Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermophilic Biological Sludge (TBS)
2.2. Choice of Non-Volatile Media
- Calcium carbonate, as it represents a residual product of the reaction of lime in water and is very frequently used in full-scale high-strength wastewater treatment plants;
- Sand, to understand if malfunctions of the sand removal processes, which result in a high number of solid particles entering the thermophilic biological reactor, can affect the rheology of the BS;
- Sodium bentonite, as it can limit the filtering properties of membranes. For this reason, understanding the influence of this substance in biological membrane processes is a fundamental aspect for the optimization of treatment.
2.3. Rheological Properties
2.3.1. Evaluation of Sludge Consistency
2.3.2. Evaluation of Thixotropic Behaviour
2.4. Experimental Procedure
2.5. Data Processing
3. Results
3.1. Dependence of Rheological Parameters from Non-Volatile Media
3.2. Evaluation of Sludge Response after Prolonged Imposed Shear Rate
4. Discussion
4.1. Dependence of Rheological Parameters from Non-Volatile Media
4.2. Evaluation of Sludge Response after Prolonged Imposed Shear Rate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
References
- Cornel, P.; Wagner, M.; Krause, S. Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Sci. Technol. 2003, 47, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Manenti, S.; Todeschini, S.; Collivignarelli, M.C.; Abbà, A. Integrated RTD − CFD Hydrodynamic Analysis for Performance Assessment of Activated Sludge Reactors. Environ. Process. 2018, 5, 23–42. [Google Scholar] [CrossRef]
- Craig, K.J.; Nieuwoudt, M.N.; Niemand, L.J. CFD simulation of anaerobic digester with variable sewage sludge rheology. Water Res. 2013, 47, 4485–4497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collivignarelli, M.C.; Carnevale Miino, M.; Manenti, S.; Todeschini, S.; Sperone, E.; Cavallo, G.; Abbà, A. Identification and Localization of Hydrodynamic Anomalies in a Real Wastewater Treatment Plant by an Integrated Approach: RTD-CFD Analysis. Environ. Process. 2020, 7, 563–578. [Google Scholar] [CrossRef]
- Chhabra, R.P. Non-Newtonian Fluids: An Introduction. In Rheology of Complex Fluids; Springer: New York, NY, USA, 2010; pp. 3–34. [Google Scholar]
- Baroutian, S.; Eshtiaghi, N.; Gapes, D.J. Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresour. Technol. 2013, 140, 227–233. [Google Scholar] [CrossRef] [Green Version]
- De Souza Mendes, P.R. Modeling the thixotropic behavior of structured fluids. J. Nonnewton. Fluid Mech. 2009, 164, 66–75. [Google Scholar] [CrossRef]
- Baudez, J.C.; Slatter, P.; Eshtiaghi, N. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chem. Eng. J. 2013, 215, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.; Yeneneh, A.M.; Sen, T.K.; Ang, H.M.; Kayaalp, A. A comprehensive review on rheological studies of sludge from various sections of municipal wastewater treatment plants for enhancement of process performance. Adv. Colloid Interface Sci. 2018, 257, 19–30. [Google Scholar] [CrossRef]
- Dollet, P.; Baudu, M. Rheological Application to the Characterization of the Bioflocculation of Activated Sludge. Ph.D. Thesis, Université de Limoges, Limoges, France, 2000. (In French). [Google Scholar]
- Christensen, J.R.; Sørensen, P.B.; Christensen, G.L.; Hansen, J.A. Mechanisms for Overdosing in Sludge Conditioning. J. Environ. Eng. 1993, 119, 159–171. [Google Scholar] [CrossRef]
- Dentel, S.K. Evaluation and role of rheological properties in sludge management. Water Sci. Technol. 1997, 36, 1–8. [Google Scholar] [CrossRef]
