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Abstract: The aim of this work is to present an automatic solution to control the surveillance camera
merely by the movements of the operator’s head. The method uses convolutional neural networks
that work in a course-to-fine manner to estimate head orientation in image data. First, the image frame
of the operator’s head is acquired from the camera on the operator’s side of the system. The exact
position of a head, given by its bounding box, is estimated by a Multitask Cascaded Convolutional
Network. Second, the customized network for a given scenario is used to classify the orientation
of the head-on image data. In particular, the dedicated image dataset was collected for training
purposes and was given a discrete set of possible orientations in the vertical and horizontal planes.
The accuracy of the estimators is higher than 80%, with an average of 4.12 fps of validation time.
Finally, the current head orientation data are converted into a control signal for two degrees of
freedom surveillance camera mounting. The feedback response time is 1.5 s, which is sufficient for
most real-life surveillance applications.

Keywords: neural networks; machine learning; image processing

1. Introduction

Recent hardware-oriented improvements and possibilities enabled the application of
machine learning in many different projects aimed at simplifying work or the daily life
of people with disabilities. An example of such an application is the estimation of head
orientation, based on video input, to control mouse position on the screen [1], which could
be beneficial for people with limb disabilities.

The scope of this work lies within the mainstream convention. In this work, a fully
automatic solution was proposed to control the orientation of closed-circuit television
(CCTV) simply by movements of the operator’s head. The main motivation behind the
proposed solution is to allow people with disabilities to control the surveillance system
without the need to use their hands. The schematic representation of the proposed solution
is presented in Figure 1.

The main problem tackled in this work is to combine the video-based head orientation
information and the control signals of servomechanisms. Several aspects have to be named
here. First, to enable the use of head orientation estimators in a control loop, a processing
time should be limited far below the current state-of-the-art. Second, the chosen set of
estimation classes should be reasonable to reflect the intention of the user. Therefore,
a trade-off should be made between the number of output classes and the estimation time.
Third, the proper correspondence between the estimation classes and the generated control
signal should be defined.

The presented solution consists of a web camera focused on the operator’s face,
a processing unit, and a camera mounted on a two degrees of freedom (DOF) mount
controlled by two separate drives. The video recorded on the operator’s side is evaluated
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online, and the corresponding head orientation class is estimated. An important aspect
of the design stage was to keep the operator fatigue level as low as possible. Therefore,
an assumption is made that an unintended motion of the operator’s head would not result
in the movement of the CCTV camera.

image
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control

action
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orientation
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Figure 1. Simplified schematic of the proposed system. Image data captured by a webcam on the
operator’s side of the system is evaluated in a coarse-to-fine manner via two independent neural
network architectures. The head orientation in vertical and horizontal planes is used to calculate the
corresponding control action fed to the CCTV camera mounting.

The head orientation class is fed to the control algorithm of two drives that move the
CCTV mounting. The operator has visual feedback from the surveillance camera and can
modify its orientation online by moving the head. In particular, the proposed solution
is designed for a 2DOF mounting system but can be easily expanded to more degrees
of freedom.

The head orientation estimator is based on Convolutional Neural Networks (CNN) and
consists of several steps. First, the head position is detected on each image frame, together
with its bounding box (denoted as a coarse estimation in Figure 1). Second, the cropped
head images are evaluated in terms of head orientation. Two separate CNNs are used
to this end for vertical and horizontal orientations. The main assumption of this part of
the work was to train CNN using face images of different quality. It is assumed that the
final application works properly for videos acquired by typical web cameras with different
resolutions. Therefore, a new dataset was collected, acquired by different smartphones and
different non-professional individuals.

The main contribution of this work is three-fold. First, a fast algorithm for estimating
head orientation that incorporates CNNs for surveillance applications was proposed. A
comparative analysis of the performance of our solution and its alternatives was performed.
The presented algorithm provided a seven-times faster estimation. Second, the presented
proposition was able to estimate the head orientation from image data where the person’s
gaze direction does not correspond to the head pose. It remains a challenging problem,
as the estimation of head orientation is strongly related to the direction of gaze [2]. Third,
a control signal generator was established, the values of which depend solely on the
estimated head orientation.

Related Work

Over the last three decades, methods to estimate the pose of the head have received
increasing attention [3] because of their application in various image analysis tasks. A vari-
ety of implementations can be named, ranging from, at the coarsest level, the identification
of a head pose from a finite set of orientations [4] (e.g., frontal vs. lateral view) to the
identification of continuous angular measurement [5,6].

