Influence of Climate Change and Land-Use Alteration on Water Resources in Multan, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Framework
2.3. Data Collection
2.4. Methodology
2.4.1. Description of SDSM
2.4.2. Mann–Kendall Test Method
2.4.3. Supervised Classification of Satellite Imageries and Digital Elevation Model (DEM) Reconditioning
2.4.4. HEC-HMS Model Setup
3. Results and Discussion
3.1. Calibration and Validation of SDSM
3.2. Climate Change Scenarios
Predicted Temperature and Precipitation
3.3. Land-Use Land Cover (LULC) Changes
3.4. Rainfall-Runoff Simulation and Water Balance
3.5. Coupling Impacts
4. Conclusions
- (1)
- Results show significant variation in temperature indices, and a regular increment has been observed in minimum temperature indices, which increased significantly over the last 40 years. However, the increment in maximum indices was not regular and varied from year to year. A noticeable decrease in mean annual relative humidity and increase in wind speed were observed over the last four decades;
- (2)
- The urban land extended from 130.03 km2 (45.44%) by 2000 to 155.49 km2 (55.33%) by 2020. Conversely, the dense vegetation decreased from 31.80 km2 (11.11%) by 2000 to 12.2 km2 (4.27%) by 2020, while the light vegetation reduced from 112.94 km2 (39.47%) to 105.40 km2 (36.83%) by 2020. An increase in temperature and urbanization (impervious cover) has reduced the rate of infiltration and increased runoff inflows to the river;
- (3)
- The evaluated results from HEC-HMS revealed that the transition of rainfall into runoff increases with time. On 31 August 2017, the whole catchment basin’s outlet discharge point recorded a maximum surface water runoff of 959.6 m3/s, with 306 mm of rainfall. This indicates that infiltration was minimal and that most of the rainfall was converted to surface runoff. Consequently, the groundwater is depleting rapidly due to an imbalance between discharge and recharge of the groundwater;
- (4)
- The depth of the water table is declining at the rate of 0.2 m per year. Water quantity and water quality are also deteriorating due to unplanned land-use changes and open dumping of domestic and industrial effluents. At some spots, arsenic concentration was found beyond the WHO threshold, creating health issues for the citizens of Multan. Therefore, climate and land-use changes are both deteriorating water distribution and water quality. Moreover, the effects of urbanization were found more prominent and more critical in the study area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Hubbard, K.G.; Lin, X. Maize potential yields and yield gaps in the changing climate of northeast China. Glob. Chang. Biol. 2012, 18, 3441–3454. [Google Scholar] [CrossRef]
- Boonwichai, S.; Shrestha, S.; Babel, M.S.; Weesakul, S.; Datta, A. Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Sci. Total Environ. 2019, 652, 189–201. [Google Scholar] [PubMed]
- Lins, H.F.; Cohn, T.A. Stationarity: Wanted dead or alive? J. Am. Water Resour. Assoc. 2011, 47, 475–480. [Google Scholar]
- Lin, S.S.; Zhen, S.L.; Zhou, A.; Xu, Y.S. Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Res. 2020, 187, 116437. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.-M. Sustainable development and environmental restoration in Lake Erhai, China. J. Clean. Prod. 2020, 258, 120758. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhang, N.; Zhou, A. Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms. Geosci. Front. 2021, 12, 101177. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Lyu, H.M.; Zhou, A. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2021, 751, 141618. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Lyu, H.M.; Zhou, A.N.; Yang, J. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [Google Scholar] [CrossRef]
