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Featured Application: The proposed methodology is a computer vision application for monitor-
ing and recognizing human–object interactions and has been evaluated over three challenging
benchmark datasets. Therefore, this technique can be used to develop advanced surveillance
and security systems to locate human and object targets and classify their interactions.

Abstract: The critical task of recognizing human–object interactions (HOI) finds its application in
the domains of surveillance, security, healthcare, assisted living, rehabilitation, sports, and online
learning. This has led to the development of various HOI recognition systems in the recent past.
Thus, the purpose of this study is to develop a novel graph-based solution for this purpose. In
particular, the proposed system takes sequential data as input and recognizes the HOI interaction
being performed in it. That is, first of all, the system pre-processes the input data by adjusting the
contrast and smoothing the incoming image frames. Then, it locates the human and object through
image segmentation. Based on this, 12 key body parts are identified from the extracted human
silhouette through a graph-based image skeletonization technique called image foresting transform
(IFT). Then, three types of features are extracted: full-body feature, point-based features, and scene
features. The next step involves optimizing the different features using isometric mapping (ISOMAP).
Lastly, the optimized feature vector is fed to a graph convolution network (GCN) which performs the
HOI classification. The performance of the proposed system was validated using three benchmark
datasets, namely, Olympic Sports, MSR Daily Activity 3D, and D3D-HOI. The results showed that this
model outperforms the existing state-of-the-art models by achieving a mean accuracy of 94.1% with
the Olympic Sports, 93.2% with the MSR Daily Activity 3D, and 89.6% with the D3D-HOI datasets.

Keywords: dense trajectories; graph convolution network; human–object interaction; image foresting
transform; image skeletonization

1. Introduction

Artificial intelligence (AI) has revolutionized the healthcare sector. From rehabilitation
systems through assisted living programs to patient activity monitoring solutions, the
advances in the field of human interaction recognition (HIR) have made numerous contri-
butions to the field of medical engineering. By actively monitoring a person’s actions, the
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early symptoms of a serious disease can be detected in a timely fashion. Similarly, by recog-
nizing human actions, their progress can be evaluated in rehabilitation programs. Such
systems are usually complimented by the use of wearable and vision sensors. Therefore, the
accurate recognition of human–object interactions is crucial for the success of a wide range
of systems designed for smart homes [1–4], sports [5,6], healthcare [7,8], surveillance [9],
counting and tracking [10–13], e-learning [14], and monitoring [15,16].

Despite the recent advances, human–object interaction recognition (HOIR) remains a
challenging task because of various reasons, including illumination variation, background
clutter, intra-class variation, inter-class similarities, scale variation, multiple viewpoints,
and occlusion. Moreover, the quality of input data and its challenges depend on the medium
of acquisition. Apart from regular static cameras, drone [17,18] and depth cameras [19,20]
are also quite popular. Over the past few years, it has also been observed that researchers
have employed various sensors, including body-worn [21,22] and inertial sensors [23], to
record human activities and their interactions with the surrounding objects. Moreover,
instead of relying only on RGB (red, green, blue) data, the use of depth [24,25] and RGB-D
(red, green, blue, depth) [26] data is also common.

Therefore, this article proposes a robust HOIR system which takes sequential data as
input and recognizes the HOI interaction being performed in it. In particular, firstly, the
system pre-processes the input data by adjusting the contrast and smoothing the incoming
image frames. Then, it locates the human and object through image segmentation. Based
on this, 12 key body parts are identified from the extracted human silhouette through a
graph-based image skeletonization technique called image foresting transform (IFT). After
this, three types of features are extracted: full-body feature, point-based features, and
scene features. Dense trajectories and local intensity order patterns (LIOP) are obtained
from full-body silhouettes. Similarly, kinematic postures and local occupancy patterns
(LOP) are obtained from the 12 key body points. Finally, spatial pyramid matching (SPM)
and generalized search tree (GIST) descriptors are stored as scene features. The next step
involves optimizing the six different features using isometric mapping (ISOMAP). Lastly,
the optimized feature vector is fed to a graph convolution network (GCN), which performs
the HOI classification.

The main contributions of this paper are as follows:

• We used a graph-based image skeletonization called the image foresting transform
(IFT) technique to detect 12 human body parts.

• We proposed a multi-feature approach involving three different types of features:
full-body features, point-based features, and scene features. We also provided types of
feature descriptors for each category.

• We optimized the large feature vector obtained through isometric feature mapping
(ISOMAP).

• We implemented a graph convolution network (GCN) and tuned its parameters for
the final classification of human locomotion activities.

The rest of the article is arranged as follows: Section 2 investigates the related work
in the field of HOI recognition. Section 3 explains the proposed method in great detail.
Section 4 describes the different datasets that were used to validate the performance of the
proposed method and the results of those experiments. Section 5 presents an analysis of the
results achieved by the system and discusses the strengths and weaknesses of the system.
Section 6 concludes the paper and describes the future plans.

2. Related Work

The past few years have witnessed an unprecedented increase in the number of
researchers who have developed efficient human–object interaction recognition (HOIR)
systems for improving healthcare. To establish a link between those systems and the method
proposed in this paper, the recent research trends can be divided into two major categories:
multi-feature HOIR and graph-based HOIR. These are explained in the following sections.
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2.1. Multi-Feature HOIR

Combining multiple features extracted from the humans and objects involved in the
interactions has shown high interaction recognition accuracies in the past [27–30]. Fang
et al. [31] proposed a pairwise body-part attention model, which focused on crucial parts
and their correlations for HOI recognition. They used visual geometry group (VGG)
convolutional layers until the Conv5 layer for the extraction of full human features. Then,
they used a pairwise body-part attention module to select discriminative body-part pairs
and obtained their feature maps. Mallya et al. [32] used a simple network that fused
features from a person bounding box and the whole image to recognize HOIs. The authors
employed and compared both early and late fusion techniques. In early fusion, they
concatenated the features and then applied dimensionality reduction. In late fusion, they
reduced the dimensionalities of the two types of features and then concatenated them.
Their results showed that the early fusion strategy gives better results.

