Verification Analysis of Volume Flow Measured by a Direct Method and by Two Indirect CO2 Balance Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barn and Site Description
2.2. Instrument Setup and Data Collection
2.2.1. Gas Data
2.2.2. Wind Data
2.2.3. Animal Data
2.3. Total Volume Flow Calculations via the Direct Method
2.4. Total Volume Flow Calculations via Indirect Method
2.4.1. Sampling Method 1
2.4.2. Sampling Method 2
2.5. Tukey Ladder of Powers
2.6. Verification Analysis
2.7. Correlograms (Corrgrams)
3. Results
3.1. Statistical Analysis of Volume Flow
3.2. Measured Volume Flows
4. Discussion
5. Conclusions
- It was found that in stable cross-flow conditions based on the high correlation coefficient between inflow wind speed and the direct method (0.88, vs. 0.81–0.87 for indirect methods) can become a reference method.
- However, further ways of quality improvement of obtained values via direct method should be found and tested. It has to be noticed that the non-optimal positing of USA devices and availability of wind break nets on the side walls could introduce uncertainty. This can further cause the resulted volume flow reduction.
- Wind-related sample method 1 estimates in stable cross-inflow conditions are closer to the reference method.
- With sample method 2, lower emission values were measured than with sample method 1. This is likely due to an underestimation of inside gas concentrations with method 2, which also takes into account sampling lines positioned toward the inlet of the barn. These contain lower concentrations than the fully accumulated concentrations at the outlet sample line that was chosen for method 1.
- It was found that Tukey transformation can be a valuable alternative to the logarithmic transformation while analyzing very skewed data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Area of the opening in the side wall, [m] |
AER | Air exchange rate, [h] |
C | Estimated CO production rate per animal, [g h] |
CIGR | Commission Internationale du Génie Rural |
CO | Inside concentrations of CO, [g m] |
CO | Outside concentrations of CO, [g m] |
FTIR | Fourier transform infrared |
n | Number of partial areas in the barn |
NVB | Naturally ventilated barns |
PTFE | Polytetrafluoroethylene |
Q | Total volume flow, [m h] |
Q | Total volume flow for direct method, [m h] |
Q | Total volume flow for indirect method, [m h] |
R | Perpendicular air velocity to the face of the opening, [m s] |
R | Statistical Computing software |
Determination coefficient | |
RD | Relative difference |
RMSE | Root mean square error |
sd | Standard deviation |
SM | Sample method |
SAS | Statistical Analysis System, software |
TLA | Three letter acronym |
VERA protocol | Verification of Environmental Technologies for Agriculture production |
USA | Ultrasonic anemometer |
References
- Reddy, M.V.B.; Reddy, Y.R. Pesticide residues in animal feed and effects on animals and its products with special reference to endosulfan. Int. J. Res. Ayurveda Pharm 2015, 6, 371–374. [Google Scholar] [CrossRef]
- Wu, W.; Zhai, J.; Zhang, G.; Nielsen, P.V. Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmos. Environ. 2012, 63, 179–188. [Google Scholar] [CrossRef]
- Kiwan, A.K.; Berg, W.; Brunsch, R.; Özcan, S.; Müller, H.J.; Gläser, M.; Fiedler, M.; Ammon, C.; Berckmans, D. Tracer gas technique, air velocity measurement and natural ventilation method for estimating ventilation rates through naturally ventilated barns. Agric. Eng. Int. CIGR J. 2012, 14, 22–36. [Google Scholar]
- Zhai, Z.J.; El Mankibi, M.; Zoubir, A. Review of natural ventilation models. Energy Procedia 2015, 78, 2700–2705. [Google Scholar] [CrossRef] [Green Version]
- Boulard, T.; Baille, A. Modelling of air exchange rate in a greenhouse equipped with continuous roof vents. J. Agric. Eng. Res. 1995, 61, 37–47. [Google Scholar] [CrossRef]
- Calvet, S.; Gates, R.S.; Zhang, G.; Estelles, F.; Ogink, N.W.; Pedersen, S.; Berckmans, D. Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosyst. Eng. 2013, 116, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.B.; Ogink, N.W.; Edouard, N.; Van Dooren, H.J.C.; Tinôco, I.D.F.F.; Mosquera, J. NDIR gas sensor for spatial monitoring of carbon dioxide concentrations in naturally ventilated livestock buildings. Sensors 2015, 15, 11239–11257. [Google Scholar] [CrossRef] [Green Version]
- Van Buggenhout, S.; Van Brecht, A.; Özcan, S.E.; Vranken, E.; Van Malcot, W.; Berckmans, D. Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst. Eng. 2009, 104, 216–223. [Google Scholar] [CrossRef]
