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Abstract: Tracking aircraft and parachutes plays a vital role in airdrop experiments. It is necessary to
study a parachute’s open state and flight trajectory. More scholars are looking into how to efficiently
and accurately obtain parachute deformation data and trajectory data. At present, the actual data
collection primarily involves experimenters holding high-definition high-speed cameras to track
and shoot parachutes to obtain the image sequences of the parachutes during the airdrop process.
However, these methods cannot obtain the trajectories of the parachutes and they are susceptible to
interference from human factors. In this paper, we designed TuSeSy, an intelligent turntable servo
system that can track the aircraft and parachutes in airdrop tests automatically. Specifically, TuSeSy
generates the control commands according to the differences between the actual taken images and
the inferred images by tracking algorithms (so as to actually track the target). In addition, we propose
an effective multi-target tracking switch algorithm based on the image frame difference and optical
flow, to achieve real-time switching from the aircraft to the parachute in an airdrop test. To evaluate
the performance of TuSeSy, we conducted extensive experiments; the experimental results show
that TuSeSy not only solves the problem of wrong target tracking, but it also reduces computational
overhead. Moreover, the multi-target tracking switch algorithm has higher computing efficiency and
reliability compared to other tracking switch approaches, ensuring the practical applications of the
turntable servo system.

Keywords: turntable servo system; airdrop test; multi-target tracking switch; frame difference;
optical flow

1. Introduction

In modern warfare, due to changes in combat styles, airborne troops are important
forces used to achieve strategic campaign goals. Therefore, the construction and develop-
ment of airborne troops have received great attention globally. It makes sense to conduct
in-depth research on issues regarding airdropping combat personnel or materials to desig-
nated locations using a large transport aircraft as a platform. Parachutes play vital roles in
airdrops; it is necessary to study the parachute open state and parachute flight trajectory [1].

When a large transport aircraft is airdropped, after the fighters or materials are sep-
arated from the airframe, the parachute generally has four stages, from opening the
parachute bag to fully opening the parachute and then falling smoothly: the free fall
phase from leaving the transport aircraft to opening the parachute bag (Figure 1a); from the
parachute, pulling the parachute out of the bag to the straightening stage of the parachute
and the parachute line (Figure 1b); pulling the parachute and the parachute line until the
parachute is inflated (Figure 1c); the parachute is full of air to the steady landing stage
of stable descent (Figure 1d). Regarding an airdrop involving heavy equipment such as
tanks and infantry fighting vehicles, a pilot chute is usually added to guide the main
chute to open. Research shows that airdrop failures often occur during the first three
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stages [2]. Therefore, if the attitude changes of the parachute in these three stages can
be obtained, it will play an important role in the later design and improvement of the
parachute. In the fourth stage of the airdrop, if the flight trajectory of the parachute can be
accurately obtained, it can provide an effective reference for the design of the fixed-point
airdrop program.

Figure 1. Parachute movement stage: (a) free fall stage; (b) straightening stage; (c) inflatable stage;
(d) steady descent phase.

Regarding the above problems, more scholars are focusing on how to efficiently and
accurately obtain parachute deformation data and trajectory data. At present, the actual
data collection mainly involves experimenters holding high-definition high-speed cameras
to track and shoot a parachute to obtain the image sequences of the parachute during the
entire airdrop process. These images save detailed information such as parachute attitude,
which can be used for subsequent research and analysis. However, manual shooting has
many disadvantages [3,4]. First, the trajectory of parachutes cannot be obtained. Second,
when the parachute leaves the plane, it is a free fall motion and the speed of descent is very
fast. For inexperienced photographers, they will often lose the target. Third, shooting for a
long time requires a lot of physical strength, resulting in instability during shooting. Then
the quality of the shooting picture is significantly reduced; in severe cases, the target will
be lost.