- Vachoud, L.; Ruiz, E.; Delalonde, M.; Wisniewski, C. How the nature of the compounds present in solid and liquid compartments of activated sludge impact its rheological characteristics. Environ. Technol. 2019, 40, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Carnevale Miino, M.; Bellazzi, S.; Caccamo, F.M.; Durante, A.; Abbà, A. Review of rheological behaviour of sewage sludge and its importance in the management of wastewater treatment plants. Water Pract. Technol. 2022, 17, 483–491. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-solid anaerobic digestion of sewage sludge: Challenges and opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Hii, K.; Parthasarathy, R.; Baroutian, S.; Gapes, D.J.; Eshtiaghi, N. Rheological measurements as a tool for monitoring the performance of high pressure and high temperature treatment of sewage sludge. Water Res. 2017, 114, 254–263. [Google Scholar] [CrossRef]
- Bertanza, G.; Collivignarelli, M.C.; Crotti, B.M.; Pedrazzani, R. Integration between chemical oxidation and membrane thermophilic biological process. Water Sci. Technol. 2010, 61, 227–234. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Caccamo, F.M.; Argiolas, S.; Bellazzi, S.; Baldi, M.; Bertanza, G. Strong minimization of biological sludge production and enhancement of phosphorus bioavailability with a thermophilic biological fluidized bed reactor. Process Saf. Environ. Prot. 2021, 155, 262–276. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N.J. Thixotropy. Adv. Colloid Interface Sci. 2009, 147, 214–227. [Google Scholar] [CrossRef]
- Hammadi, L.; Ponton, A.; Belhadri, M. Temperature effect on shear flow and thixotropic behavior of residual sludge from wastewater treatment plant. Mech. Time-Dependent Mater. 2013, 17, 401–412. [Google Scholar] [CrossRef]
- Thiène, O.; Dieudé-Fauvel, E.; Baudez, J.-C. Experimental difficulties often encountered with sludge rheological properties determination and advices to perform reliable measurements. Appl. Rheol. 2019, 29, 117–129. [Google Scholar] [CrossRef]
- Thiène, O.; Dieudé-Fauvel, E.; Baudez, J.C. Impact of mechanical history on sludge rheological properties: Role of the organic content. Water Res. 2019, 157, 175–180. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Carnevale Miino, M.; Caccamo, F.M.; Baldi, M.; Abbà, A. Performance of Full-Scale Thermophilic Membrane Bioreactor and Assessment of the Effect of the Aqueous Residue on Mesophilic Biological Activity. Water 2021, 13, 1754. [Google Scholar] [CrossRef]
- APAT-IRSA-CNR. Method n.2060—pH; Italian Agency for the Protection of the Environment and for Technical Services and Italian Water Research Institute: Rome, Italy, 2003. (In Italian)
- UNI EN. UNI EN 14346 Waste Characterization—Calculation of Dry Matter by Determining the Dry Residue or Moisture Content; Italian National Unification: Rome, Italy, 2007. [Google Scholar]
- UNI EN. UNI EN 15169 Waste Characterization—Determination of Fire Loss in Waste, Sludge and Sediment; Italian National Unification: Rome, Italy, 2007. [Google Scholar]
- ISO. ISO 6060 Water Quality—Determination of the Chemical Oxygen Demand; International Organization for Standardization: Geneva, Switzerland, 1989. [Google Scholar]
- CNR-IRSA. CNR-IRSA 6 Notebook 64, Volume 3, Nitrogen. Analytical Methods for Sludge; Italian Water Research Institute: Rome, Italy, 1985. (In Italian) [Google Scholar]
- UNI EN. UNI EN 13657: Waste Characterization—Digestion for the Subsequent Determination of the Water-Soluble Portion of the Elements Contained in the Waste; Italian National Unification: Rome, Italy, 2004. (In Italian) [Google Scholar]
- APAT-IRSA-CNR. Method n.4030—Ammoniacal Nitrogen. Non-Metallic Inorganic Constituents. METHOD A1-Spectrophotometric Determination of Indophenol; Italian Agency for the Protection of the Environment and for Technical Services and Italian Water Research Institute: Rome, Italy, 2003. (In Italian)
- EPA. EPA 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography—Revision 1.0; United States Environmental Protection Agency: Cincinnati, OH, USA, 1997.