- Edouard, N.; Mosquera, J.; van Dooren, H.J.; Mendes, L.B.; Ogink, N.W. Comparison of CO2-and SF6-based tracer gas methods for the estimation of ventilation rates in a naturally ventilated dairy barn. Biosyst. Eng. 2016, 149, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Ogink, N.W.; Mosquera, J.; Calvet, S.; Zhang, G. Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement. Biosyst. Eng. 2013, 116, 297–308. [Google Scholar] [CrossRef]
- Phillips, V.; Lee, D.; Scholtens, R.; Garland, J.; Sneath, R. A review of methods for measuring emission rates of ammonia from livestock buildings and slurry or manure stores, part 2: Monitoring flux rates, concentrations and airflow rates. J. Agric. Eng. Res. 2001, 78, 1–14. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.; Heber, A.; Robarge, W.; Classen, J. Ammonia in animal production—A review. In 2001 ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1998; p. 1. [Google Scholar]
- Ni, J.; Heber, A. Sampling and measurement of ammonia concentration at animal facilities: A review. In 2001 ASAE Annual Meeting; ASAE Paper 01-4090; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001. [Google Scholar]
- König, M.; Hempel, S.; Janke, D.; Amon, B.; Amon, T. Variabilities in determining air exchange rates in naturally ventilated dairy buildings using the CO2 production model. Biosyst. Eng. 2018, 174, 249–259. [Google Scholar] [CrossRef]
- Fiedler, M.; Saha, C.K.; Ammon, C.; Berg, W.; Loebsin, C.; Sanftleben, P.; Amon, T. Spatial distribution of air flow and CO2 concentration in a naturally ventilated dairy building. Environ. Eng. Manag. J. (EEMJ) 2014, 13, 9. [Google Scholar] [CrossRef]
- International VERA Secretariat. VERA TEST PROTOCOL for Livestock Housing and Management Systems, 3rd ed.; International VERA Secretariat: Delft, The Netherlands, 2018. [Google Scholar]
- Wang, X.; Ndegwa, P.M.; Joo, H.; Neerackal, G.M.; Stöckle, C.O.; Liu, H.; Harrison, J.H. Indirect method versus direct method for measuring ventilation rates in naturally ventilated dairy houses. Biosyst. Eng. 2016, 144, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Joo, H.; Ndegwa, P.; Heber, A.; Bogan, B.; Ni, J.Q.; Cortus, E.; Ramirez-Dorronsoro, J. A direct method of measuring gaseous emissions from naturally ventilated dairy barnsVersion. Atmos. Environ. 2014, 86, 176–186. [Google Scholar] [CrossRef]
- Mohn, J.; Zeyer, K.; Keck, M.; Keller, M.; Zähner, M.; Poteko, J.; Emmenegger, L.; Schrade, S. A dual tracer ratio method for comparative emission measurements in an experimental dairy housing. Atmos. Environ. 2018, 179, 12–22. [Google Scholar] [CrossRef]
- Zeyer, K.; Keck, M.; Schrade, S.; Poteko, J.; Mohn, J. NH3 and GHG emission measurements in naturally ventilated cattle housing using a tracer ratio method: Validation for CH4. In 13. Tagung: Bau, Technik und Umwelt 2017 in der landwirtschaftlichen Nutztierhaltung; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL): Darmstadt, Germany, 2017; pp. 364–369. [Google Scholar]
- Samer, M.; Abuarab, M.E. Development of CO2 balance for estimation of ventilation rate in naturally cross-ventilated dairy barns. Trans. ASABE 2014, 57, 1255–1264. [Google Scholar]
- Estellés, F.; Fernandez, N.; Torres, A.; Calvet, S. Use of CO2 balances to determine ventilation rates in a fattening rabbit house. Span. J. Agric. Res. 2011, 9, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Ulyatt, M.; McCrabb, G.; Baker, S.; Lassey, K. Accuracy of SF6 tracer technology and alternatives for field measurements. Aust. J. Agric. Res. 1999, 50, 1329–1334. [Google Scholar] [CrossRef]
- Janke, D.; Willink, D.; Ammon, C.; Hempel, S.; Schrade, S.; Demeyer, P.; Hartung, E.; Amon, B.; Ognink, N.; Amon, T. Calculation of ventilated Rates and Ammonia Emissions: Comparison of sampling strategies for a naturalley ventilated dairy barn. Biosyst. Eng. 2020, 198, 15–30. [Google Scholar] [CrossRef]
- Janke, D.; Yi, Q.; Thormann, L.; Hempel, S.; Nosek, S.; Amon, B.; Van Overbeke, P.; Amon, T. Direct Measurements of the Volume Flow Rate and Emissions in a Large Naturally Ventilated Building. Sensors 2021, 20, 6223. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.; Willink, D.; Janke, D.; Ammon, C.; Amon, B.; Amon, T. Methane Emission Characteristics of Naturally Ventilated Cattle Buildings. Sustainability 2020, 12, 4314. [Google Scholar] [CrossRef]
