The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise Annoyance Using Psychoacoustical Properties
Abstract
:1. Introduction
2. Pass-By Noise Annoyance Evaluation Experiment
2.1. Participants
2.2. Stimuli
2.3. Methodology
2.4. Results
3. Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umweltbundesamt. Lärmbelästigung in Deutschland. 2019. Available online: https://www.umweltbundesamt.de/themen/verkehr-laerm/laermwirkung/laermbelaestigung (accessed on 16 August 2019).
- World Health Organization (WHO). Environmental Noise Guidelines for the European Region. 2018. Available online: http://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-guidelines-eng.pdf (accessed on 16 August 2019).
- Eriksson, C.; Pershagen, G.; Nilsson, M. Biological Mechanisms Related to Cardiovascular and Metabolic Effects by Environmental Noise. Copenhagen. WHO Regional Office for Europe. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/noise/publications/2018/biological-mechanisms-related-to-cardiovascular-and-metabolic-effects-by-environmental-noise (accessed on 16 August 2019).
- Kohlhuber, M.; Bolte, G. Einfluss von umweltlärm auf schlafqualität und schlafstörungen und auswirkungen auf die gesundheit. Bundesgesundheitsblatt 2011, 54, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Ndrepepa, A.; Twardella, D. Relationship between noise annoyance from road traffic noise and cardiovascular diseases: A meta-analysis. Noise Health 2011, 13, 251–259. [Google Scholar] [PubMed]
- Münzel, T.; Schmidt, F.P.; Steven, S.; Herzog, J.; Daiber, A.; Sørensen, M. Environmental noise and the cardiovascular system. J. Am. Coll. Cardiol. 2018, 71, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Beutel, M.E.; Jünger, C.; Klein, E.M.; Wild, P.; Lackner, K.; Blettner, M.; Binder, H.; Michal, M.; Wiltink, J.; Brähler, E.; et al. Noise annoyance is associated with depression and anxiety in the general population-the contribution of aircraft noise. PLoS ONE 2016, 11, e0155357. [Google Scholar] [CrossRef] [PubMed]
- Lovasi, G.S.; Mooney, S.J.; Muennig, P.; DiMaggio, C. Cause and context: Place-based approaches to investigate how environments affect mental health. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1571–1579. [Google Scholar] [CrossRef] [Green Version]
- Wild, P.S.; Zeller, T.; Beutel, M.; Blettner, M.; Dugi, K.A.; Lackner, K.J.; Pfeiffer, N.; Münzel, T.; Blankenberg, S. The Gutenberg health study. Bundesgesundheitsblatt Gesundh. Gesundh. 2012, 55, 824–829. [Google Scholar] [CrossRef]
- ISO 362–1; Measurement of Noise Emitted by Accelerating Road Vehicles—Engineering Method—Part 1: M and N Categories. International Organization for Standardization: Geneva, Switzerland, 2015.
- Caprioli, D. The evolution of pass-by noise regulation. ATZextra Worldw. 2018, 23, 46. [Google Scholar] [CrossRef] [Green Version]
- Altinsoy, E.; Gül, M.; Kuyumcuoglu, A. Washing machine sound quality. In Proceedings of the 23rd International Congress on Sound and Vibration ICSV23, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Altinsoy, M.E.; Gül, M.; Kuyumcuoglu, A. Sound quality of household appliances for life quality—An investigation on tumble dryer sound quality. In Proceedings of the 22nd International Congress on Sound and Vibration ICSV 22, Florence, Italy, 12–16 July 2015. [Google Scholar]
- Altinsoy, M.E.; Atamer, S. Sound label for household appliances. In Proceedings of the ASME Noise Control and Acoustics Division Conference, ASME 2018 Noise Control and Acoustics Division, Chicago, IL, USA, 26–29 August 2018. [Google Scholar]
- Parizet, E.; Janssens, K.; Poveda-Martinez, P.; Pereira, A.; Lorencki, J.; Ramis-Soriano, J. Sound quality of electric vehicles. In NVH Analysis Techniques for Design and Optimization of Hybrid and Electric Vehicles; Campillo-Davo, N., Rassili, A., Eds.; Shaker Verlag: Aachen, Germany, 2016; pp. 313–328. [Google Scholar]
- Steinbach, L.; Altinsoy, M.E. Prediction of annoyance evaluations of electric vehicle noise by using artificial neural networks. Appl. Acoust. 2019, 145, 149–158. [Google Scholar] [CrossRef]
- Steinbach, L.; Altinsoy, M.E.; Atamer, S.; Rosenkranz, R. Evaluation of electric vehicle sounds and new concepts regarding speed-dependency. J. Acoust. Soc. Am. 2017, 141, 3877. [Google Scholar] [CrossRef]
- Lee, S.K.; An, K.; Cho, H.Y.; Hwang, S.U. Prediction and sound quality analysis of tire pattern noise based on system identification by utilizing an optimal adaptive filter. Appl. Sci. 2019, 9, 3995. [Google Scholar] [CrossRef] [Green Version]
- Davies, P. An Overview of Methods to Quantify Annoyance Due to Noise with Application to Tire-Road Noise; 430180000 8000008325-1; American Concrete Pavement Association Report. Available online: www.igga.net/wp-content/uploads/2018/08/PurdueOverviewofMethodstoQuantifyAnnoyance.pdf (accessed on 17 May 2022).
