grammar. The
Unitex corpus processing system and SMD were used to preannotate tokens, which were
manually disambiguated. For the purposes of this experiment, the Universal POS tagset
was used for the training and evaluation of all taggers, and sentences were randomly
shuffled to avoid bias, during both the initial tests and the subsequent evaluation.

Among the 342,804 corpus words, there are 33,343 types (different tokens) and
14,588 different lemmatized forms. The frequency distribution within Universal POS tagset
is as follows: NOUN (88832), PUNCT (48993), ADJ (35924), VERB (32154), ADP (30474),
AUX (18591), CCON]J (16454), DET (15598), PART (11482), ADV (10881), SCONJ] (10751),
NUM (9729), PRON (6008), PROPN (4487), X (2393), and INTJ (52). The frequency distribu-
tion within the SrpLemKor tagset is as follows: N (93281), V (50745), A (35924), PUNCT
(33275), PREP (30474), CON] (27205), PRO (21606), SENT (15718), PAR (11458), ADV
(10905), NUM (9539), ABB (2016), X (288), RN (190), PREF (127), and INT (52).

To maximize the impact of the composite architecture, we undertook a thorough
inspection of POS-tagger candidates. We wanted the taggers in the composite system to
be as good as possible (performing well as standalone taggers in the first place) and as
unique as possible. This is because there is no point in combining taggers that yield similar
results—their outputs should be diverse. On the other hand, there should also be as many
of them as possible to achieve optimal results [22].

During the initial testing, we trained five POS-tagging systems (TreeTagger, spaCy, RN-
NTagger, Stanza, and NLTK) for the Universal POS tagset on 90% of our prepared dataset using
default out-of-the-box settings and annotated the remaining 10% with each tagger for testing
purposes. We supplemented TreeTagger with a publicly available version of the previously men-
tioned SMD, dubbed SrpMDA4Tagging (https:/ /live.european-language-grid.eu/catalogue/
ler /9294, accessed on 11 March 2022), as the lexicon [19,23,24], and we supplemented the Stanza
tagger with a pretrained model of word embedding vectors available at the Hugging Face page
(https:/ /huggingface.co/stanfordnlp /stanza-sr/tree/main/models/ pretrain, accessed on 11
March 2022). As probabilistic outputs were used for testing, all taggers were required to
output a probability for each tag/class. For TreeTagger and NLTK (using the multinominal

https://live.european-language-grid.eu/catalogue/corpus/9295
https://live.european-language-grid.eu/catalogue/corpus/9295
https://universaldependencies.org/u/pos
https://universaldependencies.org/u/pos
www.korpus.matf.bg.ac.rs/SrpLemKor/tagset.html
www.korpus.matf.bg.ac.rs/SrpLemKor/tagset.html
https://live.european-language-grid.eu/catalogue/lcr/9294
https://live.european-language-grid.eu/catalogue/lcr/9294
https://huggingface.co/stanfordnlp/stanza-sr/tree/main/models/pretrain

Appl. Sci. 2022,12, 5028

50f17

Naive Bayes), probabilities were readily available, and for the three RNN-based taggers,
RNNTagger, spaCy, and Stanza, a Softmax (normalized exponential) function was used.

exp (x) o

Softmax(x;) = Texp (x))
]]

where x; is an input vector and x; is and output vector. This was applied to the output
tensors to procure the actual probabilities. Using this method, a vector of probabilities was
output by all taggers for each token in the tagged test set. To test how unique each tagger’s
outputs were, we used these vectors to calculate the average Cross-Entropy Loss [CEL]
using the formula

CEL(7,y) = —) jlogy @)

where 7 is the predicted vector and y is the target vector for every token for every pair of
taggers. This was used to detect pairs giving results that were too similar to justify the
inclusion of both taggers in the composite system. These cross-results are shown in the
upper half of Table 1.

Table 1. Cross-Entropy Loss (CEL) between probabilistic outputs of tagger pairs (top), and the
average CEL, test set CEL, uniqueness score, and number of unique correct annotations (UCA) for
each tagger with outlying values presented in bold (bottom).

TreeTagger spaCy RNNTagger Stanza NLTK Test Set
TreeTagger 6.15 6.81 6.40 7.79 4.25
spaCy 6.15 6.09 3.35 10.14 5.19
RNNTagger 6.81 6.09 5.27 5.82 6.84
Stanza 6.40 3.35 527 9.93 5.71
NLTK 7.79 10.14 5.82 9.93 9.05
average CEL 6.79 6.43 6.00 6.24 8.42
test set CEL 4.85 5.19 6.84 5.71 9.05
uniqueness 1.94 1.24 —0.84 0.53 —0.63
UCA 1164 538 17 391 0

For each tagger, we also calculated the total average CEL, the CEL against correct
annotations (test set CEL), and the difference between the two (uniqueness score) as well
as counting unique correct annotations (UCA). Each time a tagger correctly predicted a
POS tag for a token that no other tagger predicted correctly, it was awarded one UCA
point. These additional metrics are shown in Table 1 (bottom half) and indicate how good
and how unique each of these taggers is and which of them satisfy the composite system
requirements. Suitable taggers had to have a high average CEL and a low test set CEL,
yielding a high uniqueness score and a number of UCA points, the higher the better.