- Saha, C.K.; Ammon, C.; Berg, W.; Loebsin, C.; Fiedler, M.; Brunsch, R.; von Bobrutzki, K. The effect of external wind speed and direction on sampling point concentrations, air change rate and emissions from a naturally ventilated dairy building. Biosyst. Eng. 2013, 114, 267–278. [Google Scholar] [CrossRef]
- Saha, C.K.; Fiedler, M.; Ammon, C.; Berg, W.; Loebsin, C.; Amon, B.; Amon, T. Uncertainty in calculating air exchange rate of naturally ventilated dairy building based on point concentrations. Environ. Eng. Manag. J. (EEMJ) 2014, 13, 2349–2355. [Google Scholar] [CrossRef]
- Bjerg, B.; Zhang, G.; Madsen, J.; Rom, H.B. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements. Environ. Monit. Assess. 2012, 184, 5989–6000. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Sälvik, K. Climatization of Animal Houses. Heat and Moisture Production at Animal and House Levels; Research Centre Bygholm, Danish Institute of Agricultural Sciences: Horsens, Demark, 2002; pp. 1–46. [Google Scholar]
- Pedersen, S.; Takai, H.; Johnsen, J.O.; Metz, J.; Koerkamp, P.G.; Uenk, G.; Phillips, V.; Holden, M.; Sneath, R.; Short, J.; et al. A comparison of three balance methods for calculating ventilation rates in livestock buildings. J. Agric. Eng. Res. 1998, 70, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Tukey, J. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1997. [Google Scholar]
- Dang, T.N.; Wilkinson, L. Transforming scagnostics to reveal hidden features. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1624–1632. [Google Scholar] [CrossRef]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Weisberg, S. Yeo-Johnson power transformations. Dep. Appl. Stat. Univ. Minnesota. Retrieved June 2001, 1, 2003. [Google Scholar]
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Corrgram: Plot a Correlogram. Available online: https://cran.r-project.org/web/packages/corrgram/index.html (accessed on 20 May 2022).
- Zhang, G.; Strøm, J.S.; Li, B.; Rom, H.B.; Morsing, S.; Dahl, P.; Wang, C. Emission of ammonia and other contaminant gases from naturally ventilated dairy cattle buildings. Biosyst. Eng. 2005, 92, 355–364. [Google Scholar] [CrossRef]
- Schrade, S.; Zeyer, K.; Gygax, L.; Emmenegger, L.; Hartung, E.; Keck, M. Ammonia emissions and emission factors of naturally ventilated dairy housing with solid floors and an outdoor exercise area in Switzerland. Atmos. Environ. 2012, 47, 183–194. [Google Scholar] [CrossRef]
- Okuyama, H.; Onishi, Y.; Tanabe, S.i.; Kashihara, S. Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas. Build. Environ. 2009, 44, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Doumbia, E.M.; Janke, D.; Yi, Q.; Zhang, G.; Amon, T.; Kriegel, M.; Hempel, S. On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB. Appl. Sci. 2021, 11, 4560. [Google Scholar] [CrossRef]
Parameter | Number of Cows [Number] | Weight [Kg] | Milk Yield [] | Days of Pregnancy [Day] |
---|---|---|---|---|
Min | 353 | 518 | 34.5 | 89 |
Mean | 387 | 667 | 36.7 | 94 |
Max | 413 | 800 | 38.6 | 100 |
Stat.Type | Direct | SM1 | SM1 | SM2 | SM2 |
---|---|---|---|---|---|
Corr | - | - | - | ||
RMSE (exp) | - | - | - | ||
sd (exp) | 370,063 | 677,419 | 83% | 767,976 | 107% |
mean (exp) | 644,400 | 1,020,816 | 58% | 1,440,346 | 123% |
median (exp) | 587,589 | 837,680 | 42% | 1,306,364 | 122% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janke, D.; Willink, D.; Ammon, C.; Doumbia, E.-H.M.; Römer, A.; Amon, B.; Amon, T.; Hempel, S. Verification Analysis of Volume Flow Measured by a Direct Method and by Two Indirect CO2 Balance Methods. Appl. Sci. 2022, 12, 5203. https://doi.org/10.3390/app12105203
Janke D, Willink D, Ammon C, Doumbia E-HM, Römer A, Amon B, Amon T, Hempel S. Verification Analysis of Volume Flow Measured by a Direct Method and by Two Indirect CO2 Balance Methods. Applied Sciences. 2022; 12(10):5203. https://doi.org/10.3390/app12105203
Chicago/Turabian StyleJanke, David, Diliara Willink, Christian Ammon, El-Hadj Moustapha Doumbia, Anke Römer, Barbara Amon, Thomas Amon, and Sabrina Hempel. 2022. "Verification Analysis of Volume Flow Measured by a Direct Method and by Two Indirect CO2 Balance Methods" Applied Sciences 12, no. 10: 5203. https://doi.org/10.3390/app12105203
APA StyleJanke, D., Willink, D., Ammon, C., Doumbia, E. -H. M., Römer, A., Amon, B., Amon, T., & Hempel, S. (2022). Verification Analysis of Volume Flow Measured by a Direct Method and by Two Indirect CO2 Balance Methods. Applied Sciences, 12(10), 5203. https://doi.org/10.3390/app12105203