- Hoffmann, A.; Kropp, W. Auralization of simulated tyre noise: Psychoacoustic validation of a combined model. Appl. Acoust. 2019, 145, 220–227. [Google Scholar] [CrossRef]
- Fiebig, A.; Guidati, S.; Goehrke, A. Psychoacoustic evaluation of traffic noise. In Proceedings of the NAG/DAGA 2009, Rotterdam, The Netherland, 23–26 March 2009. [Google Scholar]
- Genuit, K.; Fiebig, A. Psychoacoustics and its benefit for the soundscape approach. Acta Acust. United Acust. 2006, 92, 952–958. [Google Scholar]
- Genuit, K.; Fiebig, A. Prediction of psychoacoustic parameters. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Washington, DC, USA, 2005; pp. 893–898. [Google Scholar]
- Genuit, K.; Guidati, S.; Rossberg, S. Psychoacoustical evaluation of traffic noise. In Proceedings of the 19th International Congress on Acoustics, Madrid, Spain, 2–7 September 2007. [Google Scholar]
- Kaczmarek, T.; Preis, A. Annoyance of time-varying road-traffic noise. Arch. Acoust. 2010, 35, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Raggam, R.B.; Cik, M.; Höldrich, R.R.; Fallast, K.; Gallasch, E.; Fend, M.; Lackner, A.; Marth, E. Personal noise ranking of road traffic: Subjective estimation versus physiological parameters under laboratory conditions. Int. J. Hyg. Environ. Health 2007, 210, 97–105. [Google Scholar] [CrossRef]
- Klein, A.; Marquis-Favre, C.; Weber, R.; Trollé, A. Spectral and modulation indices for annoyance-relevant features of urban road single-vehicle pass-by noises. J. Acoust. Soc. Am. 2015, 137, 1238–1250. [Google Scholar] [CrossRef]
- Gille, L.A.; Marquis-Favre, C. Estimation of field psychoacoustic indices and predictive annoyance models for road traffic noise combined with aircraft noise. J. Acoust. Soc. Am. 2019, 145, 2294–2304. [Google Scholar] [CrossRef]
- Rohrmann, B. Verbal Qualifiers for Rating Scales: Sociolinguistic Considerations and Psychometric Data. Project Report, University of Melbourne, Australia. 2007. Available online: www.rohrmannresearch.net/pdfs/rohrmann-vqs-report.pdf (accessed on 17 May 2022).
- MATLAB. 9.7.0.1190202 (R2019b); The MathWorks Inc.: Natick, MA, USA, 2018.
- Altinsoy, M. Identification of quality attributes of automotive idle sounds and whole-body vibrations. Int. J. Veh. Noise Vib. 2013, 9, 4–27. [Google Scholar] [CrossRef]
- Verheijen, E.; Jabben, J. Effect of electric cars on traffic noise and safety. In RIVM Letter Report; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 2010. [Google Scholar]
- Campello-Vicente, H.; Peral-Orts, R.; Campillo-Davo, N.; Velasco-Sanchez, E. The effect of electric vehicles on urban noise maps. Appl. Acoust. 2017, 116, 59–64. [Google Scholar] [CrossRef]
- Glantz, S.A.; Slinker, B.K. Primer of Applied Regression and Analysis of Variance; McGraw-Hill: New York, NY, USA, 1990. [Google Scholar]
- Wunderli, J.M.; Pieren, R.; Habermacher, M.; Vienneau, D.; Cajochen, C.; Probst-Hensch, N.; Brink, M. Intermittency ratio: A metric reflecting short-term temporal variations of transportation noise exposure. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 575–585. [Google Scholar] [CrossRef]
- Zwicker, E.; Fastl, H. Psychoacoustics: Facts and Models; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pietila, G.; Cerrato, G. Sound quality guidelines for non-automotive products. Sound Vib. 2012, 46, 8–14. [Google Scholar]
- Altinsoy, M.E. Auditory signs for public transportation—Accessible pleasant smart cities. In Proceedings of the Internoise 2019, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Von Bismarck, G. Sharpness as an attribute of the timbre of steady sounds. Acta Acust. United Acust. 1974, 30, 159–172. [Google Scholar]
- ISO 532-1:2017; Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method. 2017. Available online: www.iso.org/standard/63077.html (accessed on 17 May 2022).