Moreover, Yan et al. [33] proposed an HOI recognition system based on a multi-task
neural network. They offered a digital glove called “WiseGlove” to detect hand motions. The
system employed YOLO (you only look once) v3 to detect objects and a deep convolutional
network in order to identify the interactions. For experimentation, the authors utilized both
RGB and skeletal data to achieve a good recognition rate. However, the dataset only had
eight action classes. Moreover, their system was only able to work with a few pre-defined
objects. Gkioxari et al. [34] detected the human, verb, and object triplets by localizing humans
through their appearance and objects through action-specific density. They used two RGB
datasets to prove the validity of their system. Similarly, Li et al. [35] proposed a 3D pose
estimation system and a new benchmark named “Ambiguous-HOI.” They used 2D and 3D
representation networks to mine features. Moreover, a cross-modal consistency task and joint
learning structure were used to represent humans and objects. They performed extensive
experiments on two datasets to prove the efficiency of their system.

2.2. Graph-Based HOIR

Many researchers have advocated the use of graph-based method for HOIR [36]. Xia
et al. [37] constructed a fully connected graph with the detected humans and objects as
nodes. The initial undirected graph was then pruned to obtain an HOI graph containing
only those edges that connect human and object nodes. For robust feature extraction from
the human and object nodes, the authors employed two different attention-based networks
that modeled global and local contexts respectively. They used the V-COCO and HICO-DET
datasets to prove that their system performed better than other state-of-the-art methods.
These two datasets were also used by Yang et al. [38], who proposed a novel graph-based
interactive reasoning model called interactive graph. Their approach exploited the interactive
semantics among visual targets. Their model inferred HOIs using instance features and
dynamically parsed pairwise interactive semantics among visual targets by integrating two-
level in-Graphs, i.e., scene-wide and instance-wide in-Graphs. The proposed framework was
end-to-end trainable and free from costly annotations, such as human pose. Although these
two methods proved their effectiveness on image datasets, Sunkesula et al. [39] used video
datasets too. They proposed a hybrid approach that uses GCN and hierarchical recurrent
neural networks (RNNs), for recognizing human–object interactions in videos. Their approach
did not rely on hand-crafted features. Instead, they used pure visual features derived from a
re-trainable off-the-shelf network to represent the inputs.

Qi et al. [40] detected and recognized human–object interactions in images and videos
using the graph parsing neural network (GPNN). For a given scene, their GPNN model
inferred a parse graph that included the HOI graph structure represented by an adjacency
matrix and the node labels. Within a message passing inference framework, the proposed
GPNN iteratively computed the adjacency matrices and node labels. Liu et al. [41] used
the few-shot learning (FSL) approach for HOIR, which means using only a few samples
to perform the task. However, it is difficult to do so and therefore, the traditional FSL
methods do not perform well in complex HOI scenes. Thus, the authors proposed the
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use of dynamic graph-in-graph networks (DGIG-Net) for achieving better results. They
built a knowledge reconstruction graph to learn the latent representations for different HOI
categories and a dynamic relation graph which integrated both constructible visual nodes
and dynamic task-oriented semantic information.

3. Materials and Methods

The proposed method takes sequential data as input. Videos containing a wide range
of human–object interactions from three large datasets are fed into the system. The videos
are converted into image frames which are pre-processed. After enhancing the images,
the human and object pair in each one of them is localized using an image segmentation
technique. Then, the key human body parts are identified using a key point detection
algorithm. Next, three kinds of features are obtained: full-body features, point-based
features, and scene features. The multiple features are combined to form a feature vector
which is optimized and fed into a classifier. The details of each step of the process are
discussed in the following subsections. The general architecture of the proposed method is
shown in Figure 1.
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Figure 1. The architecture of the proposed HOI recognition system.

3.1. Pre-Processing

Most of the input videos used for experimentation contain fast camera motions, illumina-
tion variation, and noise. Hence, all images are pre-processed first. To enhance the intensity
values of the image pixels, sigmoid stretching is used. Then, for removing the noise, Gaussian
filtering is employed. Figure 2a represents an original image frame, and Figure 2b shows
the image after performing sigmoid stretching on it. Since it is often difficult to analyze the
differences from the naked eye, the histograms of both images are also shown in Figure 2d,e.
Figure 2c shows the denoised image after applying Gaussian filtering, and Figure 2f shows
that the pixel values in the resultant image are closer to the mean.
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3.1.1. Sigmoid Stretching

Sigmoid stretching is a linear image transformation technique that depends upon
piecewise linear functions. It is considered as an image enhancement technique that
attempts to improve the contrast by stretching the intensity values of an image to fill the
entire dynamic range. The transformation function used is always linear and monotonically
increasing. The sigmoid contrast stretching technique highlights moderate pixel values in
the images while maintaining sufficient contrast at the extremes. It places all of the pixel
values along a sigmoidal function (an S-shaped curve). The result of this is less contrast in
very bright and very dark areas, and more contrast in areas between these extremes. This is
an ideal stretch for almost any image and performs very well when there are clouds and
water in the image. Equation (1) shows the sigmoid function that allows the input pixel
values x to be stretched using the sigmoid function.

Sigmoid (x) =
1

(1 + e−x)
(1)

3.1.2. Gaussian Filtering

The Gaussian filter is a filter whose impulse response is a Gaussian function. The
Gaussian smoothing operator is a 2D convolution operator that is used to make the images
smooth by removing noise. Since some of the details are also removed in the process,
the resultant image appears to be blurred. It outputs a weighted average of each pixel’s
neighborhood, with the average weighted more toward the value of the central pixels. In
this sense, it is similar to the mean filter, but it uses a different kernel that represents the
shape of a Gaussian (‘bell-shaped’) hump. Equation (2) represents the resultant smooth
image G(x, y) after applying a Gaussian filter on it, where x and y represent the x and y
coordinate values of the 2D image and σ is the standard deviation.