NLTK was immediately identified as an outlier with a negative uniqueness score
(—0.63), despite a very high average CEL (8.42), and most importantly, it gained no UCA
points. RNNTagger, Stanza, and spaCy were all built upon the same RNN technology and
trained on the same dataset, so their results were bound to be similar, as demonstrated by the
smallest CEL between these taggers shown in Table 1. However, the RNNTagger was the only
tagger other than NLTK with a negative uniqueness score (—0.84), with only seventeen UCA
in the set of over 30,000 tokens. Further inspection showed that most of its correct annotations
were also correctly annotated using the spaCy or Stanza taggers but not vice-versa.

Upon reflecting on the results, we decided to drop NLTK and RNNTagger from
further experiments and focus on bidirectional training of the TreeTagger, spaCy, and
Stanza taggers and their integration into the composite environment.

2.1. Bidirectional Training

Bidirectional training was popularized primarily via the phenomenon of Bidirectional
Encoder Representations from Transformers (BERT) [25] and, later, its derivatives. While

Appl. Sci. 2022,12, 5028 60of 17

BERT uses bidirectional training for maximizing context awareness (using both left and
right contexts in the creation of context-aware word embeddings), we used it to train
separate, standalone models of our POS-taggers, which we later combined in a composite
bidirectional architecture.

To test if this is feasible, we trained three new taggers on the inverted dataset (gener-
ated simply through the inversion of our preannotated token array) with no other changes
to the training procedures. The only difference in these inverted taggers (—I) was that they
were supplied with inverted texts during tagging, and the obtained results needed to be
inverted again to preserve the original token order. To tag the sentence Hello world! using
an inverted tagger, you need to supply it with the following list of tokens:

1. !
2. world
3. Hello

and simply invert the resulting array of tags or tag probabilities. As one of the goals
was to test our hypothesis that these inverted taggers satisfy the composite environment
requirements and perform well as standalone taggers, we recreated the tests from the
previous section, and the results are presented in Table 2. The only addition is the bottom
row, which shows the taggers’ bidirectionally unique correct annotations (BUCA). Each
time a tagger correctly annotates a token missed by its inverted counterpart (and vice-versa)
it gains a BUCA point, and a higher BUCA score represents more effective bidirectional
training of the tagger.

Table 2. CEL between tagger pairs, including the inverted taggers (top), average CEL, test set CEL,
uniqueness score, and UCA and BUCA for each tagger (bottom) with some outlying values presented

in bold.

TreeTagger spaCy Stanza TreeTagger-1 spaCy-I Stanza-I
TreeTagger 6.15 6.40 1.54 6.18 6.27
spaCy 6.15 3.35 6.41 4.12 4.00
Stanza 6.40 3.35 6.53 4.35 3.19
TreeTagger-I 1.54 6.41 6.53 6.43 6.18
spaCy-I 6.18 412 4.35 6.43 5.06
Stanza-1 6.27 4.00 3.19 6.18 5.06
Average CEL 531 4.81 4.76 5.42 523 4.94
test set CEL 4.25 5.19 571 4.58 517 6.05
uniqueness 1.06 —0.38 —-0.95 0.84 0.06 -1.31
UCA 57 59 57 42 59 48
BUCA 444 1038 1002 394 1064 695

We found that inverted taggers not only have actual unique contributions but, in
some cases, outperform the standard taggers (spaCy-I against spaCy BUCA). Even in the
case of TreeTagger, which had a very modest CEL of 1.54 (TreeTagger row, TreeTagger-I
column of Table 2), UCAs were still found. Taggers also showed only small differences
in the average CEL and test set CEL with no specific outliers. The highest recorded CEL
against the test set was 6.05 from the Stanza-I tagger, which was still better than the results
from NLTK and RNN-Tagger presented in the previous section (6.84 and 9.05, respectively).
Finally, by comparing the UCAs between all six taggers (UCA row in Table 2), we found a
tendency toward an equal dispersion, making each of these six taggers equally suitable for
the composite environment.

2.2. Training and Tagging Pipelines

For the purposes of this research, we devised one algorithm for bidirectional training
of the proposed stacked architecture and another for tagging documents using the trained
resources. The training pipeline is composed of the bidirectional training of the standalone

Appl. Sci. 2022,12, 5028

7 of 17

taggers and the fine-tuning of a stacked classifier using their respective probabilistic outputs
on a token-level. This algorithm is depicted in Figure 2 and can be divided into four steps.

Annotated
dataset
Dataset split —;

/ Training /. >
set array

Array inversion =

TreeTagger
training

~» spaCy training l —-<— spaCy training |«

Stanza training |«

TreeTagger
training

= Stanza training

a

A 4
Tuning 3 3 i i
Tagging [«— > Tagging Array inversion
Tuning tag
array

Softmax* € ---cuuu- Array inversion
Neural network

training

Probability
3D tensor

Figure 2. Training algorithm for the composite model with the right side (connected via dashed line)
being the bidirectional expansion. The architecture is vertically scalable (uncontainable) with the
addition of any number of new taggers bidirectionally—represented with ...*.

(1) Training and tuning set formation. First, we group annotated sentences into two
chunks (we shuffled them beforehand and used a four to one ratio, although this is not
obligatory). We used the bigger chunk as the training set and the smaller chunk as a tuning
set, splitting the data vertically into two separate arrays: one containing only tokens and
the other containing correct POS tags for those tokens. The first step resulted in three arrays:
the training set containing both tokens and POS tags; one tuning set containing only tokens;
and the other tuning set containing only the POS tags.