A wide variety of approaches to the estimation of head pose can be named [3], for ex-
ample, 2DOF appearance-based methods [7], geometric methods [8], tracking methods [9],
multitask methods [10], embedding methods, regression methods [11], and model-based
3DOF head registration methods [12]. It is a challenging task to classify all the approaches
presented in the past. Nevertheless, in the most recent decade, an obvious shift in method-
ology can be observed, from traditional methods (including classic machine learning)
towards deep learning [13].
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An increasing interest in the application of CNN to head pose estimation is linked to
the emergence of publicly available databases of annotated face images. They range from
extensive databases, for example, VGGFace2 [14] with 9131 participants or AFLW [15] with
5749 participants, to smaller databases, for example, SASE [16] with 55 participants or The
FacePix [17] with 30 participants.

An interesting alternative is a large-scale SynHead synthetic database [18], which
contains 10 synthetic head models. Synthetic data can be combined with real-life data
during training. The head pose estimation is then performed from a single image. The
approach presented in [19] improves the accuracy of the estimation of head poses for
real-world images despite only using labels from synthetic images.

The publicly available databases mentioned above contain images in which the direc-
tion of a person’s gaze is not pointed toward the camera [14]. The estimation of head pose is
strongly related to the estimation of the direction of gaze of a person [2]. Therefore, the use
of the database is limited to scenarios where a person is looking in a different direction
than is given by their head orientation, e.g., for surveillance operators. The need for a new
database tailored for surveillance-oriented applications arises.

As a side note, plenty of work has been done for artificial intelligence in anomaly
recognition systems [20] for security applications. These systems are designed to automati-
cally detect and take into account signs of offensive or disruptive activities immediately.
Note that the problem tackled in this work is not among those considerations. The aim is to
improve the overall quality of life of the disabled, the surveillance application being purely
an example. Extending the presented idea can lead to the design of an interface suitable for
disabled users [21].

2. Materials and Methods

This project was carried out in a few stages. First, the output and input data were
defined to accurately reflect the problem addressed. The comprehensive dataset of images
was collected by non-professionals and preprocessed. This part of the work is described in
Section 2.1.

In the second stage, described in Section 2.2, the collection of CNNs was trained
and tested (please refer to Figure 1). The coarse-to-fine manner of both CNNs causes the
accumulation of estimation errors. Therefore, solid validation was conducted on each of
the networks separately, as well as on both CNNs working in series. This part of the work
is presented in Section 3.

The head orientation class is used to determine the control action for CCTV camera
mounting drives. Section 2.3 presents the hardware used in this study. To ensure the
real-time operation of the system, fast and wireless communication was created between
the components. This part of the work is described in Section 2.4.

2.1. Dataset Preparation

In this scenario, the operator had to always have eye contact with the screen for
surveillance reasons. The data used for training should incorporate this information. This
feature limits the usage of publicly available datasets. Usually, the head orientation is
variable with an inline gaze, or the head orientation is constant, and the gaze is responsible
for the desired action (e.g., mouse movement). In this project, none of the above applies.
The gaze is pointed in the direction of a computer screen, whereas movements of the head
should dictate the desired action. Due to the unique character of this problem, a new
dataset was collected.

First, a set of 17 classes directly connected with different head orientations was pro-
posed. At first, the whole grid of 25 possible orientations was considered. However,
the membership of certain images in a given class was ambiguous because of similarities
between them. Therefore, a few classes that were irrelevant in terms of the control signal
(e.g., HR, ST) were omitted. The set of examples of images representing all orientations is
presented in Figure 2, whereas the corresponding output classes are gathered in Table 1.



Appl. Sci. 2022, 12, 5252 4 of 14

Head orientation is described as a pair of output numbers: (Horizontal orientation, Ver-
tical orientation). For example, the head orientation depicted in the lower-left image in
Figure 2 is denoted as (HR, HD), which represents the horizontal hard right orientation
and the vertical hard left orientation. For each direction, five different orientations were
distinguished.

HR, HT C, HT HL, HT

HL, C

HL, HDC, HDHR, HD

SR, SD C, SD SL, SD

SL, CC, CSR, CHR, C

SR, ST C, ST SL, ST

Figure 2. Example image set with the 17 assigned output classes.

Table 1. Summary of the proposed output data classes.

Horizontal Vertical

Head Orient. Output Class Head Orient. Output Class

Hard Left (HL) 0 Hard Top (HT) 0

Slightly Left (SL) 1 Slightly Top (ST) 1

Center (C) 2 Center (C) 2

Slightly Right (SR) 3 Slightly Down (SD) 3

Hard Right (HR) 4 Hard Down (HD) 4

A total of 71 volunteers were asked to collect a set of 17 pictures, each similar to
the example set. The volunteers had been instructed to keep the orientation of the head
comfortable. They were asked to collect images at the center orientation, hard directional
orientations, and slightly directional orientations in between the two previous ones. In each
image, both eyes had to be visible, and the person should look in the direction of the screen.