In 2004, Mao et al. developed the parachute drop test system, which mainly collects
the parachute data by means of photoelectric tracking and records the real landing images
for subsequent research [5]. Liu et al. proposed a parachute measurement method based on
the Kalman filter. This method is carried out in semi-physical simulations and airdrop ex-
periments; the parachute motion parameters are measured at the same time [6]. The system
can track multiple targets simultaneously, with high reliability of airborne equipment and
resistance to shock. Zhu and Xiong applied GPS to the parachute airdrop test, mainly using
global positioning system (GPS) positioning principles, the spatial distributions of satellites,
and the distances between satellites and ground points to rendezvous the ground point
location method. The distance of the test point relative to the satellite is continuously and
synchronously measured to calculate the space position of the parachute target, and then
the flight trajectory of the parachute is obtained [7,8]. Gordon Strickert et al. from the
German Space Center installed a camera on a aircraft to record the relative motion of the
parafoil and the aircraft, and then calculated the flight attitude of the parafoil using digital
image technology according to the recorded relative motion information [9]. Yakimenko
and Berlind designed an automatic tracking system that tracked the position and flight
attitude of parachutes and dropped objects during an airdrop [10]. In summary, parachute
tracking has received a significant amount of attention from various countries. After years
of continuous exploration, researchers have proposed and implemented a variety of track-
ing methods. Each tracking method has different advantages and disadvantages, but in
general, the degrees of automation of these tracking methods are generally not high, and the
system is not intelligent enough. In the tracking process, experimenters are required to
participate throughout the whole process, and there is still a certain distance from the actual
artificial intelligence.

Therefore, in this paper, we mainly utilized the computer vision method to track
the aircraft and parachutes automatically. Specifically, we designed an turntable servo
system; its movement was controlled by means of machine learning algorithms to track
the aircraft and parachutes. In addition, we also propose an effective multi-target tracking
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switch algorithm based on the image frame difference and optical flow, realizing real-time
switching from the aircraft to the parachutes in the airdrop tests.

Our main contributions are as follows:

• We propose an turntable servo system named TuSeSy, which can track the aircraft and
parachutes in airdrop tests automatically. TuSeSy calculates the differences between
the taken images by cameras and the inferred images by tracking algorithms, and then
generates the control commands to track the aircraft and parachutes.

• To achieve real-time switching from the aircraft to the parachutes in the airdrop tests,
we designed an effective multi-target tracking switch algorithm based on the image
frame difference and optical flow.

• We conducted extensive experiments; the results show that TuSeSy cannot only solve
the problem of wrong target tracking, but also reduce computational overhead. More-
over, the multi-target tracking switch algorithm has higher computing efficiency and
reliability, ensuring the practical applications of the turntable servo system.

The rest of this paper is organized as follows. Section 2 presents a review of the
related works. We present the mechanical structure, the architecture, and the hardware
parameters of the turntable servo system in Section 3. The main tracking algorithm is
presented in Section 4. The performance evaluation of TuSeSy is presented in Section 5.
Finally, the conclusion is presented in Section 6.

2. Related Works

Many countries are interested in aircraft and parachute tracking. After years of
continuous exploration, researchers have proposed and implemented various tracking
methods. With improvements in computer performance, computer vision is attracting more
attention and computer visual tracking technology has become one of the most popular
research topics. Despite the impressive performance of convolutional neural networks
(CNNs) [11], traditional tracking algorithms have irreplaceable positions in scenes with high
real-time requirements and no training sets. Due to the high flying speed of an aircraft and
the high speed of a parachute from its ejection to its opening, the pilot chute will soon fly out
of the view of the camera if the tracking target is not switched from plane to chute in time.
The camera is fixed on the turntable. As the turntable rotates, the camera also rotates, which
means that the target is tracked in the dynamic background. In order to enable the turntable
to follow the aircraft and parachute targets, a tracking algorithm is required to detect the
foreground target rapidly under the dynamic background. Hence, a tracking algorithm
with a good real-time performance is needed to satisfy the requirement. Background
subtraction [12] and frame difference [13] are commonly used to detect a moving target.
These methods segment static background information and move foreground objects from
the frame sequence.

Background subtraction involves obtaining the moving target; the background image
is subtracted from the current frame in the video sequence. It shoots a fixed scene with a
static camera [14]. However, the actual background could change, e.g., changes in illumina-
tion and shaking of the camera, which will interfere in the detection of moving targets [15].
In recent years, scholars have conducted a lot of research on the background models;
many methods were introduced to solve the above-mentioned problems. Evaluations and
comparisons for 29 background difference methods can be found in the research [12], e.g.,
weighted moving mean [16], adaptive background learning [17], Gaussian mixture model
(GMM) [18], etc. However, these methods require a lot of calculation times or the detection
effects are not very good.