- Lyu, H.M.; Zhou, A.; Yang, J. Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Sci. Total Environ. 2020, 717, 135310. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.M.; Zhou, W.H.; Shen, S.L.; Zhou, A. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 102103. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Zhou, A. Risk assessment using a new consulting process in fuzzy AHP. J. Constr. Eng. Manag. ASCE 2020, 146, 04019112. [Google Scholar]
- Lyu, H.M.; Zhou, A.N.; Zhou, W.H. Flood risk assessment of metro systems in a subsiding environment using the interval FAHP-FCA approach. Sustain. Cities Soc. 2019, 50, 101682. [Google Scholar] [CrossRef]
- Lyu, H.M.; Chou, A. The development of IFN-SPA: A new risk assessment method of urban water quality and its application in Shanghai. J. Clean. Prod. 2021, 282, 124542. [Google Scholar]
- Lyu, H.M.; Shen, S.L.; Wu, Y.X.; Zhou, A. Calculation of groundwater head distribution with a close barrier during excavation dewatering in confined aquifer. Geosci. Front. 2021, 12, 791–803. [Google Scholar] [CrossRef]
- Poorsepahy-Samian, H.; Espanmanesh, V.; Zahraie, B. Improved inflow modeling in stochastic dual dynamic programming. J. Water Resour. Plan. Manag. 2016, 142, 04016065. [Google Scholar]
- Matheussen, B.; Kirschbaum, R.L.; Goodman, I.A.; O’Donnell, G.M.; Lettenmaier, D.P. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrol. Processes 2000, 14, 867–885. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, S.L.; Zhou, A.; Yin, Z.Y. Assessment of safety status of shield tunnelling using operational parameters with enhanced SPA. Tunn. Undergr. Space Technol. 2022, 123, 104428. [Google Scholar] [CrossRef]
- Shen, S.L.; Atangana Njock, P.G.; Zhou, A. Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning. Acta Geotech. 2021, 16, 303–315. [Google Scholar] [CrossRef]
- Lin, S.S.; Zhang, N.; Zhou, A. Risk evaluation of excavation based on fuzzy decision-making model. Autom. Constr. 2022, 136, 104143. [Google Scholar] [CrossRef]
- Wu, Y.X.; Lyu, H.M. Analyses of leakage effect of waterproof curtain during excavation dewatering. J. Hydrol. 2020, 583, 124582. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, A.; Jin, Y.F. Application of LSTM approach for modelling stress-strain behavior of soil. Appl. Soft Comput. 2021, 100, 106959. [Google Scholar] [CrossRef]
- Deng, J.L.; Shen, S.L.; Xu, Y.S. Investigation into pluvial flooding hazards caused by heavy rain and protection measures in Shanghai, China. Nat. Hazards 2016, 83, 1301–1320. [Google Scholar] [CrossRef]
- Weng, Q. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ. Manag. 2001, 28, 737–748. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhang, N.; Zhou, A. An extended TODIM-based model for evaluating risks of excavation system. Acta Geotech. 2022, 17, 1053–1069. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Stakhiv, E.Z. Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J. 2010, 55, 1085–1089. [Google Scholar] [CrossRef]
- Moglen, G.E.; Rios Vidal, G.E. Climate change and storm water infrastructure in the mid-Atlantic region: Design mismatch coming? J. Hydrol. Eng. 2014, 19, 04014026. [Google Scholar] [CrossRef]
- Wu, Y.X.; Lu, H.M.; Zhou, A. A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering. Hydrogeol. J. 2020, 28, 1449–1463. [Google Scholar] [CrossRef]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar]
- Wu, H.L.; Cheng, W.C.; Lin, M.Y.; Arulrajah, A. Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview. Undergr. Space 2020, 5, 184–198. [Google Scholar] [CrossRef]