G(x, y) =
1

2πσ2

(
e−

x2+y2

2σ2

)
(2)
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3.2. Image Segmentation

After pre-processing the images, image segmentation is applied to locate the desired
human–object pair. Image segmentation means dividing an image into multiple segments.
These segments are also known as super-pixels. Hence, the entire image is divided into
super-pixels using the quick shift algorithm [42]. It is a fast mode seeking algorithm,
similar to mean shift. The algorithm segments an RGB image (or any image with more
than one channel) by identifying clusters of pixels in the joint spatial and color dimensions.
Segments are local and can be utilized for further processing. Given an image, the quick
shift algorithm generates a forest of pixels including branches that are labeled with a
distance value. The output represents a hierarchical segmentation of the image, where
segments corresponding to subtrees. Useful super-pixels can be identified by cutting the
branches whose distance label is above a given threshold. This is shown in Figure 3.
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As shown in Figure 3, the quick shift algorithm divides the given image into super-
pixels. To locate the desired human–object pair, a super-pixel merging technique similar
to the one proposed by Xu et al. [43] is used. According to this technique, similar and
adjacent super-pixels are merged to form bigger super-pixels on the basis of similarity until
the desired number of super-pixels is obtained. Four types of features are extracted from
each super-pixel: mean, covariance, SIFT (scale-invariant feature transform), and SURF
(speeded-up robust features). These four values are combined to obtain the feature vector of
a super-pixel. If the similarity between the feature vectors of any two adjacent super-pixels
is above a set threshold, the two super-pixels are merged into one big super-pixel. The
process continues until three super-pixels are left, i.e., the background, the human, and the
object. The super-pixel with the largest area is considered the background and removed to
obtain the desired silhouette.

3.3. Key Point Detection

After extracting the human silhouette, 12 key human body parts are identified. For
this purpose, the first step is to convert the human silhouette into a binary silhouette whose
image skeleton is then obtained. In the binary image, the foreground is black and the
background is white. The process of skeletonization keeps reducing the foreground until
no more pixels can be removed. The skeletal remnant is then used to identify key points.
For image skeletonization, a graph-based technique called the image foresting transform
(IFT) [44] is used. The IFT defines a minimum-cost path forest in a graph, whose nodes
are the image pixels and whose arcs are defined by an adjacency relation between pixels.
The cost of a path in this graph is determined by an application-specific path-cost function,
which usually depends on local image properties along the path—such as color, gradient,
and pixel position. The roots of the forest are drawn from a given set of seed pixels. For
suitable path-cost functions, the IFT assigns one minimum-cost path from the seed set to
each pixel in such a way that the union of those paths is an oriented forest, spanning the
whole image. The IFT outputs three attributes for each pixel: an optimum path from the
root, the cost of that path, and the corresponding root. The path attribute can be used to
find an image skeleton.
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Seven key points are obtained from the nodes marking the start and end positions of
various paths in the obtained skeleton. These points are identified as the head, left hand,
right hand, upper torso, bottom torso, left foot and right foot. Using the obtained seven
points, five additional key points are also found, namely, the neck, left elbow, right elbow,
left knee, and right knee. The method of finding these additional points is simple: the
mid-point of any two key points is calculated, and a point on the contour lying closest to
the obtained mid-point is stored as an additional key point. The mid-point (xm, ym) of two
existing points j and k is calculated using Equation (3). Each step of the process is shown in
Figure 4.

(xm, ym) =

( xj + xk

2
,

yj + yk

2

)
(3)
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3.4. Feature Extraction

Robust features play a critical role in identifying an HOI interaction. Therefore, three
different types of features are employed by the proposed system: full-body, point-based,
and scene features. Two different feature descriptors are obtained for each type. All six
features are explained in detail in the following subsections, and a pseudocode for this
entire process is given in Algorithm 1.
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Algorithm 1: Feature Extraction

Input: N: full images, full body silhouettes, and 12 key body points
Output: combined feature vector (f1, f2, f3 . . . fn)
% initiating feature vector for HOIR %
feature_vector← []
F_vectorsize← GetVectorsize ()
% loop on all images%
For i = 1:n
% extracting scene features%
SPM← GetSPM(i)
Gist← GetGist(i)
FeatureVector.append(SPM, Gist)
% loop on extracted human silhouettes %
J← len (silhouettes)
For i = 1:J
% extracting full body features%
Trajectory← GetTrajectory(silhouette[i]))
LIOP← GetLIOP(silhouette[i]))
FeatureVector.append(Trajectory, LIOP)
% loop on 12 key points of each silhouette%
For i = 1:12
% extracting key point features%
KinematicPosture← GetKinematicPosture(i)
LOP← GetLOP(i)
FeatureVector.append(LOP, KinematicPosture)
End
End
End
Feature-vector← Normalize (FeatureVector)
return feature vector (f1, f2, f3 . . . fn)

3.4.1. Full Body Feature: Dense Trajectory

For full-body silhouettes, dense trajectories are obtained, as they are robust to abrupt
motion [45]. Every point Pt = (xt, yt) on the silhouette is tracked from frame It until the next
frame It+1 by computing its dense optical flow field ωt = (ut, vt). Points of subsequent
frames are concatenated to form trajectories: (Pt, Pt+1, . . .). For each frame, if no tracked
point is found in a W ×W neighborhood, a new point is sampled and added to the tracking
process so that a dense coverage of trajectories is ensured. A sample of the dense trajectories
is shown in Figure 5. Given a trajectory of length L, which is set to 15 as in [45], its shape is
described by a sequence S of displacement vectors ∆Pt, given in Equation (4), where each
displacement vector is calculated using Equation (5). The resulting 30-dimensional vector
for each point is normalized by the sum of displacement vector magnitudes as shown in
Equation (6).
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S = (∆Pt, . . . ∆Pt+L−1) (4)

∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt) (5)

T =
(∆Pt . . . ∆Pt+L−1)