The frame difference involves calculating the difference of two adjacent frames in
a video sequence with the moving target in the foreground [13]. However, two obvious
disadvantages exist in these methods based on the frame difference. On the one hand, the
speed of the frame and the moving target are quite big. On the other hand, the detected
foreground targets have aperture and ghosting [19]. However, the aperture and ghosting
have little influence on tracking the switched target. For the aperture, what we need is the
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outline of the foreground but not the full foreground [20]. For the ghosting, the camera
is mounted on a turntable; the turntable keeps the target in the center of the field of view
without causing a greater displacement of the target in the field of view, which thereby
effectively curbs the ghosting phenomenon [21]. Regarding a relatively simple background,
frame differences can obtain good detection results, have good performances in computing
power, and are not sensitive to light intensity changes [22]. The paper is mainly based on
the detection of aircraft and parachutes with quite simple backgrounds, such as the sky.
As the camera is mounted on the turntable and rotates with the turntable, we can obtain a
sky background from different angles; the light intensity of the background also changes
rapidly with the rotation. In order to enable the turntable to track the target in real time,
the motion detection algorithm needs to have a better real-time performance. The frame
difference has good performance in terms of light sensitivity and real-time requirements.
Therefore, the frame difference method is used as the target detection algorithm for the
motion foreground.

Optical flow is one of the most widely used tracking algorithms for computer vi-
sion [23]. The optical flow field provides accurate information about the moving target
and can convert low-level flow data to higher-level computer vision tasks [24–26]; this
means it has better performance in computing power. Optical flow has excellent perfor-
mance in tracking accuracy and is widely used in a variety of visual tracking tasks [27].
Senst et al. [28] proposed an adapting tracking window optical flow algorithm that can
enhance the robustness of the algorithm by automatically adjusting the tracking window
size as the target deforms; it also has a high tracking speed. Regarding the aircraft and
parachute tracking problem, the size of the parachute changes rapidly when it executes
the process of ’thrown out’ and completely opened up. Hence, adapting the window sizes
of optical flow can solve the tracking problem. Therefore, this paper designed a target
tracking algorithm according to the optical flow tracking approach.

3. Case Study

In order to track the aircraft and parachutes automatically, we designed an turntable
servo system named TuSeSy, which consists of cameras and a two-degree-of-freedom
turntable. In this section, we introduce the mechanical structure, the architecture, and the
hardware parameters of the turntable servo system.

3.1. Mechanical Structure of TuSeSy

The basic principle of motion control in TuSeSy is that when the image processing
algorithm gives the position deviation signal of the target, TuSeSy drives the camera to the
tracked target according to the position deviation signal. The load, speed, acceleration, and
tracking accuracy are considered in the design of TuSeSy. The design goal was to ensure
that the turntable servo system could still achieve accurate tracking under large speed
conditions and acceleration.

Through the analysis of TuSeSy’s technical requirements, the structure of the turntable
is an azimuth-pitch type. Figure 2 shows the material objects of the turntable; the driving
side is a coaxial direct drive motor. Coaxial direct drive has the following advantages. First,
it can effectively avoid the gap error caused by the reducer and gear transmission. Second,
it has a high precision and high dynamic response while ensuring accuracy. Therefore,
the coaxial direct motor drive structure is suitable for the high precision and dynamic
response of a turntable scene. The turntable is made of aluminum alloy, which is produced
by casting. Aluminum alloy not only has high strength and low density, but it can effectively
reduce the overall mass of the turntable while ensuring its strength.
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Figure 2. Material object of the turntable.

3.2. Architecture of TuSeSy

After the design of the turntable is completed, a servo system is needed to realize
accurate control of the azimuth and pitch axis of the turntable. We designed a turntable
servo system called TuSeSy to track the aircraft and parachutes, as shown in Figure 3.
TuSeSy includes a two-degree-of-freedom turntable (azimuth axis, pitching axis) and two
cameras (one is for tracking and the other—with high-speed—is for recording). The azimuth
angle and the pitching angle of the turntable correspond to the azimuth axis and pitching
axis, respectively. The tracking camera uploads the images containing targets to the host
computer. Based on the uploaded images, the host computer adopts the tracking algorithm
to calculate the position of the target in the image, and then the difference between the
center of the current frame and that of the target is obtained, as shown in Figure 4. Finally,
the turntable uses the difference to generate control signals to operate the yaw angle and
pitch angle of the turntable for achieving real-time tracking. The recording camera is
applied to shoot the parachute and record its flight attitude.