(2) Standalone tagger training. We used the previously built training set to train the
selected standalone taggers. The architecture is vertically scalable, as presented in Figure 2,
where ...* denotes any number of additional taggers, with the only requirement being that
they produce probabilistic outputs. We used the TreeTagger, spaCy, and Stanza POS-taggers
for the experiment and trained them bidirectionally with standard out-of-the-box training
for each tagger. Taggers do not need to use the same tagset, as every tag for every tagger
becomes a new, separate feature (note, however, that this will render their standalone
evaluation for resulting tagset pointless). Basically, the second step results in standalone
tagger models trained on the bigger portion of the annotated dataset.

(3) Creation of the probability tensor. This tensor was formed using the tuning token
array created in step 1 and the pretrained standalone taggers created in step 2. It should be
noted that it is also possible to use other pretrained taggers, but they should be trained on
the set not overlapping the tuning set to avoid bias. We took probabilities for each tag from
each tagger used (inverted taggers tagging the inverted array of tokens) and for each token
in the tuning array (by applying the SoftMax function to normalize outputs of RNN-based

Appl. Sci. 2022,12, 5028

8of 17

taggers). These probability matrices (for each token and for each tag) for each standalone
tagger were concatenated into a single tensor object, the output of this step.

(4) Stacked classifier training. Stacked classifier training was performed using the tuning
tag array created in the first step and the probability tensor created in the previous step.
Probabilities from the tensor beaome features of each token when training the classifier, while
correct tags for those tokens (tuning tag array) became classes to be predicted. For the
stacked classifier, we used a single perceptron, the simple artificial neural network with one
input layer (one node for every feature) and fully connected with a single output layer (one
node for every tag). The final product of this step was a neural network that could transform
combined probabilistic outputs of all standalone taggers into a single tag for each token.

We created the tagging architecture (Figure 3) in accordance with the previously
detailed training architecture. It requires the trained stacked classifier and all the pretrained
taggers used in its preparation and consists of three steps.

(1) Preprocessing. In this step, we prepared an array of tokens to be tagged.

(2) Feature generation. We bidirectionally tagged the array prepared in the previous
step. As is usual for inverted taggers, the inverted array was tagged, and the output was
inverted once again. The Softmax function was applied to transform the outputs of the
RNN-based taggers into probabilities.

(3) Using the stacked classifier. Based on the probabilities of each tag from each
tagger from the previous step, a single tag was output for each token using the trained
perceptron-based stacked classifier.

Preprocessing

HiEszeses! - | Array inversion |-
text

I
I

=> Tagging <= =t Tagging Em

L '

Softmax* ¢ ----- Array inversion

Probability
3D tensor

Tag array

Figure 3. Tagging algorithm used in our composite model with the right side (connected via dashed
line) being the bidirectional expansion. The architecture is vertically scalable (uncontainable) with an
addition of any number of new taggers bidirectionally—represented with ...*.

Appl. Sci. 2022,12, 5028

90f17

2.3. Evaluation

For the evaluation, we used the aforementioned dataset and the training and tagging
architecture to procure average weighted f-scores for tagging with the Universal POS
tagset. Since we had a stacked classifier, we used a five-fold over five-fold nested cross-
validation for the evaluation with 25 evaluation runs conducted in total (Figure 4). Since
a 4 to 1 ratio was used for splitting into both training and testing as well as training and
tuning sets, in each run, 64% of the dataset was used to train the standalone taggers, 16%
was used to train the stacked classifier, and 20% was used for testing the performance of all
taggers.

outer loop
(each square - 20% of sentences)

fold 1
fold 2
fold 3
fold 4
fold 5

inner loop
(each square - 16% of sentences)

runl

run 2

run 3

run 4

run5

Figure 4. Outer and inner loops of nested cross-validation. In the outer loop, 20% of the annotated
sentences were used as the test set. In the inner loop, the remaining 80% were split in a 4:1 ratio,
resulting in 64% for the training set and 16% for the tuning set for each run.

For each of these runs, we trained six different standalone taggers (three standard and
three inverted) and two stacked classifiers (one using all six taggers and one using only the
three standard ones). For each run, we also tested three additional rule-based composition
algorithms: voting, bidding and scoring.

3. Results

The evaluation results (in the form of weighted f;-scores) for each standalone tagger
were averaged out for each outer cross-validation fold and are presented in Table 3. The
upper section of the table shows the results grouped by tagger and fold, while the lower
section of the table shows the average, minimum and maximum f;-scores, as well as the
performance stability score (calculated as the ratio of the minimum and maximum scores)
for each tagger.

Appl. Sci. 2022,12, 5028

10 of 17

Table 3. Comparison of the averaged weighted f1-scores for each of the outer five folds and each of

the six tested standalone taggers (top), and a comparison of their average, minimal, and maximal

scores as well as their stability, calculated as the ratio of minimum to maximum scores (bottom).