∑t+L−1
j=t

∣∣∣∣∆Pj
∣∣∣∣ (6)

3.4.2. Full Body Feature: LIOP

The local intensity order pattern (LIOP) feature [46] performs better in the case of low
contrast and illumination changes within an image but not very well in the case of rotation
and scale variation. It is also robust to many other geometric and photometric transformations,
such as view-point change, image blur, and JPEG compression. It is a novel method for feature
description based on intensity order. Firstly, the overall intensity order is used to divide the
local patch into sub regions called ordinal bins. Next, the LIOP descriptor of each point is
defined based on the relationships among the intensities of its neighboring sample points.
If P(x) is a vector consisting of the intensities of the neighboring sample points of a point
x in the local patch, the LIOP of the point x can be defined using Equation (7), where ω(x)
is a weighting function described in Equation (8). The LIOP descriptor is constructed by
concatenating the LIOPs of points in each ordinal bin, respectively. As in [46], each image
is divided into six ordinal bins, and the number of neighboring sample points is set to four,
resulting in a feature vector of size 4! × 6 = 144. Each step of this process is shown in Figure 6,
and Equation (9) represents the LIOP descriptor of each bin.
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ω(x) = ∑
i,j

sgn
(∣∣I(xi)− I

(
xj
)∣∣− Tlp

)
+ 1 (7)

LIOP(x) = ∅(γ(P(x))) (8)

desi = ∑
x∈bini

ω(x)LIOP(x) (9)

3.4.3. Point-Based Feature: Kinematic Posture

Kinematic posture involves the extraction of two feature sets, namely the linear joint
position feature (LJPF) and angular joint position feature (AJPF) [47]. Every joint i is
represented by a three-dimensional vector Ji in the coordinate space of Kinect. The distance
of each joint with respect to the head joint Jhead is obtained. This distance di(head) is then
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normalized with respect to the distance vector between the neck joint and torso joint. Hence,
for 12 joints, the LJPF for each frame n can be represented by Equation (10).

LJPFn =
[
d[n,1], d[n,2], . . . d[n,12]

]
(10)

Next, the angles between different bone segments are calculated using three joints. The
AJPF encodes the angles between different bone segments. For example, the angle between
the left upper arm and forearm is calculated using the neck, left elbow, and left-hand joints.
Since the angle between the neck and the head is almost constant for all actions, only five
angles are computed. Hence, the AJPF for each frame n can be represented by Equation (11).

AJPFn =
[

a[n,1], a[n,2], . . . a[n,5]

]
(11)

Finally, for each video frame, these two features are combined to generate the kine-
matics posture feature (KPF) set. This feature encodes the change in joint position and
angles across video frames. Both LJPF and AJPF features of an image skeleton are shown
in Figure 7.
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3.4.4. Point-Based Feature: LOP

The local occupancy pattern (LOP) [48] of each key body part is obtained as a point-
based feature. It measures the space occupied by an object around a certain body part. For
example, when a person picks up a glass, the space around his/her hand is occupied by
that glass. Then if the person drinks from that glass, the space around both the hand and
the head is occupied by the object. This occupancy information can be useful for identifying
the interaction of drinking from other HOIs. For each joint, the local region of size (72,
72, 320) around it is partitioned into 12 × 12 × 4 bins, and the size of each bin is (6, 6, 80).
During each frame, the number of points that fall into each bin binxyz is counted, and a
sigmoid normalization function is applied to obtain the feature Oxyz for this bin, as shown
in Equation (12):

Oxyz = δ
(
∑qεbinxyz

Iq

)
(12)

The LOP feature of a joint i is a vector consisting of the feature Oxyz of all the bins in
the spatial grid around the joint. The value of Iq is 1 if there is a point at location q and
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0 otherwise. δ(.) represents sigmoid normalization. For 12 joints, the size of LOP feature
descriptor across each frame will thus be 12 × 12 × 4 × 12 = 6912.

Both LOP features of an image skeleton are shown in Figure 8.
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3.4.5. Scene Feature: SPM

Spatial pyramid matching (SPM) [49] is a solution to the bag-of-words (BOW) model
which represents an image as an order-less collection of local features but discards the
spatial relationships of local descriptors, which severely limits its descriptive power. In
SPM, an image is partitioned into increasingly finer regions, and features are evaluated in
the local regions. This is done in three levels in which the image is divided into 1, 4, and 16
regions respectively. Then local SIFT descriptors are extracted from the small image regions,
and they are coded using a dictionary (learned using features from several training images).
The code vectors in each spatial region are then pooled together by building histograms.
Finally, the histograms of the different spatial regions are concatenated to give the complete
SPM feature vector of an image frame. Each step of this process is shown in Figure 9.
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3.4.6. Scene Feature: GIST

The GIST [50] feature descriptor is a global texture-based feature extraction technique
which is used for extracting the dominant spatial structural of a scene. This low-level
representation is made using a set of five perceptual dimensions, i.e., naturalness, openness,
roughness, expansion, and ruggedness. Initially, the input frames are converted into gray-
scale images. To obtain the GIST descriptor of an image frame, it is first convolved with 32
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Gabor filters at 4 scales (σ) and 8 orientations (θ), resulting in a series of 32 feature maps of
the same size as the input image frame. Each feature map is divided into 9 regions, and
then the values within each region are averaged. These 9 values of the 32 feature maps
are then concatenated to give the 288-dimensional GIST feature vector for each frame. The
GIST descriptors of two different scenes are visualized in Figure 10.
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3.5. Feature Optimization