In particular, each image collection was acquired by a different non-professional cam-
era with different final resolution and aspect ratio of the image. This was intentional,
as the final application should estimate the head orientation on image frames from dif-
ferent amateur sources, e.g., web cameras. The resolution varied from 352 × 480 px to
4032 × 3024 px.

Due to the wide variety of characteristics of the image data, a prior unification of the
size was required. The coarse CNN (denoted in Figure 1) was used to this end. The main
goal of coarse estimation was to detect the head bounding box. The coarse estimation
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output data consisted of four corners of the bounding box. The corners of the bounding box
were subsequently used to crop the images. The example result of this part of the algorithm
is presented as the first step in Figure 3.

Original 

image frame

CNN
(coarse estimation)

Head 

bounding box

Cropping

Grayscale

Size unification

Input of CNN

fine estimation

Data augmentation

Normalization

Image after 

coarse estimation

Figure 3. Data flow of CNN valid image dataset preparation. The original image data are fed to a
coarse estimation, which results in the square head bounding box. The cropped image is unified in
size, normalized, and preprocessed for training purposes.

The cropped images were preprocessed to constitute a valid training set of fine CNN
estimation, as presented in Figure 3. First, the unified size was experimentally chosen to be
128 × 128 px, and the color information was discharged. Second, the image dataset was
augmented by transforming the original image frames with typical operations (contrast
change, noise addition, lightning change, and mirror reflection). Third, the features of the
image were scaled to the range (0, 1), to ensure proper training.

The entire image dataset was divided into training, development, and test sets, as de-
scribed in Table 2. The data augmentation process enlarged the learning set sizes ten times.
In particular, the images representing an individual were never scattered through different
learning sets. Additionally, the test set consisted of original images without augmentation.
Each of the three volunteers in the test set collected head images with different orientations,
similar to the example in Figure 2. The images were collected with the webcam that was
used in the final application. Each person in the test set was asked to collect three sets
of images with different lighting conditions to verify performance in a data distribution
similar to the final application.

Table 2. Number of image frames in each learning set.

Training Set Development Set Test Set

Original sets 1586 283 153

Augmented sets 15,860 2830 153

Number of people 51 15 3

2.2. CNN Estimator
2.2.1. Coarse Estimation

The main goal of coarse head estimation is to detect the position of the head in the
image and estimate its bounding box. In this project, four different solutions of head
detection were evaluated, namely, the Haar cascade face detector [22], multitask cascaded
convolutional networks (MTCNN) [23], histogram of oriented gradients (HOG) face detec-
tor with the support-vector machine (SVM) [24], and the DNN module in OpenCV [25].
Each detector was evaluated in terms of the processing time of a single image frame and
accuracy. The results are collected in Table 3.

The tests have shown that an OpenCV DNN module acts superior in terms of pro-
cessing time. There were additional problems with alternative solutions. The Haar-based
detector resulted in many false predictions, whereas the HOG-based detector did not detect
faces that covered a small region of an image. Both acted poorly in non-frontal images.
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Table 3. Comparison of the time needed to process a single image frame.

Head detector Haar HOG + SVM MTCNN OpenCV’s DNN

Processing time 108.1 ms 184.8 ms 126.3 ms 76.9 ms

Accuracy 74.61% 62.46% 93.61% 72.27%

For further work, the detector that gave the shortest processing time was chosen,
resulting in an operation close to online. The estimation of the head bounding box was
carried out with an OpenCV DNN module with a pre-trained CNN model [26]. Since no
prior modifications were made to the proposed CNN architecture, a detailed review will be
omitted in this work.

In particular, the neural network selected for the coarse estimation resulted in regres-
sion of the bounding box; that is, the coordinates of the left top corner of the bounding
boxes and its height. Different bounding boxes’ sizes could be estimated depending on
the dimensions of the head present on a particular image frame. Subsequently, the square
image given by the bounding box was cropped from the original image data, as presented
in Figure 3. The size was then unified as 128 × 128 px to constitute a valid fine estimation
input, as described in the previous section.

2.2.2. Fine Estimation

The fine estimation classification algorithm proposed in this work assumes the sepa-
ration of vertical and horizontal orientations. There are several reasons for this. First, it
is crucial to enable the online operation of the overall system, and the decomposition of
the solution decreases the computational time. Second, the camera mounting used in the
considered study has 2DOF; therefore, the decomposition is unavoidable.

The assumption was made that both CNN estimators (for vertical and horizontal
orientations) will have identical architectures. Due to differences between the output data,
the hyperparameters will differ. The proposed architecture is presented in Figure 4. The ar-
chitecture was inspired by the popular LeNet-5 [27]. However, complex and customized
modifications were needed.