Fold spaCy spaCy-I TreeTagger TreeTagger-I Stanza Stanza-I
#1 0.9465 0.9483 0.9519 0.9539 0.9389 0.9275
#2 0.9457 0.9467 0.9538 0.9522 0.8760 0.8911
#3 0.9470 0.9428 0.9550 0.9532 0.8819 0.9254
#4 0.9436 0.9467 0.9556 0.9540 0.9386 0.8839
#5 0.9448 0.9458 0.9547 0.9535 0.8741 0.8431
average 0.9455 0.9461 0.9542 0.9534 0.9019 0.8942
minimum 0.9436 0.9428 0.9518 0.9522 0.8741 0.8431
maximum 0.9470 0.9483 0.9556 0.9540 0.9389 0.9275
stability 0.9964 0.9942 0.9961 0.9981 0.9310 0.9090
For each of the five folds, we also calculated a total average score across all standalone
taggers and extracted the best score (among the standalone taggers) in each fold to be used
as a baseline for testing the relative performance levels of the four composite methods
(voting, bidding, scoring and stacking). The results of these tests are presented in Table 4 as a
comparison of the baseline and unidirectionally built composite methods and in Table 5 as a
comparison of the baseline and bidirectionally built composite methods. The lower sections
of these two tables also present the same compiled metrics mentioned in the description
provided for Table 3.
Table 4. Comparison of the derived baseline (left) and averaged weighted f;-scores for each of the
outer five folds and each of the four tested composition methods built on the unidirectionally trained
standalone taggers (right). The best result for each fold and each additional metric is shown in bold.
Fold St‘l:i,l;iraalgéle Besstta ?Bdaasleolrillie) Voting Bidding Scoring Stacking
#1 0.9458 0.9519 0.9584 0.9608 0.9718 0.9718
#2 0.9252 0.9538 0.9495 0.9589 0.9677 0.9700
#3 0.9280 0.9550 0.9490 0.9597 0.9668 0.9715
#4 0.9459 0.9556 0.9503 0.9597 0.9715 0.9721
#5 0.9245 0.9547 0.9612 0.9611 0.9677 0.9715
average 0.9339 0.9546 0.9537 0.9600 0.9691 0.9714
minimum 0.9245 0.9538 0.9490 0.9589 0.9668 0.9700
maximum 0.9459 0.9556 0.9612 0.9611 0.9718 0.9721
stability 0.9734 0.9964 0.9881 0.9955 0.9979 0.9989
Table 5. Comparison of the derived baseline (left) and averaged weighted f;-scores for each of the
outer five folds and each of the four tested composition methods built on the bidirectionally trained
standalone taggers (right). The best result for each fold and each additional metric is shown in bold.
Fold Stz:;i;lg:e Besstta ?Bdaaslglrilr?e) Voting Bidding Scoring Stacking
#1 0.9445 0.9539 0.9614 0.9724 0.9756 0.9756
#2 0.9276 0.9538 0.9536 0.9697 0.9742 0.9752
#3 0.9342 0.9550 0.9559 0.9721 0.9755 0.9754
#4 0.9371 0.9556 0.9599 0.9721 0.9745 0.9751
#5 0.9193 0.9547 0.9651 0.9741 0.9736 0.9762
average 0.9325 0.9546 0.9592 0.9721 0.9747 0.9755
minimum 0.9193 0.9538 0.9536 0.9697 0.9736 0.9751
maximum 0.9445 0.9556 0.9651 0.9741 0.9756 0.9762
stability 0.9774 0.9961 0.9873 0.9977 0.9949 0.9978

Appl. Sci. 2022,12, 5028

11 of 17

The results presented in Tables 3-5 are compiled and visualized as a heatmap in
Figure 5. The upper section of the figure depicts a comparison of all standalone taggers and
unidirectionally built composite methods, while the lower section does the same but for
bidirectionally built composite ones. The relative improvements visualized in the heatmap
were also quantified as percentages of the error reduction using the formula

a1 —4ao
1—610

®)

Error Reduction =

where 4y is the initial accuracy and a; is the supposedly improved one. The obtained
results are numerically presented as in Table 6, where the left side shows the error reduction
achieved using the unidirectionally-built composite methods, and the right side shows the
same for the bidirectionally-built methods.

Stanza-I
Stanza
spaCy
spaCy-I
TreeTagger-I
TreeTagger
baseline
voting
bidding
scoring
BEaST

#1
#2
#3
#4
#5
average
minimum
maximum
#1
#2
#3
#4
#5
average
minimum
maximum

unidirectional

bidirectional

Figure 5. Heatmap depicting differences in achieved f;-scores for all standalone taggers and unidi-
rectionally built composite ones (upper) and bidirectionally built ones (lower). Yellow indicates the
average f1-scores, red (left-side) indicates the relative decrease, and green (right-side) indicates the
relative increase in the score.

Table 6. Relative error reduction achieved using the unidirectionally based composite methods (left)
and bidirectionally built methods (right) for each of the five outer folds (upper) and the compiled
metrics for each method (lower). Greatest improvements over the baseline are shown in bold.

Fold Voting Bidding Scoring Stacked Voting Bidding Scoring Stacked

#1 13.51% 18.50% 41.37% 41.37% 16.27% 40.13% 47.07% 47.07%

#2 —9.31% 11.04% 30.09% 35.06% —0.43% 34.42% 44.16% 46.32%

#3 —13.33% 10.44% 26.22% 36.67% 2.00% 38.00% 45.56% 45.33%

#4 —11.94% 9.23% 35.81% 37.16% 9.68% 37.16% 42.57% 43.92%

#5 14.35% 14.13% 28.70% 37.09% 22.96% 42.83% 41.72% 47.46%
average —1.34% 12.67% 32.44% 37.47% 10.87% 39.04% 44.72% 46.51%
minimum —13.33% 9.23% 26.22% 35.06% 2.93% 36.61% 44.77% 47.91%
maximum 14.35% 18.50% 41.37% 41.37% 21.40% 41.67% 45.05% 46.40%

The comparison of the results achieved using unidirectionally-built composite meth-
ods (Table 4) and bidirectionally-built composite methods (Table 5) was recompiled to

Appl. Sci. 2022,12, 5028

12 of 17

indicate their mutual differences and the results are displayed in Table 7. The table shows
relative f; score improvements achieved using the bidirectional architecture over uthe
nidirectional one (upper section) and the relative average, minimum, and maximum values
and the stability improvement (lower section).