After obtaining the six different features, they are concatenated to obtain a feature
vector which is very high dimensional. The size of the dense trajectory feature descriptor
is 50 × 30 or 1 × 1500 and that of the LIOP feature is 1 × 144. The size of the kinematic
posture feature is 1 × 17 and that of LOP feature is 1 × 6912 for the 12 joints. Lastly, the size
of the SPM feature descriptor is 1 × 128, and that of the GIST descriptor is 1 × 512 for each
image frame. Therefore, the combined feature vector is of the size 1 × 9213 for each input
image. To reduce the dimensions, the isometric feature mapping (ISOMAP) [51] technique
is used. It is a nonlinear dimensionality reduction method for estimating the intrinsic
geometry of a data manifold based on a rough estimate of each data point’s neighbors
on the manifold. It extends metric multidimensional scaling (MDS) by incorporating the
geodesic distances imposed by a weighted graph. The Isomap defines the geodesic distance
to be the sum of edge weights along the shortest path between two nodes (computed using
Dijkstra’s algorithm, for example). The top n eigenvectors of the geodesic distance matrix,
represent the coordinates in the new n-dimensional Euclidean space. The Isomaps of all
three datasets are shown in Figure 11.
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3.6. Human-Object Interaction Recognition (HOIR)

The final step of the proposed system is the classification of interactions that is per-
formed by a graph convolution network (GCN) [52]. GCNs are a very powerful neural
network architectures for machine learning on graphs. In fact, they are so powerful that
even a randomly initiated 2-layer GCN can produce useful feature representations of
nodes in networks. The relative nearness of nodes in the network is preserved in the
2-dimensional representation, even without any training. The classic method to perform
image classification is using convolutional neural networks (CNN). Images are represented
in the form of pixels, and the CNN runs sliding kernels (or filters) across the images; the
model subsequently learns important features by looking at the adjacent pixels. GCNs, on
the other hand, view images as complete graphs. Each node represents each pixel. Node
feature represents the pixel value. Edge feature represents the Euclidean distance between
each pixel. The closer two pixels are to each other, the larger the edge values. Figure 12
shows a general architecture of a GCN.
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The feature representation at any layer in a neural network can be represented by
Equation (13):

Hi = σ(Wi−1Hi−1 + bi−1) (13)

where Hi is the feature representation at layer i, σ is the activation function, Wi−1 represents
the weight matrix at layer i − 1, Hi−1 is the feature representation at layer i − 1, and bi−1
is the bias at layer i − 1. For the forward propagation equation of a GCN, the adjacency
matrix A is also taken into account, as shown in Equation (14):

Hi = σ(Wi−1Hi−1A∗) (14)

where A∗ is the normalized adjacency matrix. The GCN architecture used in this research
consists of two GCN layers with output dimensionalities of 1024 and 2048, respectively.
For both layers, the Leaky ReLU activation function with the negative slope of 0.2 is used.
Equation (15) represents the Leaky ReLU activation function, where x represents the input
vector. It is a non-linear activation function which leads to faster convergence in experi-
ments. Moreover, each convolutional layer is followed by a max pooling layer. The output
from the final pooling layer is flattened and entered into a fully convolutional (FC) layer
which is followed by a softmax layer, as represented by Equation (16), where xj represents
the input vector. Equation (17) represents the output of this model. During training, the
input images are cropped and resized into 448 × 448. For network optimization, stochastic
gradient descent (SGD) is used as the optimizer. The momentum is set to be 0.9 and weight
decay is 10−4. The initial learning rate is 0.01, which is decayed by a factor of 10 for every
40 epochs, and the network is trained for 100 epochs in total.

LeakyReLU(x) =
{

0.01x, x < 0
x, x ≥ 0

(15)
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softmax(xi) =
exi

∑n
j=1 exj

(16)

Z = softmax(A∗LeakyReLU(Wi−1Hi−1A∗)Wi) (17)

4. Experimental Results

This section describes the three publicly available datasets that are used to validate
the proposed system. The description is followed by the implementation details and the
results of different experiments performed on the three datasets. The GCN is used for
classification, and the proposed system is evaluated using the leave one subject out (LOSO)
cross-validation technique. In this technique, each subject is used once as the test set.
It is a special type of k-fold cross validation, in which the number of folds is equal to
the number of instances in the dataset. Then, the efficiency of the proposed key point
detection algorithm is analyzed by comparing the detected body parts with ground truth
values. All the processing and experiments are performed using Python on a Windows-10
operating system with 16 GB RAM, and a processor of core-i7-7500U CPU @ 2.70 GHz.
Finally, the performance of the proposed system is compared with the accuracies of other
state-of-the-art systems tested on these datasets.

4.1. Datasets Description

The Olympic Sports dataset [53] consists of RGB sequences only. It contains sports
videos from YouTube in which athletes perform a total of 16 activities: high-jump, long-
jump, triple-jump, pole-vault, basketball, bowling, tennis-serve, platform, discus, hammer,
javelin, shot put, spring board, snatch, clean jerk, and vault. A total of 783 videos are
available. However, only 10 of the activities are human–object interactions which involves
humans performing an activity on or using a certain object. Therefore, only 480 videos are
used. Moreover, this dataset poses the challenge of illumination variation and motion blur.

The MSR Daily Activity 3D dataset [54] consists of both depth and RGB sequences. It
was recorded using a Kinect sensor at Microsoft Research Redmond. Ten different subjects
perform a total of sixteen daily activities: drink, eat, read book, call cellphone, write on a
paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay down
on sofa, walk, play guitar, stand up, sit down. Each subject performs the same action
twice, once while standing and then while sitting. Hence, a total of 320 videos are available.
However, only 10 of the activities are human–object interactions which involves humans
performing an activity on or using a certain object. Therefore, only 200 videos are used.
Moreover, this dataset poses the challenge of very high intra-class variation.

The D3D HOI dataset [55] consists of RGB sequences. The authors used human–
object relations to improve the 3D reconstruction process of the human poses and objects.
However, in this article, the dataset is only used to classify human–object interactions. It
includes eight classes, named after the objects involved in the interactions: refrigerator,
storage furniture, trashcan, washing machine, microwave, dishwasher, laptop, and oven.
Each subject opens and closes all eight objects, once while standing and then while sitting.
Hence, a total of 256 videos are available. Moreover, this dataset poses the challenge of
viewpoint variation. The respective action classes for each dataset are provided in Table 1.