- Murphy, J. Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int. J. Climatol. 2000, 20, 489–501. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, A.; Pan, Y.T. Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning. Measurement 2021, 183, 109700. [Google Scholar] [CrossRef]
- Greenman, D.W.; Bennett, G.D.; Swarzenski, W.V. Ground-Water Hydrology of the Punjab, West Pakistan, with Emphasis on Problems Caused by Canal Irrigation; US Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. J. Appl. Geophys. 2019, 164, 200–213. [Google Scholar] [CrossRef]
- Wu, H.N.; Shen, S.L.; Chen, R.P.; Zhou, A. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels. Comput. Geotech. 2020, 122, 103549. [Google Scholar] [CrossRef]
- Murtaza, G.; Habib, R.; Shan, A.; Sardar, K.; Rasool, F.; Javeed, T. Municipal solid waste and its relation with groundwater contamination in Multan, Pakistan. IJAR 2017, 3, 434–441. [Google Scholar]
- Young, W.J.; Anwar, A.; Bhatti, T.; Borgomeo, E.; Davies, S.; Garthwaite, W.R., III; Gilmont, E.M.; Leb, C.; Lytton, L.; Makin, I. Pakistan: Getting More from Water; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Lee, J.; Pak, G.; Yoo, C.; Kim, S.; Yoon, J. Effects of land use change and water reuse options on urban water cycle. J. Environ. Sci. 2010, 22, 923–928. [Google Scholar] [CrossRef]
- Djokic, D.; Maidment, D.R. Terrain analysis for urban stormwater modelling. Hydrol. Process. 1991, 5, 115–124. [Google Scholar] [CrossRef]
- Parece, T.E.; Campbell, J.B. Delineating Drainage Networks in Urban Areas. In Proceedings of the ASPRS 2014 Annual Conference, Louisville, KY, USA, 23–28 March 2014; pp. 23–27. [Google Scholar]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Foster, S.; Morris, B.; Lawrence, A. Effects of Urbanization on Groundwater Recharge. Groundwater Problems in Urban Areas. In Proceedings of the International Conference Organized by the Institution of Civil Engineers, London, UK, 2–3 June 1993; Thomas Telford Publishing: London, UK, 1994; pp. 43–63. [Google Scholar]
- Marsalek, J.; Cisneros, B.J.; Karamouz, M.; Malmquist, P.-A.; Goldenfum, J.A.; Chocat, B. Urban Water Cycle Processes and Interactions: Urban Water Series-UNESCO-IHP; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- DeBusk, K.M.; Hunt, W.F.; Hatch, U.; Sydorovych, O. Watershed retrofit and management evaluation for urban stormwater management systems in North Carolina. J. Contemp. Water Res. Educ. 2010, 146, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Civco, D.L.; Hurd, J.D.; Wilson, E.H.; Arnold, C.L.; Prisloe, M.P., Jr. Quantifying and describing urbanizing landscapes in the Northeast United States. Photogramm. Eng. Remote Sens. 2002, 68, 1083–1090. [Google Scholar]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Supporting Material of the Intergovernmental Panel on Climate Change, Available from the DDC of IPCC TGCIA. 2004. Available online: https://www.researchgate.net/publication/200472164 (accessed on 27 April 2022).
- Wilby, R.L.; Hay, L.E.; Leavesley, G.H. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 1999, 225, 67–91. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Q.; Gong, H.; Li, X.; Song, L.; Huang, J. Hydrologic Information Extraction Based on Arc Hydro Tool and DEM. In Proceedings of the International Conference on Challenges in Environmental Science and Computer Engineering, Wuhan, China, 6–7 March 2010; pp. 503–506. [Google Scholar]
- Rangari, V.A.; Sridhar, V.; Umamahesh, N.; Patel, A.K. Rainfall Runoff Modelling of Urban Area Using HEC-HMS: A Case Study of Hyderabad City. In Advances in Water Resources Engineering and Management; Springer: New York, NY, USA, 2020; pp. 113–125. [Google Scholar]
- Koukidis, E.N.; Berg, A.A. Sensitivity of the Statistical DownScaling Model (SDSM) to reanalysis products. Atmos. Ocean 2009, 47, 1–18. [Google Scholar] [CrossRef]