Since the ambiguous words (ones that can be annotated with several different tags) are
a common issue in POS-tagging, we analyzed a few well known difficult cases for Serbian
to procure how different taggers resolved them. Results for three characteristic ambiguous
hard cases we tested are presented and discussed in the Appendix A.

Table 7. Relative improvements achieved using the bidirectional architecture over the unidirectional
one (upper section) and the relative average, minimum, and maximum values and the stability
improvement (lower section).

Fold Voting Bidding Scoring Stacking
#1 7.21% 29.59% 15.60% 13.48%
#2 8.12% 26.28% 20.12% 17.33%
#3 13.53% 30.77% 26.20% 13.68%
#4 19.32% 30.77% 10.53% 10.75%
#5 10.05% 33.42% 18.27% 16.49%

avg 11.65% 30.17% 18.14% 14.35%
min 7.21% 26.28% 10.53% 10.75%
max 19.32% 33.42% 26.20% 17.33%
stability 0.08% —0.22% 0.31% 0.10%

4. Discussion

From the results presented in Table 3 it can be seen that TreeTagger and spaCy gave
similar scores, with TreeTagger having a slight edge in both the average performance
(0.9542 and 0.9534 compared with 0.9455 and 0.9461) and stability scores (0.9961 and 0.9981
compared with 0.9964 and 0.9942), which aligns with our initial testing on this dataset.
TreeTagger was trained using an additional lexical input in the form of annotated dictio-
naries with over two million word forms with their possible Part-of-Speech and lemma
elements. Having dictionaries in the background, as expected, TreeTagger performed better
than the others for unambiguous words that are in the dictionary, but spaCy was better at
taking the context into account and resolving ambiguity. Another parallel was seen in the
comparison of inversely-trained and standard taggers, where TreeTagger outperformed
TreeTagger-1, and spaCy-I outperformed spaCy, both by a small margin of less than 0.1%.
Stanza-based taggers matched this performance on several occasions (folds 1 and 4 for
Stanza and folds 1 and 3 for Stanza-I), but they also displayed much greater instability
with scores of 0.931 and 0.909, which subsequently resulted in less impressive averages
of weighted f; scores (around 0.9). Nevertheless, inversely-trained taggers performed
similarly to standardly-trained ones, as shown in our initial tests for this experiment, which
affirms that inverted taggers are independent systems with unique value, giving the answer
to RQ1:

RQ1: Is bidirectional training of POS-taggers an appropriate way to create new independent models
of unique value?

As for the composition-based taggers, their clear advantage over the standalone
ones is visible in both Tables 4 and 5, as well as in Figure 5. This is in line with reports
from other studies, where most of the combination methods outperformed all of the
standalone taggers. The only exception in our experiment was voting against TreeTagger
and TreeTagger-I on folds 2, 3, and 4. The best overall f; score achieved using a standalone
tagger was 0.9556 (TreeTagger, fold 4), while the best result using composite methods was
0.9762 (bidirectional stacked classifier, fold 5), and the worst score achieved using the best
performing composition-based method was 0.97. As is visible in Table 6, three of the four

Appl. Sci. 2022,12, 5028

13 of 17

composition methods tested outperformed the baseline in all cases and in every category
with an error reduction of up to 47.91% and 9.23% achieved for the worst case, giving a
clear answer to RQ2:

RQ?2: Can composition-based POS-taggers outperform the standalone pretrained taggers?

Our single-perceptron-based stacked classifier outperformed all other composition
methods when it came to unidirectionally-built compositions, as is visible in Table 4. It
was only matched by the scoring method on fold 1, but it displayed the highest average
scores, the highest minimum and maximum scores, as well as the highest stability, reducing
the error rate of the baseline to an average of 37.47%, while the next best method (scoring)
provided an average error reduction of 32.44%.

When it came to comparing bidirectionally-built composite methods (Table 5), stacking
was again the best performing method with an average error reduction of 46.51%, but
the other methods improved slightly compared with the unidirectional architecture with
stacking providing an average error reduction of 44.72%. While this could be a sign of
stacking losing its improvement momentum with an increase in the number of taggers, it
is more probable that it has a less steep slope and that it just performs better than scoring
when dealing with less information. This is supported by its high stability, with a score
of 0.9978 across five folds. Nevertheless, considering its other advantages, such as the
possibility of using an open tagset and diminishing inputs from poor performance taggers,
together with the fact that it outperformed other composition-based tagging methods in
both of our tests in terms of both performance and stability, stacking was shown to be the
best overall method (followed by scoring, and then bidding), thus answering RQ3:

RQ3: Is the stacked classifier the optimal way to combine outputs of pretrained POS-taggers in
order to improve the overall performance and stability?

Relative improvements achieved through the use of the bidirectional architecture
shown in Table 7 displayed substantial improvements over the unidirectional one. The
bidirectional approach yielded improvements for all four tested methods in 100% of cases
with average improvements ranging from 11.65% to 30.17%. It also resulted in increased
minimum and maximum scores for all four methods and a stability improvement (up to
0.31%) for three out of the four tested methods. All of this undoubtedly answers RQ4:

RQ4: Is bidirectional training of POS-taggers through dataset augmentation an easy and appropriate
way to further improve the results of the stacking architecture over standalone taggers?