Tracking 

video system

Recording 

vodeo system

GPS Timing 

System

turntable

syyyyyyyyyyyysyyyyy syyyyyyyysyyy

Host computer

Figure 3. Turntable servo system.
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center point

of the target

center point

of the image

Figure 4. The difference between the center of the current frame and that of the target.

3.3. Hardware Parameters of TuSeSy

The key hardware parameters selected for TuSeSy are as follows:

1. The model of the tracking camera: PointGray (GS3-U3-41C6C-C), resolution: 2048× 2048,
pixel size: 5.5 µm;

2. The model of the tracking camera lens: AF-Smicro NIKKOR 105 MM1:2.8 g, focal
length: 50 mm;

3. The model of the high-speed recording camera: IO industries (Flare 2M360CCL),
frame speed: up to 375FPS, resolution: 1088 × 2088;

4. The model of the high-speed recording camera lens: VR 500/4G;
5. The model of the Kr Morgan motor used for azimuth axis: KBMS-25H01-A00; the model

of the corresponding driver: AKD-P01206-NBEC-0000;
6. The model of the Kr morgan motor used for the pitching axis: KBMS-17H01-A00;

the model of the corresponding driver: AKD-P00606-NBEC-0000.
7. The multi-axis controller: Pyeon, model: Beckhoff (CX5130-0125);
8. The image workstation (CPU: Intel 7700 K, memory: 32 GB, graphics card: GV-

N1080Ti, operating system: Linux).

4. The Design of the Tracking Algorithm
4.1. Introduction of the Multi-Target Tracking Switch

In recent years, many scholars have studied the problems of tracking multiple tar-
gets [29–32]. The research mainly involved solving the challenges of tracking failures
caused by the existence of obstructions among multiple targets or the cross motions among
similar targets. Most multi-target tracking studies involve relatively static backgrounds.
Few research studies have focused on a multi-target tracking switch problem under a dy-
namic background. The main purpose of this paper was to design an intelligent turntable
servo system that automatically tracks airdrops and parachutes and acquires their flight
paths and attitudes. The specific tracking process is shown in Figure 5.

• When the aircraft enters the camera’s field of view, TuSeSy automatically captures the
aircraft’s target by target measurement and then tracks the aircraft using a tracking
algorithm, as shown in Figure 5a.

• The system controls the turntable rotation according to the camera return deviation
signal, so that the camera is aimed at the target under test. After a period of flight,
the aircraft begins an airdrop mission, throwing objects from the aircraft and opening
the pilot chute, as shown in Figure 5b.

• It is necessary to make TuSeSy automatically detect the pilot chute, and decide whether
to abandon the aircraft’s tracking and start tracking the pilot chute instead (Figure 5c).

• When the pilot chute is fully opened, the main chute is thrown from it, as shown in
Figure 5d; similarly, TuSeSy automatically detects the main chute and decides whether
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or not to abandon the tracking of the pilot chute and start tracking the main chute
instead (Figure 5e).

Figure 5. The process of the airdrop. (a) Aircraft came into the view; (b) Throw the object; (c) Open
the pilot chute; (d) Open the main chute; (e) The main umbrella is fully open.

Throughout the tracking process, the tracking tasks of TuSeSy can be divided into
three parts: tracking the aircraft, tracking the pilot chute, and tracking the main chute. It
is obvious that TuSeSy needs to track multiple targets—unlike the existing multi-target
tracking algorithm that tracks multiple targets in the image at the same time. TuSeSy
needs one switch after another to track the targets that appear in turn during the airdrop.
The algorithm flow chart is shown in Figure 6.