- Sajjad, H.; Ghaffar, A. Observed, simulated and projected extreme climate indices over Pakistan in changing climate. Theor. Appl. Climatol. 2019, 137, 255–281. [Google Scholar] [CrossRef]
- Manzoor, S.A.; Malik, A.; Zubair, M.; Griffiths, G.; Lukac, M. Linking social perception and provision of ecosystem services in a sprawling urban landscape: A case study of Multan, Pakistan. Sustainability 2019, 11, 654. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.X.; Chen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Rosso, R.; Meucci, S.; Pala, F.; Valé, G. Water and Sanitation in Multan, Pakistan. In Sustainable Social, Economic and Environmental Revitalization in Multan City; Springer: New York, NY, USA, 2014; pp. 149–162. [Google Scholar]
- Elbaz, K.; Yan, T.; Zhou, A. Deep learning analysis for energy consumption of shield tunneling machine drive system. Tunn. Undergr. Space Technol. 2022, 123, 104405. [Google Scholar] [CrossRef]
- Shen, S.L.; Vhou, A.; Lu, L.-H.; Li, G.; Hu, B.-B. Automatic control of groundwater balance to combat dewatering during construction of a metro system. Autom. Constr. 2021, 123, 103536. [Google Scholar] [CrossRef]
- Shen, S.L.; Elbaz, K.; Shaban, W.M.; Zhou, A. Real-time prediction of shield moving trajectory during tunnelling. Acta Geotech. 2022, 17, 1533–1549. [Google Scholar] [CrossRef]
- Lin, S.S.; Zhang, N.; Zhou, A. Time-series prediction of shield movement performance during tunneling based on hybrid model. Tunn. Undergr. Space Technol. 2022, 119, 104245. [Google Scholar] [CrossRef]
- Wu, Y.X.; Lyu, H.M.; Han, J.; Shen, S.L. Dewatering-induced building settlement around a deep excavation in soft deposit in Tianjin, China. J. Geotech. Geoenviron. Eng. ASCE 2019, 145, 05019003. [Google Scholar] [CrossRef]
- Shen, S.L.; Zhang, N.; Zhou, A.; Yin, Z.Y. Enhancement of neural networks with an alternative activation function tanhLU. Expert Syst. Appl. 2022, 199, 117181. [Google Scholar] [CrossRef]
- Karim, S. Impacts of solid waste leachate on groundwater and surface water quality. J. Chem. Soc. Pak. 2010, 32, 606–612. [Google Scholar]
- Manan, A. E. coli Affecting Groundwater Quality; The Daily Times: Lahore, Pakistan, 2008. [Google Scholar]
- Tariq, S.R.; Shaheen, N.; Khalique, A.; Shah, M.H. Distribution, correlation, and source apportionment of selected metals in tannery effluents, related soils, and groundwater—A case study from Multan, Pakistan. Environ. Monit. Assess. 2010, 166, 303–312. [Google Scholar] [CrossRef]
- Eamus, D. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ. 1991, 14, 843–852. [Google Scholar] [CrossRef]
- Owensby, C.; Ham, J.; Knapp, A.; Bremer, D.; Auen, L. Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob. Chang. Biol. 1997, 3, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama. J. Environ. Sci. 2018, 64, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, S.P.; Kazama, S.; Sawamoto, M. Effects of climate and land use changes on groundwater resources in coastal aquifers. J. Environ. Manag. 2006, 80, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, S.L.; Yang, J.; Yin, Z.Y. Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: A case study in Shanghai. Hydrol. Earth Syst. Sci. 2019, 23, 4293–4307. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.S.; Yan, X.X.; Shen, S.L.; Zhou, A. Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. Hydrogeol. J. 2019, 27, 2659–2672. [Google Scholar] [CrossRef]
Predictor Name | Code | Partial Correlation (Partialr) |
---|---|---|
Tmax (Predictand) | ||
Mean temperature | Temp | 0.589 |
500 hPa geopotential height | p500 | 0.424 |
850 hPa vorticity | p8_z | 0.257 |
850 hPa divergence | p8_zh | 0.172 |
850 hPa geopotential height | p850 | 0.177 |