Table 1. Human–object interactions included in all three datasets.

Serial No. Olympic Sports MSR Daily Activity 3D D3D-HOI

1 basketball drink refrigerator
2 bowling eat storage furniture
3 tennis-serve read book trashcan
4 platform write on a paper washing machine
5 discus use laptop microwave
6 hammer play game dishwasher
7 javelin call cellphone laptop
8 shot put use vacuum cleaner oven
9 spring board play guitar -

10 clean jerk lay on a sofa -
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4.2. Experiment I: HOI Classification Accuracies

The interaction recognition accuracies achieved for various classes of the three datasets
are represented in the form of confusion matrices. A confusion matrix summarizes the
performance of a classifier in terms of true and false positives and negative. The number
of true positives, that is, accurately identified classes, is displayed on the diagonal of the
matrix. Figures 13–15 show the confusion matrices of the Olympics Sports, MSR Daily
Activity 3D, and D3D HOI datasets, respectively.

The confusion matrices in Figures 13–15 show that although most of the interaction
classes are predicted accurately, a few similar interaction classes are still confused with each
other. More importantly, one or more interactions involving the same objects (for example,
calling on a cellphone or playing game on a cellphone) or similar objects (for example, opening
or closing a washing machine or a microwave) are more likely to be confused with each other.
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4.3. Experiment II: Computational Complexity

While determining the efficiency of an algorithm, its computational complexity should
also be considered. The most common way of doing this is in terms of the big-O notation.
The big-O notation represents the upper bound of an algorithm. For neural networks, the
complexity depends on their layers. Hence, the total complexity of a neural network is the
sum of the complexity of each layer. There are three types of layers in the used GCN model:
convolutional layers, pooling layers, and a fully connected layer. A convolution is the sum of
the row-wise dot products of a filter with a region matrix. For a filter of size k, the cost of the
dot product is O

(
k.d2), where d represents the depth dimension. Since the filter is applied

over the input n− k + 1 times, where n is the length of the input or the input nodes in this
case, the final complexity of a convolutional layer is O

(
k.n.d2). A max pooling layer basically

finds the maximum value in each region. For search in an unsorted array, where each element
of the array is visited at least once, the complexity is O(n). Finally, in a fully connected layer,
the input row vector is multiplied with the weight matrix. Hence, its computational cost is
O(k.n.d). Table 2 provides an overview of the running times of each layer.

Table 2. Computational complexity of the GCN model.

Layer Type Equation Complexity Dataset Feature Map Time (s)

Convolutional zl =
K
∑

k=1
hn−1

k ∗ wn
ij (18) O

(
k.n.d2)

Olympic
Sports 1 × 3,316,800 29,851,200

MSR
Daily Activity 1 × 1,382,000 12,438,000

D3D HOI 1 × 1,768,960 15,920,640

Max Pooling hl
xy = maxi=0,...s,j=0,...shl−1

(x+i)(y+j) (19) O(n)

Olympic
Sports 1 × 3,316,800 7,462,800

MSR
Daily Activity 1 × 1,382,000 3,109,500

D3D HOI 1 × 1,768,960 3,980,160

Fully Connected zl = ∑n
i=1 wjkxi + wj0 (20) O(k.n.d)

Olympic
Sport 3,316,800 31,095,000

MSR
Daily Activity 1,382,000 39,801,600

D3D HOI 1,768,960 31,841,280

4.4. Experiment III: Body Part Detection Rate

The accurate detection of human body parts leads to better classification results.
Hence, the class-wise accuracies of the 12 body parts detected using the proposed key-point
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detection algorithm are also discussed. First, the Euclidean distance D between the ground
truth value and the detected value of each key body part is computed using Equation (21):

Di =
√
(DVix − GTix)

2 +
(

DViy − GTiy
)2 (21)

where DV is the detected value and GT is the ground truth value of a body part i. Based
on its distance from the ground truth value, the accuracy of the detected body part is
computed using Equation (22):

Acci =
100
K

[
K

∑
n=1

{
1 if Di ≤ Th
0 if Di > Th

]
(22)

where Th is the threshold value, which is set to 15, and n represents the total sample frames
of each interaction class. Tables 3–5 show the average body part detection accuracies
achieved by the proposed system over the Olympic Sports, MSR daily Activity 3D, and
D3D HOI datasets, respectively.

Table 3. Body part detection rate achieved over Olympic Sports dataset.

Part BB BL TS PT DS HR JV SP SB CJ AVG

HD 92.23 90.34 90.03 90.12 92.24 93.4 94.32 90.45 88.02 90.12 91.13
RE 95.67 93.03 92.12 89.45 93.56 96.05 92.35 94.32 89.45 87.61 92.36
LE 87.61 95.67 91.78 94.38 87.61 89.45 93.62 87.61 93.56 89.45 91.07
RH 91.45 90.51 89.45 95.67 92.23 94.38 90.56 93.27 95.67 93.27 92.65
LH 89.45 90.12 88.02 91.45 92.35 88.02 92.03 93.56 96.05 92.23 91.33
NK 94.38 96.05 94.38 95.67 93.35 93.35 91.14 92.23 87.61 95.67 93.38
TRS 93.62 92.72 95.67 87.24 87.61 87.61 93.35 95.67 92.23 87.61 91.33
BTR 92.23 95.67 89.45 92.06 94.38 92.06 87.61 89.45 93.56 88.02 91.45
RK 93.35 91.39 94.38 92.23 88.02 92.23 93.24 93.56 94.38 92.23 92.50
LK 93.56 88.02 93.56 95.67 94.32 93.56 90.76 94.32 92.23 92.06 92.81
RF 89.45 91.45 89.45 91.45 94.38 92.23 89.45 94.38 88.02 94.32 91.46
LF 87.61 89.45 95.67 94.12 92.06 93.27 93.56 89.45 89.72 88.02 91.29

Average part detection rate = 91.89%

HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, NK = neck, TRS = upper torso,
LTR = bottom torso, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.