Moving target detection

extracting outline of foreground

Whether the 

target is detected

No

Yes

Starting foreground detection

Getting the coordinates of the 

bounding box

 Area covered by the bounding box frame is used 

as the initialization of the optical flow algorithm

Using the optical flow to 

track the target 

Detecting moving target in area 

which out of optical flow tracking 

box

Area of bounding 

box>the set threshold 

Yes

No

detecting convex hull and getting 

bounding box of the convex hull

Figure 6. The algorithm flow.
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4.2. Trajectory Acquisition

As a single turntable cannot calculate the depth of the aircraft and parachutes in
space, it is unable to obtain the three-dimensional trajectory of the flight. To deal with this
problem, TuSeSy adopts two turntables to position the target, which contributes toward
calculating the depth of the target in space.

Two tracking turntables were previously placed on the positions where two principal
optic axes of the cameras intersected at the point where the target was. We obtained the
distance l between the two turntables by GPS. In addition, the elevation angles (β1, β2) and
the azimuth angles (α1, α2) could also be accessed from the turntables, respectively. Based
on these five parameters, the target’s spatial coordinates could easily be calculated with the
following equations:

x =
l sin α2 cos α1

sin(α1 + α2)
, (1)

y =
l sin α2 sin α1

sin(α1 + α2)
, (2)

z =
l sin α2 tan β1

sin(α1 + α2)
. (3)

The elevation angle β2 is used to verify whether the measurement error e is within an
acceptable range.

z∗ =
l sin α2 tan β2

sin(α1 + α2)
, (4)

e = |z− z∗|. (5)

According to Equations (1)–(3), a series of three-dimensional coordinate values of
targets could be obtained, and then the coordinate values of outlier points with large errors
could be eliminated based on Equations (4) and (5). As a result, the remaining coordinates
could be used for curve fitting by the least squares method to calculate the space trajectory
of the target. The target’s trajectory measurement principle is shown in Figure 7.

Figure 7. The trajectory measurement principle.

4.3. Moving Target Capture in a Dynamic Background

Foreground Segmentation. When abnormal object movement occurs in the mon-
itoring scene, there will be an obvious difference between frames. When two frames
are subtracted, the absolute value of the brightness difference between two frames is
obtained; whether it is greater than the threshold, it is judged to analyze the motion char-
acteristics of the image sequence and determine whether there is object movement in the
image sequence. Let fk, fk+1 be the kth and (k+ 1)th frame in the frame sequence. The frame
difference involves subtracting the adjacent two frames; that is, fk+1 − fk. The obtained
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differential image is represented as DFrame, and the image acquired by the camera is
srcImage. The experimental results are shown in Figure 8. The algorithm is shown in
Algorithm 1.

Algorithm 1: Foreground segmentation by frame difference
Input: capture the adjacent two frames from the camera: fk, fk+1
Output: foreground: DFrame

1 Capture the first frame fk
2 Capture the second frame fk+1
3 Subtract the adjacent two frames and obtain the foreground:DFrame = | fk+1 − fk|

Figure 8. Foreground segmentation.

Target Positioning. The foreground segmentation obtained by the frame difference
method shows that the detected moving objects have smaller ghosting and aperture. How-
ever, these defects will not affect the final bounding box. After the foreground segmentation,
only the outline of the target was extracted. The moving object detection technique takes
place in a field environment, so some interference contours will be detected when the
light interference is relatively large. We only selected the contours with the largest area
so that the interference contours could be filtered out. After the maximum contour was
obtained, the convex hull was detected, and then the bounding box of the convex hull was
captured. The bounding box framed the foreground. The target capture results and the
specific algorithm are shown in Figure 9 and Algorithm 2, respectively.

Algorithm 2: Positioning the captured foreground target.
Input: foreground: DFrame
Output: area of the bounding box of the foreground

1 find contours in the DFrame: findContours(foreground, contour)
2 if find contours do
3 for each detected contour do
4 calculate the area of each contour: area[i] = contourArea(contour[i])
5 end for
6 calculate the maximum area: areamax = Max(area[i])
7 obtain the contour, which has a maximum area: contour[index]
8 detect the convex hull in the contour [index]: convexHull(contours[index]), hull[i])
9 obtain the bounding box of the convex hull: box = boundingRect(hull)

10 obtain the coordinates and sizes of the bounding box: box.tl(), box.br()
11 return areamax

Figure 9. Target Capture.
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4.4. Tracking Switch Algorithms

Tracking the Aircraft. When TuSeSy is started, the frame difference starts to detect
moving objects and the frame difference detects the aircraft. First, a box covering the target
could be obtained using the method of positioning the captured foreground target, as shown
in Figure 10a. The coordinates and size of the box are transferred to the corresponding
original image, as demonstrated in Figure 10b. Then, the area covered by the box in the
original image is taken as the initialization of optical flow for tracking target characteristics.
Finally, the optical flow is utilized to track the target continuously, as depicted in Figure 11.
The specific aircraft tracking process is shown in Algorithm 3.