Relative humidity at 500 hPa | r500 | 0.142 |
Tmin (Predictand) | ||
Mean temperature | Temp | 0.672 |
500 hPa geopotential height | p500 | 0.521 |
850 hPa vorticity | p8_z | 0.252 |
500 hPa vorticity | p5_z | 0.206 |
850 hPa meridional velocity | p8_v | 0.228 |
Near surface specific humidity | Shum | 0.170 |
Precipitation (Predictand) | ||
Near surface specific humidity | Shum | 0.194 |
850 hPa divergence | p8_zh | 0.143 |
Surface divergence | p_zh | 0.101 |
Mean temperature | Temp | 0.073 |
Surface wind direction | P_th | 0.028 |
Seasonal Mean for Max Temperature (°C) | Mann–Kendall’s Test Results | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | Minimum | Maximum | Mean | Std. Deviation | Kendall’s Tau | S | p-Value | Alpha | Interpretation |
Summer | 37.50 | 41.10 | 39.521 | 0.788 | −0.328 | −242.000 | 0.004 | 0.050 | Reject H0 |
Winter | 20.66 | 23.96 | 22.174 | 0.868 | −0.263 | −193.000 | 0.020 | 0.050 | Reject H0 |
Spring | 32.13 | 38.20 | 35.135 | 1.577 | 0.130 | 96.000 | 0.040 | 0.050 | Reject H0 |
Autumn | 30.46 | 34.46 | 33.091 | 0.786 | −0.301 | −222.000 | 0.007 | 0.050 | Reject H0 |
Seasonal total precipitant (mm) | Mann–Kendall’s test results | ||||||||
Summer | 3.200 | 277.400 | 106.426 | 63.816 | 0.069 | 51.000 | 0.545 | 0.050 | Accept H0 |
Winter | 0.000 | 115.000 | 29.405 | 27.649 | 0.011 | 8.000 | 0.933 | 0.050 | Accept H0 |
Spring | 0.600 | 125.600 | 46.608 | 28.999 | −0.050 | −37.000 | 0.663 | 0.050 | Accept H0 |
Autumn | 0.000 | 214.700 | 33.172 | 49.709 | 0.126 | 93.000 | 0.266 | 0.050 | Accept H0 |
Symbol | HWSD-Soil Group | Soil Type | Area | Texture | Topsoil | pH Water Topsoil | pH Water Subsoil | |||
---|---|---|---|---|---|---|---|---|---|---|
(km²) | (%) | Sand (%) | Silt (%) | Clay (%) | ||||||
Yh | Haplic Yermosols | Sandy loam | 280 | 97.90 | Medium | 50.4 | 29 | 20.6 | 6.6 | 6.8 |
Jc | Calcaric Fluvisols | Loam | 6 | 2.09 | Medium | 39.6 | 39.9 | 20.6 | 8 | 8.1 |
Years | Build-up area | Light vegetation | Dense vegetation | Water | Curve Number (CN) | |||||
(km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | |||
2000 | 130.03 | 45.44 | 112.94 | 39.47 | 31.8 | 11.11 | 11.36 | 3.97 | 78.35 | |
2005 | 131.08 | 45.8 | 118.42 | 41.38 | 21.15 | 7.39 | 15.49 | 5.41 | 79 | |
2010 | 135.05 | 47.19 | 121.5 | 42.46 | 20.06 | 7 | 9.52 | 3.33 | 79.94 | |
2015 | 140.91 | 49.24 | 108.89 | 38 | 15.25 | 5.33 | 21.08 | 7.36 | 81.50 | |
2020 | 155.49 | 54.33 | 105.4 | 36.83 | 12.21 | 4.27 | 13.03 | 4.55 | 84.9 |
Scenario | Peak Runoff Date | Rainfall (mm) | Curve Number (CN) | Volume (INC) | Simulated Runoff (m3/s) |
---|---|---|---|---|---|
2000–2005 | 25 July 2001 | 83.4 | 79 | 2.02 | 133.3 |
2006–2010 | 8 August 2010 | 120 | 79.94 | 2.52 | 310.8 |
2011–2015 | 9 September 2012 | 76.5 | 81.50 | 3.23 | 162.6 |
2016–2020 | 31 August 2017 | 300 | 84.9 | 11.85 | 959.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Atangana Njock, P.G.; Wang, Y. Influence of Climate Change and Land-Use Alteration on Water Resources in Multan, Pakistan. Appl. Sci. 2022, 12, 5210. https://doi.org/10.3390/app12105210
Abbas M, Atangana Njock PG, Wang Y. Influence of Climate Change and Land-Use Alteration on Water Resources in Multan, Pakistan. Applied Sciences. 2022; 12(10):5210. https://doi.org/10.3390/app12105210
Chicago/Turabian StyleAbbas, Mohsin, Pierre Guy Atangana Njock, and Yanning Wang. 2022. "Influence of Climate Change and Land-Use Alteration on Water Resources in Multan, Pakistan" Applied Sciences 12, no. 10: 5210. https://doi.org/10.3390/app12105210
APA StyleAbbas, M., Atangana Njock, P. G., & Wang, Y. (2022). Influence of Climate Change and Land-Use Alteration on Water Resources in Multan, Pakistan. Applied Sciences, 12(10), 5210. https://doi.org/10.3390/app12105210