Table 4. Body part detection rate achieved over MSR Daily Activity 3D dataset.

Part DR ET RB WP UL PG CC UV PR LS AVG

HD 92.23 90.34 90.03 90.12 92.24 93.4 94.32 90.45 94.35 90.12 91.76
RE 95.67 93.03 92.12 90.11 93.56 96.05 92.35 94.32 93.27 96.05 93.65
LE 93.35 95.67 91.78 94.38 96.05 94.38 93.62 92.23 93.56 94.32 93.93
RH 91.45 90.51 91.63 95.67 92.23 94.38 90.56 93.27 95.67 93.27 92.86
LH 97.59 90.12 95.67 91.45 92.35 97.59 92.03 93.56 96.05 92.23 93.86
NK 94.38 96.05 94.38 95.67 93.35 93.35 91.14 92.23 97.59 95.67 94.38
TRS 93.62 92.72 95.67 87.24 94.32 95.67 93.35 95.67 92.23 94.32 93.48
BTR 92.23 95.67 97.59 93.56 94.38 94.38 90.42 92.23 93.56 96.05 94.01
RK 93.35 91.39 94.38 92.23 97.59 92.23 93.24 93.56 94.38 92.23 93.46
LK 93.56 97.59 93.56 95.67 94.32 93.56 90.76 94.32 92.23 94.38 94.00
RF 93.27 91.45 92.23 91.45 94.38 92.23 91.09 94.38 97.59 94.32 93.24
LF 95.67 92.35 95.67 94.38 93.27 93.27 93.56 92.35 94.38 93.27 93.82

Average part detection rate = 93.53%

HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, NK = neck, TRS = upper torso,
LTR = bottom torso, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.
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Table 5. Body part detection rate achieved over D3D-HOI dataset.

Part BB BL TS PT JV SP SB CJ AVG

HD 93.21 90.34 90.03 90.12 92.24 93.4 94.32 90.45 91.764
RE 92.23 93.03 92.12 90.11 92.35 96.05 92.35 94.32 92.820
LE 86.29 95.67 91.78 94.38 96.05 84.12 93.62 92.23 91.768
RH 91.45 90.51 91.63 95.67 86.45 94.38 90.56 93.27 91.740
LH 97.59 90.12 95.67 91.45 92.35 97.59 92.03 82.32 92.390
NK 94.38 96.05 94.38 95.67 85.23 82.75 91.14 92.23 91.479
TRS 93.62 92.72 95.67 87.24 94.32 95.67 93.35 95.67 93.533
BTR 92.23 95.67 97.59 92.23 94.38 83.03 90.42 92.23 92.223
RK 90.09 91.39 94.32 92.23 97.59 92.23 93.24 95.67 93.345
LK 88.43 97.59 92.23 95.67 94.32 82.45 90.76 94.32 91.971
RF 93.27 91.45 92.23 91.45 84.77 92.23 91.09 94.38 91.359
LF 94.38 92.35 95.67 94.38 93.27 93.27 93.03 92.35 93.588

Average part detection rate = 92.33%

HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, NK = neck, TRS = upper torso,
LTR = bottom torso, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.

4.5. Experiment IV: Comparison with Other Well-Known Classifiers

In this experiment, the performance of the proposed system is analyzed by comparing
the results obtained with GCN to the results of two other well-known classifiers, namely,
the CNN [56] and fully convolutional network (FCN), on the same feature vector. The
comparison of the performance is conducted in terms of precision, recall, and F1-score. This
process is repeated for all three datasets that were mentioned before. Table 6 represents the
comparison results over the Olympic Sports dataset while Table 7 shows the comparison
using MSR Daily Activity 3D, and finally, Table 8 summarizes the comparison results
achieved over the D3D HOI dataset.

Table 6. Comparison of GCN with CNN and FCN classifiers on Olympic Sports dataset in terms of
precision, recall and F1-score.

HOI Class
CNN FCN GCN

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BB 0.87 0.88 0.87 0.93 0.93 0.93 0.95 0.97 0.96
BL 0.91 0.91 0.91 0.91 0.91 0.91 0.94 0.95 0.94
TS 0.92 0.92 0.92 0.93 0.94 0.93 0.95 0.96 0.95
PT 0.92 0.91 0.91 0.92 0.93 0.92 0.95 0.95 0.95
DS 0.89 0.90 0.89 0.89 0.90 0.89 0.93 0.94 0.93
HR 0.88 0.89 0.88 0.88 0.89 0.88 0.93 0.93 0.93
JV 0.89 0.89 0.89 0.91 0.91 0.91 0.92 0.94 0.93
SP 0.87 0.88 0.87 0.87 0.88 0.87 0.92 0.92 0.92
SB 0.87 0.87 0.87 0.87 0.87 0.87 0.91 0.92 0.91
CJ 0.88 0.88 0.88 0.89 0.89 0.89 0.92 0.93 0.92

Mean 0.89 0.89 0.89 0.90 0.91 0.90 0.93 0.94 0.94

BB = basketball, BL = bowling, TS = tennis-serve, PT = platform, DS = discus, HR = hammer, JV = javelin,
SP = shot put, SB = spring board, CJ = clean jerk.
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Table 7. Comparison of GCN with CNN and FCN classifiers on MSR Daily Activity dataset in terms
of precision, recall and F1-score.