Algorithm 3: Capture and track the aircraft.
start timer: 30 ms
recall Algorithm 1
recall Algorithm 2
if Area of the bounding box > the set threshold do
init of optical flow: flowtracker.init(srcImage, box)
the optical flow to track the aircraft target: flowtracker.update (srcImage, box)
for each detected box do
calculate the aircraft of each srcImage: flowtracker.update(srcImage[i + 1], box)
obtain the coordinates and sizes of the bounding box: box.tl(),box.br()
return box.tl(),box.br()
end for

(a) (b)

Figure 10. Capture and track the aircraft targets. (a) The aircraft target capture; (b) transfer the
coordinates and size of the box to the corresponding original image.

Figure 11. The optical flow to track the aircraft target.

Tracking from the Aircraft to the Pilot Chute. When tracking the aircraft using the
optical flow, it takes the tracking box as the center and divides the image into five blocks,
as shown in Figure 12. Before the pilot chute is thrown, the aircraft is tracked by the optical
flow. At the same time, the moving target that is out of the aircraft tracking box is detected
by the frame difference. That is to say, the movements of areas 1,2,3,4 shown in Figure 12
are detected so that the aircraft is not detected again, and it can avoid the interference of
the aircraft when detecting the pilot chute. To improve the speed of the algorithm, the area
of the pilot chute can be predicted according to the direction of the flight.
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Figure 12. The image is divided into five blocks.

Figure 13a,b demonstrate that when the plane enters the camera field from left to
right, the thrown pilot chute will appear at the bottom left of the image, which is shown in
area 1.4 of Figure 12. In contrast, when the plane enters the camera field from right to left,
the parachute will appear at the bottom right of the image, which is shown in area 3.4 of
Figure 12. Therefore, according to the flight direction of the aircraft, the target is searched
for in the predicted region to reduce the data that need to be processed and improve the
speed of the algorithm.

(a)

(b)

Figure 13. Target tracking switch. (a) The tracking switch when the aircraft enters the camera field,
from right to left; (b) The tracking switch when the aircraft enters the camera field, from left to right.

Since the frame difference detects moving targets in the predicted area all of the time,
once the pilot chute is thrown, it will be detected immediately, as shown in Figure 14.
From the pilot chute being thrown to opening, the detected area greatly changes. When the
detected area of the pilot chute is greater than the set threshold (the threshold is 48.4 times
larger than the first detected area of the parachute), the pilot chute is positioned with the
proposed method of positioning the captured foreground target, as shown in Figure 15a.
The coordinates and sizes of the current bounding box are transferred to the current original
image. In addition, the area covered by the box frame in the original image is used as the
initialization of the optical flow to track the target features. Therefore, the switching of the
tracking target from the aircraft to the pilot parachute is realized, and the optical flow is
used to track the new target (pilot chute), as shown in Algorithm 4.

Figure 14. Detecting the pilot chute in the predicted area.
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(a) (b)

Figure 15. Capture and track the aircraft. (a) The pilot chute target capture; (b) transfer the coordinates
and size of the box to the corresponding original image.

Algorithm 4: Tracking from the aircraft to the pilot chute.
continue to Algorithm 3
determine the direction of the aircraft
detect the pilot chute in the predicted area: Algorithm 1
if find contours do
Algorithm 2
if Area of bounding box > the set threshold do
init of optical flow: flowtracker.init(srcImage[i], box)
for each detected box do
calculate the aircraft of each srcImage: flowtracker.update(srcImage[i + 1], box)
obtain the coordinates and sizes of the bounding box: box.tl(),box.br()
return box.tl(),box.br()
end for

Tracking from the Pilot Chute to the Main Chute. The pilot chute throws the main
chute; the main chute appears below the pilot chute. The tracking switch from the pilot
chute to the main chute is similar to that from the aircraft to the point chute. Therefore,
the area below the pilot chute; that is, area 4, needs to be detected. The detailed process is
shown in Algorithm 5.