After observing an increase in performance with an increased number of standalone
taggers, we decided to try out one final run. As our dataset was annotated with two
different tagsets, we took advantage of the possibility offered by the stacking environment
to use them both. We trained another set of six standalone taggers on the second available
tagset (SrpLemKor) and added the outputs of those taggers as features for the stacked
classifier (increasing the number of features from 102 to 198). This final run resulted in an
f1 score of 0.9783, which is a higher score than the maximum score of any previous runs
(0.9762) and a clear indication that further improvements are possible.

Considering this, future research will focus on a more detailed evaluation of the
impact of training standalone models on additional tagsets (or other lexical information)
and adding those models to the stacked architecture in pursuit of additional performance
improvements.

Something that could also benefit future research is the extension of the evaluation
to other languages, where bidirectional training could have either a lesser or a higher
impact. More detailed research of the impact of the dataset size and ratios of its splitting
into training, tuning, and testing sets, as well as the impact of adding standalone taggers to,
or removing them from, the composition could also result in a better understanding of the

Appl. Sci. 2022,12, 5028

14 of 17

overall impact of the methodology for the task of POS-tagging as well as for other NLP
tasks.

Since the results obtained through this particular method are completely reliant on
the standalone taggers used for the training of the stacked classifier, they can be applied
for any language in which these standalone taggers are trained, making the approach
language-independent. Furthermore, the use of the Universal POS tagset, which has
corpora available for at least 122 languages (https:/ /universaldependencies.org/, accessed
on 11 March 2022) makes the existing framework suitable for many other languages.

5. Conclusions

The paper presented a composite POS-tagging system based on bidirectional expan-
sion as an alternative to the state-of-the-art stacked classifier. We tested the architecture
on an annotated dataset for Serbian with three different annotation systems (TreeTagger,
spaCy, and Stanza) and assessed the experiment as successful, confirming that

1. Bidirectional training of POS-taggers is an appropriate way to create new independent
models with unique value;

2. Composition-based POS-taggers outperform standalone pretrained taggers in the
majority of cases;

3. The stacked classifier is the optimal way to combine outputs of pretrained POS-taggers
in order to improve the overall performance and stability;

4. Bidirectional training of POS-taggers through dataset augmentation is an easy and
appropriate way to further improve the results of the stacking architecture over
standalone taggers.

Our bidirectional, expandable, and stacked tagger (BEaST) yielded improvements in
both performance and stability, providing an error reduction of up to 47.91%. Thus, we
conclude that this is a good approach to training a POS-tagger on a limited preannotated
dataset, especially considering the automatic expansion of the usable taggers domain
through bidirectional training, which is readily available through automatic dataset aug-
mentation. This is particularly viable for less-resourced languages, such as Serbian. As the
system is scalable, new taggers can also always be added into the mix as long as a unique
tuning dataset is used.

One final test also showed the possibility for further improvements by using more
than one tagset for feature generation, which opens a gateway to new research on stacked
classifier architecture expansion.

Author Contributions: Conceptualization, MS.and RSS.; methodology, M.S. and R.S,; software, M.S.;
validation, R.S. and B.S.T.; formal analysis, R.S.; investigation, B.S.T; resources, R.S.; data curation,
R.S.; writing—original draft preparation, R.S. and M.S.; writing—review and editing, all authors;
visualization, M.S.; supervision, R.S.; project administration, M.S. All authors have read and agreed
to the published version of the manuscript.

Funding: The results presented in this paper are based on research supported by the Ministry of
Education, Science and Technological Development, the contract on realization and financing of
scientific research work NIO-RGF in 2022, no. 451-03-68/2022-14/200126.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The annotated dataset used for the training and evaluation of models
in this research, SrpKor4Tagging, is available at https://live.european-language-grid.eu/catalogue/
corpus/9295 (accessed on 11 March 2022). The lexicon used for TreeTagger training, SrpMD4Tagging,
is available at https:/ /live.european-language-grid.eu/catalogue/lcr /9294 (accessed on 11 March
2022). The pretrained word vectors used to train Stanza taggers are available at https:/ /huggingface.
co/stanfordnlp/stanza-sr/tree/main/models/pretrain (accessed on 11 March 2022). The Python
package that was used to reproduce this experiment, BEaSTagger, is publicly available as a Github
repository at https://github.com/procesaur/BEaSTagger (accessed on 11 March 2022).

https://universaldependencies.org/
https://live.european-language-grid.eu/catalogue/corpus/9295
https://live.european-language-grid.eu/catalogue/corpus/9295
https://live.european-language-grid.eu/catalogue/lcr/9294
https://huggingface.co/stanfordnlp/stanza-sr/tree/main/models/pretrain
https://huggingface.co/stanfordnlp/stanza-sr/tree/main/models/pretrain
https://github.com/procesaur/BEaSTagger

Appl. Sci. 2022,12, 5028

15 of 17

Acknowledgments: The authors of this paper would like to thank Cvetana Krstev for kindly pro-
viding the annotated corpora used for the presented research and for constructive criticism on the
approach, Ivan Obradovi¢ for proofreading the manuscript, and to the anonymous reviewers for
their in-depth comments, suggestions, and corrections, which greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BEaST Bidirectional, Extendable and Stacked Tagger
BERT Bidirectional Encoder Representations from Transformers
BUCA Dbidirectionally unique correct annotations
CEL Cross-Entropy Loss

CRF Conditional random filed

HMM Hidden Markov Models

NLP Natural language processing

NLTK Natural Language toolkit

POS Part-of-speech

RNN Recurrent neural network

SMD Serbian morphological dictionaries

UCA unique correct annotations

Appendix A

For the analysis of (1) different taggers’ precision with respect to a particular part
of speech and (2) real-data examples (hard cases with ambiguous words), we randomly
selected a set of sentences, making a text sample with 5119 tokens.