HOI Class
CNN FCN GCN

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

DR 0.88 0.87 0.87 0.91 0.91 0.91 0.92 0.93 0.92
ET 0.88 0.88 0.88 0.91 0.91 0.91 0.92 0.93 0.92
RB 0.85 0.86 0.85 0.88 0.89 0.88 0.91 0.92 0.91
WP 0.87 0.88 0.87 0.89 0.91 0.90 0.93 0.93 0.93
UL 0.89 0.89 0.89 0.89 0.91 0.90 0.93 0.93 0.93
PG 0.85 0.86 0.85 0.87 0.88 0.87 0.92 0.92 0.92
CC 0.84 0.85 0.84 0.89 0.89 0.89 0.90 0.91 0.90
UV 0.91 0.91 0.91 0.91 0.93 0.92 0.94 0.96 0.95
PR 0.85 0.85 0.85 0.89 0.91 0.90 0.92 0.93 0.92
LS 0.91 0.91 0.91 0.92 0.93 0.92 0.95 0.96 0.95

Mean 0.87 0.88 0.87 0.90 0.91 0.90 0.92 0.93 0.93

DR = drink, ET = eat, RB = read book, WP = write on a paper, UL = use laptop, PG = play game, CC = call
cellphone, UV = use vacuum cleaner, PR = play guitar, LS = lay on a sofa.

Table 8. Comparison of GCN with CNN and FCN classifiers on D3D HOI dataset in terms of precision,
recall and F1-score.

HOI Class
CNN FCN GCN

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

RG 0.87 0.89 0.88 0.91 0.91 0.91 0.91 0.92 0.91
SF 0.87 0.88 0.87 0.87 0.88 0.87 0.88 0.90 0.89
TC 0.83 0.83 0.83 0.85 0.85 0.85 0.87 0.87 0.87

WM 0.82 0.83 0.82 0.85 0.86 0.85 0.91 0.91 0.91
MW 0.86 0.85 0.85 0.88 0.89 0.88 0.91 0.92 0.91
DW 0.87 0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88
LP 0.82 0.82 0.82 0.85 0.87 0.86 0.89 0.89 0.89
OV 0.84 0.84 0.84 0.88 0.89 0.88 0.88 0.88 0.88

Mean 0.85 0.85 0.85 0.87 0.88 0.87 0.89 0.90 0.89

RG = refrigerator, SF = storage furniture, TC = trashcan, WM = washing machine, MV = microwave,
DW = dishwasher, LP = laptop, OV = oven.

As shown in the tables, GCN acts as the best classifier for all three datasets while FCN
comes second in terms of precision, recall, and F1-scores.

4.6. Experiment V: Comparison with Other State-of-the-Art Methods

For all three datasets that are used for testing, the interaction recognition accuracies
achieved by the proposed system are compared with other state-of-the-art methods that
were evaluated on the same datasets. The mean interaction recognition accuracy is com-
puted by dividing the number of correct predictions by the total number of predictions that
were made by the classifier as shown in Equation (23).

CAccuracy =
Correct Predictions

Total Predictions
× 100% (23)

Table 9 shows the results of the proposed system with some other state-of-the-art
HOIR methods that were evaluated on one or more of the three datasets used in this
research. The accuracy scores highlight that the proposed system outperforms all of them
by a good margin.
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Table 9. A comparison of proposed HOIR system with other state-of-the-art methods.

Method Mean Accuracy %

Olympic Sports MSR Daily Activity 3D D3D-HOI

Metric learning autoencoder [57] - 67.1 -
Deep moving poselets [58] - 84.4 -

CNN [56] - - 85.1
DCS motion

descriptors [59] 85.2 - -

Actionlet ensemble [48] - 86.0 -
CNN-LSTM [60] - - 87.2

Improved trajectories [45] 90.2 - -
Combined deep architectures [61] - 91.3 -

Spatial feature fusion [62] - 92.9 -

Proposed 94.1 93.2 89.6

5. Discussion

In the proposed HOIR framework, all input images were pre-processed using sigmoid
stretching and Gaussian filtering techniques. Raw input images produced relatively poor
results; hence, their quality was improved using these pre-processing techniques. Although
context and value of each key body part is computed scene information can provide addi-
tional cues, it is also important to observe the humans and objects in isolation. Therefore,
the human–object pairs in the pre-processed images were localized, and the backgrounds
were removed. Using the detected human silhouettes, 12 key body parts were identified.
Then, dense trajectories and LIOP features were extracted from the full-body silhouettes.
Similarly, kinematic posture and LOP features were mined from the key body parts. Lastly,
SPM and GIST feature descriptors were obtained from the entire images. Experiments
showed that each one of the six of feature descriptors contributed toward the system’s
overall efficiency. Removing any of these features in the final feature vector showed a
negative effect on the system’s performance. The three different types of features were
merged together to form a large feature vector, which was then reduced using ISOMAP.
The optimized feature vector was finally sent to a fine-tuned GCN architecture for the
classification of interactions.

Although the proposed system classifies complex human–object interactions with high
accuracy rates, it is not without limitations. It struggles to identify the correct interaction
when two interactions are of a similar nature: for instance, opening and closing the same
object in the same scene. One example of this would be the opening and closing of the
microwave in the kitchen in the D3D HOI dataset. Although the system uses a time
sequence to distinguish between the two interactions, it often misclassifies them. Similarly,
when the size of the object is too small, the accuracy drops. This was evident during the
testing of some examples in the MSR Daily Activity 3D dataset; for example, playing a
game on a phone and reading a book were misclassified because the subject has both objects
in their hands in a similar fashion and the sizes of the objects are too small to form a clear
distinction.

The results and analysis of the proposed system are as follows. The mean interaction
recognition accuracy of the proposed system over Olympics Sports dataset is 94.1%. For
the MSR Daily Activity 3D dataset, the accuracy is 93.2% and 89.6% accurate results are
achieved with the D3D HOI dataset. These results prove that the proposed HOIR system
outperforms the available state-of-the-art techniques.

6. Conclusions and Future Works

The proposed HOIR system is capable of classifying complex human–object inter-
actions in sequential data for healthcare. In particular, the proposed model involves
pre-processing the image frames through contrast adjustment and noise removal. Then,
it locates the human–object pair in them and removes the background from the images.
Using the detected human silhouettes, its 12 key body parts are identified. Then dense
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trajectories and LIOP features are extracted from the full-body silhouettes. The results of
evaluating the proposed HOIR system showed higher accuracies as compared to many
state-of-the-art systems. Some new feature descriptors can be added to further enhance
this system, and different sensors can be used to obtain the input in future.
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