Algorithm 5: Tracking from the pilot chute to the main chute.
continue to Algorithm 4
detect the main chute in the predicted area: Algorithm 1
if find contours do
Algorithm 2
if Area of the bounding box > the set threshold do
init of the optical flow: flowtracker.init (srcImage, box)
for each detected box do
calculate the aircraft of each srcImage: flowtracker.update(srcImage[i + 1], box)
obtain the coordinates and sizes of the bounding box: box.tl(),box.br()
return box.tl(),box.br()
end for

Through the proposed multi-target switching–tracking algorithm, we successfully
solved the multi-target tracking switch problem from the aircraft to the parachute in the
airdrop test; however, the system has certain versatility limitations, as shown in Figure 16.

Figure 16. Multi-target switching–tracking.
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5. Experiment

To evaluate the performance of TuSeSy, we conducted extensive experiments that
included an actual real airdrop test and simulation. Specifically, we first captured the
frame sequences of two actual airdrop videos and two simulated videos by UAV. Then we
focused on the influence of the rapid change of light intensity on the frame difference and
the background subtraction when they segmented the foreground from the background
(referring to the sky). Finally, we conducted several experiments to verify the feasibility
and reliability of the multiple tracking switch algorithm proposed in TuSeSy. Details of the
selected videos are as follows:

• Video1: the airplane went into the view field from the right (640 × 480 × 400 frames);
• Video2: the airplane went into the view field from the left (640 × 480 × 800 frames);
• Video3: the UAV simulated with the clouds as background (640 × 480 × 300 frames);
• Video4: the UAV simulated with the birds as a distraction.

5.1. Evaluation Methodology

For the turntable to track the target, we used the difference between the target center
point and the image center point as a control signal to control the azimuth and yaw angle
of the turntable. Therefore, the bounding box region of the target in each frame was used
as the relevant area, and the bounding box of the target was selected as the detected area in
the foreground frame. In this paper, we mainly evaluated the performance of TuSeSy from
the following metrics. In the following evaluation, we used the F2-score and FPS as our
major metrics to evaluate the detection accuracy.

• Accuracy: the percentage of samples with correct detection in the total samples.
• Precision: the percentage of samples that were correctly detected as A in all samples

detected as A.
• Recall: the percentage of samples that were detected as A in the samples truly belonged

to A.
• F2-score: a metric that combined precision (P) and recall (R) (F = (1 + β2) PR

β2P+R ). We
set β = 2 to increase the weight of the recall, i.e., reducing the missing report rate of
the wrong detection, ensuring precision.

• FPS: the speed of the algorithm with frame per second.

5.2. Impact of Frame Difference and Background Subtraction

According to reference [11], which presents 29 kinds of background subsections, we
selected 5 outstanding algorithms—DPWrenGABGS, MixtureOfGuassianV1BGS, Multi-
LayerBGS, PixelBasedAdaptiveSegmenter, and LBAdaptiveSOM—to present a contrast
experiment with general frame differences when segmenting the foreground (aircraft and
parachutes) from the background (the sky). Each video had the same threshold, which
was used to maximize the F2-score. We utilized the semi-automatic calibration method
to obtain the F2-score. Tables 1 and 2 show the average of the F2-score and FPS from all
frames in each video.

Table 1. F2-score of all measures (‘-’ represents failure in obtaining the result).

Video DPWrenGABGS MixtureOfGuassianV1BGS MultiLayerBGS PixelBasedAdaptiveSegmenter LBAdaptiveSOM TuSeSy

Video1 - 0.300 0.449 0.312 - 0.862

Video2 0.764 0.510 0.813 0.512 0.807 0.947

Video3 0.806 0.790 0.871 0.834 - 0.873

Video4 0.683 0.858 0.852 0.777 - 0.854
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Table 2. FPS of all measures (‘-’ represents failure in obtaining the result).