The precision of TreeTagger for this dataset was best for ADJ, DET, NOUN, NUM,
PART, PROPN, SCON], and VERB, while TreeTagger-I was best for ADV and INT]J. SpaCy
was best for ADP and CCONJ, while spaCy-I was best for PRON. SpaCy and TreeTagger-I
had the same level of performance for AUX. For each tagger, we found cases where only
one tagger had the correct tag assigned: spaCy (58), Stanza (27), and TreeTagger (130). More
precisely, if we take direction into account, the following cases had only one tagger with
the correct tag assigned: spaCy (12), spaCy-I (17), Stanza (4), Stanza-1 (4), TreeTagger (5),
and TreeTagger-I (11). This proves that the use of several taggers is justified.

Table Al presents three ambiguous hard cases: je, sam and tu (totals are given in
boldface).

Table Al. Three ambiguous hard cases: je, sam and tu.

Token UPOS spaCy spaCy-I Stanza Stanza-I TreeTagger TreeTagger-I high BEaST
je 126 120 120 120 120 120 120 119 119
AUX 120 114 119 120 115 120 120 114 119
PRON 6 1 1 0 0 0 0 0 0
sam 31 30 27 25 27 22 26 28 28
ADJ 1 0 0 0 0 0 0 0 0
AUX 26 26 24 25 26 22 25 25 25
DET 4 4 3 0 1 0 1 3 3
tu 8 5 5 2 2 6 5 5 5
ADV 6 0 0 4
DET 2 1 1 2 2 2 1 1 1
Grand Total 165 155 152 147 149 148 151 152 152

The corpus word je can be (1) the form of the auxiliary verb jesam (to be) (the clitic
form of the third person singular, present tense) or (2) the form of the personal pronoun ona
(she) (the clitic form of the genitive or accusative singular). The form je appeared 126 times:
120 times as the form of the auxiliary verb jesam (to be) and 6 times as a form of the pronoun

Appl. Sci. 2022,12, 5028 16 of 17

ona (she). All forms of the verb jesam were annotated correctly, but TreeTagger missed all
pronouns and Spacy annotated only one correctly.

The form sam can be (1) the auxiliary verb jesam (to be) (the clitic form of the first
person singular of the present), (2) the every person pronoun (oneself), or (3) an adjective
meaning (alone, separated from others, without anyone else, lonely). The form appeared
31 times: 26 times as a form of the verb jesam, 4 times as a form of the pronoun, and once
as a form of the adjective. The forms of the verb jesam were annotated correctly by spaCy
and Stanza-I, but others missed 1-4 occurrences. Only spaCy annotated all pronouns , and
TreeTagger and Stanza missed them all.

The form tu can be the demonstrative pronoun taj (this) (feminine singular in the
accusative) (2 times) or the adverb tu (here) (6 times). Both taggers correctly annotated
the occurrences of the pronoun, but Spacy was much better at annotating the adverb: it
correctly tagged 5 out of 6 cases, while TreeTagger correctly tagged only one case.

References

1. Abney, S. Part-of-Speech Tagging and Partial Parsing. In Corpus-Based Methods in Language and Speech Processing; Young, S.,
Bloothooft, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 118-136. [CrossRef]

2. Brill, E. A Simple Rule-Based Part of Speech Tagger. In Proceedings of the Speech and Natural Language: Proceedings of a
Workshop, Harriman, NY, USA, 23-26 February 1992; pp. 112-116.

3. Giménez, J.; Marquez, L. SVMTool: A general POS Tagger Generator Based on Support Vector Machines. In Proceedings of the
Fourth International Conference on Language Resources and Evaluation (LREC’04), Lisbon, Portugal, 26-28 May 2004; European
Language Resources Association (ELRA): Lisbon, Portugal, 2004; pp. 43—46.

4. Wrébel, K. KRNNT : Polish recurrent neural network tagger. In Human Language Technologies as a Challenge for Computer Science and
Linguistics: 8th Language & Technology Conference, Poznati, Poland, 17-19 November 2017; Vetulani, Z., Paroubek, P, Eds.; Fundacja
Uniwersytetu im. Adama Mickiewicza: Poznar, Poland, 2017; pp. 386-391.

5. Huang, Z; Xu, W,; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991.

6. Schmid, H. Improvements in Part-of-Speech Tagging with an Application to German. In Natural Language Processing Using Very
Large Corpora; Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D., Eds.; Springer: Dordrecht, The
Netherlands, 1999; pp. 13-25. [CrossRef]

7. Utvi¢, M. Annotating the Corpus of Contemporary Serbian. Infotheca—]. Digit. Humanit. 2011, 12, 36a—47a.

8. Vitas, D.; Krstev, C. Processing of Corpora of Serbian Using Electronic Dictionaries. Prace Filologiczne 2012, LXIII, 279-292.

9. Honnibal, M.; Montani, I.; Honnibal, M.; Peters, H.; Landeghem, S.V.; Samsonov, M.; Geovedi, J.; Regan, J.; Orosz, G.; Kristiansen,
S.L.; et al. Explosion/spaCy: v2.1.7: Improved Evaluation, Better Language Factories and Bug Fixes. 2019. Available online:
https://zenodo.org/record /3358113 (accessed on 1 February 2022).