- Standard ECMA-74; 14th ed. Measurement of Airborne Noise Emitted by Information Technology and Telecommunications Equipment. Ecma International: Geneva, Switzerland, 2017.
- Sottek, R. Progress in calculating tonality of technical sounds. In Proceedings of the Internoise 2014, Melbourne, Australian, 16–19 November 2014. [Google Scholar]
- Sottek, R. A hearing model approach to roughness. In Proceedings of the Internoise 2016. Institute of Noise Control Engineering, Hamburg, Germany, 21–24 August 2016. [Google Scholar]
- Von Terhardt, E. Uber akustische rauhigkeit und schwankungsstarke. Acustica 1968, 20, 215–224. [Google Scholar]
- Trollé, A.; Marquis-Favre, C.; Klein, A. Short-term annoyance due to tramway noise: Determination of an acoustical indicator of annoyance via multilevel regression analysis. Acta Acust. 2014, 100, 34–45. [Google Scholar] [CrossRef]
- Steele, C. A critical review of some traffic noise prediction models. Appl. Acoust. 2001, 62, 271–287. [Google Scholar] [CrossRef]
- Alves Filho, J.M.; Lenzi, A.; Zannin, P.H. Effects of traffic composition on road noise: A case study. Transp. Res. Part D Transp. Environ. 2004, 9, 75–80. [Google Scholar] [CrossRef]
- Turcsany, J. Electric Buses and Noise. 2016. Available online: http://www.bullernatverket.se/wp-content/uploads/2014/05/Electric-buses-and-noise_Volvo-Bus.pdf (accessed on 14 May 2022).
- Ouis, D. Annoyance from road traffic noise: A review. J. Environ. Psychol. 2001, 21, 101–120. [Google Scholar] [CrossRef]
- Laib, F.; Braun, A.; Rid, W. Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transp. Res. Procedia 2019, 37, 377–384. [Google Scholar] [CrossRef]
- Rosenkranz, R.; Altinsoy, M.E.; Nicht, A. Noise emission of electric street sweepers—Perceptual evaluation of sound. In Proceedings of the Forum Acusticum, Kraków, Poland, 7–12 September 2014. [Google Scholar]
- Seidler, A.; Hegewald, J.; Seidler, A.L.; Schubert, M.; Zeeb, H. Is the whole more than the sum of its parts? Health effects of different types of traffic noise combined. Int. J. Environ. Res. Public Health 2019, 16, 1665. [Google Scholar] [CrossRef] [Green Version]
- Seidler, A.L.; Hegewald, J.; Schubert, M.; Weihofen, V.M.; Wagner, M.; Dröge, P.; Swart, E.; Zeeb, H. The effect of aircraft, road, and railway traffic noise on stroke—Results of a case-control study based on secondary data. Noise Health 2018, 20, 152–161. [Google Scholar]
- Tobollik, M.; Hintzsche, M.; Wothge, J.; Myck, T.; Plass, D. Burden of disease due to traffic noise in Germany. Int. J. Environ. Res. Public Health 2019, 16, 2304. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altinsoy, M.E. The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise Annoyance Using Psychoacoustical Properties. Appl. Sci. 2022, 12, 5146. https://doi.org/10.3390/app12105146
Altinsoy ME. The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise Annoyance Using Psychoacoustical Properties. Applied Sciences. 2022; 12(10):5146. https://doi.org/10.3390/app12105146
Chicago/Turabian StyleAltinsoy, M. Ercan. 2022. "The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise Annoyance Using Psychoacoustical Properties" Applied Sciences 12, no. 10: 5146. https://doi.org/10.3390/app12105146
APA StyleAltinsoy, M. E. (2022). The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise Annoyance Using Psychoacoustical Properties. Applied Sciences, 12(10), 5146. https://doi.org/10.3390/app12105146