Video DPWrenGABGS MixtureOfGuassianV1BGS MultiLayerBGS PixelBasedAdaptiveSegmenter LBAdaptiveSOM TuSeSy

Video1 - 87.72 5.27 14.97 - 253.43

Video2 80.00 84.74 4.73 17.18 27.74 243.90

Video3 79.37 85.00 6.31 18.38 - 252.34

Video4 83.33 86.34 6.66 18.34 - 254.12

Figure 17a–e presents the foreground segmented from video2 using DPWrenGABGS,
MixtureOfGuassianV1BGS, MultiLayerBGS, PixelBasedAdaptiveSegmenter, and LBAdap-
tiveSOM, respectively. Figure 17f is the foreground segmented from video2 with the general
frame difference method. Figure 17a–d demonstrate that DPWrenGABGS, MultiLayerBGS,
and PixelBasedAdaptiveSegmenter can segment the foreground of the plane perfectly;
however, with the turntable rotating continuously, the light intensity of the background
changes constantly (rapidly weakens); the update of the background may be delayed
(124th, 326th, 727th frame). Figure 17b shows that MixtureOfGuassianV1BGS cannot entirely
segment the foreground.

a

b

c

d

e

f

Figure 17. From top to bottom are (a–f), and from left to right are the foreground with the bounding
box at different moments in video2.
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Figure 17e implies that although LBAdaptiveSOM uses the first 52 frames as learning
sets, in the following segment, there are still existing problems, e.g., the foreground is
incomplete or inaccurate and the bounding box cannot frame the target completely or
correctly. As for Figure 17f, we can conclude that the general frame difference can segment
the foreground well in each frame with good adaptive capacity to the change of the light
intensity. Since the control signal of the turntable can make the tracking target as far as
possible in the center of each frame, the target in each frame will not experience serious
ghosting. In addition, the bounding box can fit the target border well. Furthermore,
Tables 1 and 2 also show that the general frame difference has the largest F2-score and
highest FPS. MultiLayerBGS has a relatively high F2-score in contrast to other background
differences; however, it has the lowest FPS. The foregrounds from video1 and video4 are
similar to video2. Video3 segmented the foreground well with the background of clouds,
using the general frame difference, which has a good F2-score and a high FPS (Figure 18).

UAV Parachute

UAV

UAV

Parachute

(a)

(b)

Figure 18. Original frame and foreground. (a) Original frame, (b) foreground.

5.3. Impact of Target Tracking Switch Algorithm

From Table 3, we see that the target tracking switch algorithm has good tracking
accuracy, with an F2-score up to 0.8. The multi-target tracking switch algorithm processing
speed reached more than 40 FPS and the amount of recorded data satisfied the requirements
of the drawing trajectory. The third, fourth, and fifth frames in Figure 19a,b show that the
window sizes of the optical flow were well adapted to the deformation of the parachute.
In addition, the feasibility of the partition search parachute goal was proved and achieved.
Figure 19c shows that the algorithm in the cloudy weather still has good tracking results;
the algorithm adapts to the light and the weather well. When there was a bird in the frame
in Figure 19d, the algorithm captured the plane and the parachute efficiently (it was not
disturbed by the bird). The reason is that we chose the largest bounding box instead of
other smaller boxes caused by the distraction, the result of the tracking shows that the
algorithms we proposed have strong reliability.

Table 3. The comparisons among different videos in terms of the F2-score and FPS.

Parameter Video1 Video2 Video3 Video4

F2-score 0.892 0.924 0.863 0.844

FPS 41.62 42.04 40.14 41.63
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(a)

(b)

(c)

bird

bird

(d)

Figure 19. Multi-target tracking switch. (a) Video1 multi-target tracking switch, (b) Video2 multi-
target tracking switch, (c) Video3 multi-target tracking switch, (d) Video4 multi-target tracking switch.

6. Conclusions

In this paper, we designed an intelligent turntable servo system called TuSeSy to track
aircraft and parachutes automatically in airdrop tests. TuSeSy calculates the differences
between the actual taken images and the inferred images to generate the control commands
for tracking the target. We also proposed a multi-target tracking switch algorithm based
on the image frame difference and optical flow to switch the tracking from the aircraft
to the parachute. The extensive experiments demonstrated that TuSeSy not only has a
higher FPS and detection accuracy, but it also solves the wrong target tracking problem.
In the future, it will be necessary to analyze the collected parachute images to obtain the
landing flight attitude parameters, provide a reference for the parachute optimization
design, and promote the development of the parachute airdrop platform.
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