10. Sandrih, B.; Krstev, C.; Stankovi¢, R. Development and Evaluation of Three Named Entity Recognition Systems for Serbian—The
Case of Personal Names. In Proceedings of the International Conference on Recent Advances in Natural Language Processing
(RANLP 2019), Varna, Bulgaria, 2—4 September 2019; INCOMA Ltd.: Varna, Bulgaria, 2019; pp. 1060-1068. [CrossRef]

11. Bird Steven, E.L.; Klein, E. Natural Language Processing with Python; O’Reilly Media Inc.: Sebastopol, CA, USA: 2009.

12. Milovanovié, B.; Stankovi¢, R. Part of Speech Tagging for Serbian language using Natural Language Toolkit. In Proceedings
of the 7th International Conference on Electrical, Electronic and Computing Engineering IcCETRAN 2020, Etno village Stanisi¢,
Bosnia and Herzegovina, 8-10 June 2020; Popovi¢, D., Ed.; ETRAN Society: Belgrade, Serbia; Academic Mind: Belgrade, Serbia,
2020; pp. AII 1.1.1-AIl 1.1.5.

13. Qi, P; Zhang, Y.; Zhang, Y.; Bolton, J.; Manning, C.D. Stanza: A Python Natural Language Processing Toolkit for Many Human
Languages. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
Online, 5-10 July 2020; p. 8.

14. Ljubesi¢, N.; Dobrovoljc, K. What does Neural Bring? Analysing Improvements in Morphosyntactic Annotation and Lemmati-
sation of Slovenian, Croatian and Serbian. In Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing,
Florence, Italy, 2 August 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 29-34. [CrossRef]

15. Popovi¢, Z. Taggers Applied on Texts in Serbian. Infotheca—]. Digit. Humanit. 2010, 11, 21a-38a.

16. Brants, T. TnT—A Statistical Part-of-Speech Tagger. In Proceedings of the Sixth Applied Natural Language Processing Conference,
Seattle, WA, USA, 29 April4 May 2000; Association for Computational Linguistics: Seattle, WA, USA, 2000; pp. 224-231.
[CrossRef]

17. Sébastien, P. Unitex 3.0 User Manual. 2011. Available online: https://unitexgramlab.org/releases/3.1/man/Unitex-GramLab-3.
1-usermanual-en.pdf (accessed on 11 March 2022).

18. Utvi¢, M. Izgradnja Referentnog Korpusa Savremenog Srpskog Jezika. Ph.D. Thesis, University of Belgrade, Faculty of Philology,

Belgrade, Serbia, 2014.

http://doi.org/10.1007/978-94-017-1183-8_4
http://dx.doi.org/10.1007/978-94-017-2390-9_2
https://zenodo.org/record/3358113
http://dx.doi.org/10.26615/978-954-452-056-4_122
http://dx.doi.org/10.18653/v1/W19-3704
http://dx.doi.org/10.3115/974147.974178
https://unitexgramlab.org/releases/3.1/man/Unitex-GramLab-3.1-usermanual-en.pdf
https://unitexgramlab.org/releases/3.1/man/Unitex-GramLab-3.1-usermanual-en.pdf

Appl. Sci. 2022,12, 5028 17 of 17

19.

20.

21.

22.

23.

24.

25.

Stankovi¢, R.; Sandrih, B.; Krstev, C.; Utvi¢, M.; Skori¢, M. Machine Learning and Deep Neural Network-Based Lemmatization
and Morphosyntactic Tagging for Serbian. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille,
France, 11-16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 3954-3962.

Sjobergh, J. Combining POS-taggers for improved accuracy on Swedish text. In Proceedings of the 14th Nordic Conference of
Computational Linguistics, NoDaLiDa 2003, Reykjavik, Iceland, 30-31 May 2003; Volume 2003, p. 8.

Henrich, V.; Reuter, T.; Loftsson, H. CombiTagger: A System for Developing Combined Taggers. In Proceedings of the Twenty-
Second International Florida Artificial Intelligence Research Society Conference, Sanibel Island, FL, USA, 19-21 May 2009; Lane,
H.C., Guesgen, HW., Eds.; AAAI Press: Palo Alto, CA, USA, 2009.

Aliwy, A H. Combining POS taggers in master-slaves technique for highly inflected languages as Arabic. In Proceedings of the
2015 International Conference on Cognitive Computing and Information Processing(CCIP) 2015, Noida, India, 3-4 March 2015;
pp. 1-5. [CrossRef]

Krstev, C. Processing of Serbian—Automata, Texts and Electronic Dictionaries; University of Belgrade, Faculty of Philology: Belgrade,
Serbia, 2008; p. 228.

Ranka, S.; Cvetana, K.; Biljana, L.; Mihailo, S. Electronic dictionaries-from file system to lemon based lexical database. In
Proceedings of the 11th International Conference on Language Resources and Evaluation-W23 6th Workshop on Linked Data in
Linguistics: Towards Linguistic Data Science (LDL-2018), LREC 2018, Miyazaki, Japan, 7-12 May 2018; pp. 48-56.

Devlin, J.; Chang, M.W,; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

http://dx.doi.org/10.1109/CCIP.2015.7100682

	Introduction
	Related Work
	Motivation
	Research Questions, Aims, Means, and Novelty

	Materials and Methods
	Bidirectional Training
	Training and Tagging Pipelines
	Evaluation

	Results
	Discussion
	Conclusions
	Appendix A
	References