- APAT-IRSA-CNR. Analytical Methods for Water—n. 4050: Nitrous Nitrogen; Italian Agency for the Protection of the Environment and for Technical Services and Italian Water Research Institute: Rome, Italy, 2003. (In Italian)
- Ratkovich, N.; Horn, W.; Helmus, F.P.; Rosenberger, S.; Naessens, W.; Nopens, I.; Bentzen, T.R. Activated sludge rheology: A critical review on data collection and modelling. Water Res. 2013, 47, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Manenti, S.; Todeschini, S.; Bertanza, G.; Pedrazzani, R. Treatment of aqueous wastes by means of Thermophilic Aerobic Membrane Reactor (TAMR) and nanofiltration (NF): Process auditing of a full-scale plant. Environ. Monit. Assess. 2019, 191, 708. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Garcia, M.H. A Herschel–Bulkley model for mud flow down a slope. J. Fluid Mech. 1998, 374, 305–333. [Google Scholar] [CrossRef]
- Abbà, A.; Collivignarelli, M.C.; Manenti, S.; Pedrazzani, R.; Todeschini, S.; Bertanza, G. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor. J. Chem. 2017, 2017, 8764510. [Google Scholar] [CrossRef] [Green Version]
- Stadler, F.J.; Cui, S.; Hashmi, S.; Handschuh-Wang, S.; Li, W.; Wang, S.; Yan, Z.-C.; Zhu, G. Multiple interval thixotropic test (miTT)—An advanced tool for the rheological characterization of emulsions and other colloidal systems. Rheol. Acta 2022, 61, 229–242. [Google Scholar] [CrossRef]
- Toker, O.S.; Karasu, S.; Yilmaz, M.T.; Karaman, S. Three interval thixotropy test (3ITT) in food applications: A novel technique to determine structural regeneration of mayonnaise under different shear conditions. Food Res. Int. 2015, 70, 125–133. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Yang, M.; Liang, L. Variable selection in data envelopment analysis via Akaike’s information criteria. Ann. Oper. Res. 2017, 253, 453–476. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, K.; Wang, X.; Xu, G. Effect of total suspended solids and various treatment on rheological characteristics of municipal sludge. Res. Chem. Intermed. 2018, 44, 5123–5138. [Google Scholar] [CrossRef]
- Wei, P. Characterisation of Sludge Rheology and Sludge Mixing in Gas-mixed Anaerobic Digesters. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2021. [Google Scholar]
- Behzadfar, E.; Abdolrasouli, M.H.; Sharif, F.; Nazockdast, H. Effect of solid loading and aggregate size on the rheological behavior of pdms/calcium carbonate suspensions. Braz. J. Chem. Eng. 2009, 26, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Adeyinka, O.B.; Samiei, S.; Xu, Z.; Masliyah, J.H. Effect of particle size on the rheology of Athabasca clay suspensions. Can. J. Chem. Eng. 2009, 87, 422–434. [Google Scholar] [CrossRef]
- Mangesana, N.; Chikuku, R.S.; Mainza, A.N.; Govender, I.; van der Westhuizen, A.P.; Narashima, M. The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions. J. S. Afr. Inst. Min. Metall. 2008, 108, 237–243. [Google Scholar]
- Hilal, N.; Ogunbiyi, O.O.; Miles, N.J. Experimental Investigation on the Separation of Bentonite using Ceramic Membranes: Effect of Turbulence Promoters. Sep. Sci. Technol. 2008, 43, 286–309. [Google Scholar] [CrossRef]
- Hamida, T.; Kuru, E.; Pickard, M. Rheological characteristics of aqueous waxy hull-less barley (WHB) solutions. J. Pet. Sci. Eng. 2009, 69, 163–173. [Google Scholar] [CrossRef]
Parameter (u.m.) | Value | Analytical Method |
---|---|---|
Rheological Properties | ||
k (–) | 0.012–0.22 | - |
n (–) | 0.51–1.1 | - |
Physico-Chemical Properties | ||
pH (–) | 7.5–8 | [24] |
TS (kg m−3) | 175–185 | [25] |
VS (kg m−3) | 85–95 | [26] |
NVS (kg m−3) | 85–95 | * |
COD (mg L−1) | 180,000–190,000 | [27] |
Ntot (mg L−1) | 4000–5000 | [28] |
Ptot (mg L−1) | 45–50 | [29] |
N-NH4+ (mg L−1) | 150–160 | [30] |
N-NO3− (mg L−1) | 250–300 | [31] |
N-NO2− (mg L−1) | 40–55 | [32] |
AIC Index | |||
---|---|---|---|
Shear Rate (s−1) | Single Exponential | Double Exponential | Triple Exponential |
100 | −19.859 | −39.862 * | 14.883 |
400 | −55.641 * | −41.035 | −26.070 |
1000 | 102.200 | 89.300 * | 132.827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Todeschini, S.; Bellazzi, S.; Carnevale Miino, M.; Caccamo, F.M.; Calatroni, S.; Baldi, M.; Manenti, S. Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour. Appl. Sci. 2022, 12, 5198. https://doi.org/10.3390/app12105198
Collivignarelli MC, Todeschini S, Bellazzi S, Carnevale Miino M, Caccamo FM, Calatroni S, Baldi M, Manenti S. Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour. Applied Sciences. 2022; 12(10):5198. https://doi.org/10.3390/app12105198
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Sara Todeschini, Stefano Bellazzi, Marco Carnevale Miino, Francesca Maria Caccamo, Silvia Calatroni, Marco Baldi, and Sauro Manenti. 2022. "Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour" Applied Sciences 12, no. 10: 5198. https://doi.org/10.3390/app12105198
APA StyleCollivignarelli, M. C., Todeschini, S., Bellazzi, S., Carnevale Miino, M., Caccamo, F. M., Calatroni, S., Baldi, M., & Manenti, S. (2022). Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour. Applied Sciences, 12(10), 5198. https://doi.org/10.3390/app12105198