Conv 
8 (11 x 11)

ReLu

Batch norm

Max pool 
(2 x 2)

Conv 
16 (5 x 5)

ReLu

Batch norm

Max pool 
(2 x 2)

Conv 
32 (5 x 5)

ReLu

Batch norm

Max pool 
(2 x 2)

Conv 
64 (5 x 5)

ReLu

Batch norm

Max pool 
(2 x 2)

Input 
(128 x 128 x 1)

Flatten

Leaky ReLu

Dense 
64

Batch norm Softmax

Dense  
5

Output 
5

Dropout 
0.2

Dropout 
0.5

Dropout 
0.5

Dropout 
0.5

Dropout 
0.5

Dropout 
0.2

Figure 4. Fine estimation CNN architecture. Each block represents a different part of the CNN:
red—convolution layer, orange—batch normalization, green—activation function, blue—pooling
layer, magenta—dense layer, white—input and output layer.

The proposed CNN contains seven layers: four convolutional layers, a flatten layer,
and two dense layers. In general, there are 216,501 hyperparameters to train in CNN. Each
convolutional layer is followed by Batch Normalization [28] and a ReLU activation function.
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The deeper the layer, the more convolutional filters used and the smaller the image ma-
trix size (due to pooling layers). The last pooling layer outputs the matrix of size 8× 8× 64.
Decreasing the size of the input image throughout the network enables deeper layers of
the network to have a larger receptive field and limits the number of hyperparameters of
dense layers. The limitation of the hyperparameter number is important in this scenario to
not increase the processing time.

The convolutional layers are followed by a flattening layer, resulting in an output
vector of size 4096. A one-dimensional vector is passed to a dense layer with a leaky
ReLU [29] activation function. The choice of this activation function limits the probability
that dead neurons occur in the deep layers.

The last dense layer is followed by a softmax activation function, and the size of
the output vector is equal to the number of classes considered, as described in Table 1.
The output vector contains the probability that the actual image belongs to one of the
classes. It should be noted that no negative samples were used for training. Here, two main
factors were considered. First, the coarse estimation algorithm [25] resulted in an empty
output if no head was detected in the image; therefore, the fine estimation was fed with
meaningful data. Second, it was intentional to always assign one of the output classes, even
if a real orientation of the head was slightly out of the classes.

2.3. Hardware

The 2DOF movable camera mounting was built from two separate servomechanisms
and an ESP32-CAM board, which has an embedded processing unit, WiFi module, and mi-
cro camera that work as a surveillance camera in this project. The overall view of the system
is depicted in Figure 5.

(a) (b)

Figure 5. The 2DOF mounting system of CCTV with ESP32-CAM board. (a) Front view. (b) Side view.

In this study, TowerPro MG995 servomechanisms [30] were used for both degrees of
freedom. Their operating speed is equal to 0.2 s for 60◦ of position displacement. The veloc-
ity was saturated in the software architecture; that is, if a control action was required, every
1 ms, a command was sent to alter the angular position of the servomechanism by 1◦.

Both servomechanisms considered in this study have a controlled movement range
of 180◦. The first drive, which was attached to the base, does not have an extra limit in
the moving range. Therefore, movement is limited to 90◦ in the left direction and 90◦

in the right direction. The second servomechanism is attached to the output of the first
servomechanism. The movement of the second servomechanism was restricted to 30◦

sagittal flexion down and 60◦ sagittal flexion up. The limits are directly connected with the
CCTV camera image. This solution avoids pointing the camera at unimportant areas of the
building (e.g., ceiling, floor). The ESP32-CAM was connected to the second servo rotor to
ensure two degrees of freedom of moving mount.

Both sides of the system are energy independent; therefore, the operator can be
separated from the CCTV camera as long as they are within range of the same network.
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2.4. Data Flow of the Proposed System

The overall system incorporates all components described in previous subsections.
The data flow between the components is presented in Figure 6.

Computer
Operator's web

camera

Processing unit

(ESP32-CAM)
2D servomechanism

Control
signals

CCTV

video

Head

orienta�on

class

Video 

frames

Surveillance camera side 

Operator's side 

Figure 6. Data flow between the basic components of the proposed system; solid lines represent wire
connections, whereas dashed lines denote wireless connections.

As stated above, the system is divided into two parts: the operator side and the
surveillance camera side. On the operator’s side, the head orientation on video frames
is estimated. Rare video frames from the operator’s web camera are preprocessed and
passed on to a series of CNN estimators. Both preprocessing and estimation are held
on the operator’s computer (no need to use GPU computers). The head orientation class,
from Table 1, is wirelessly transmitted to the side of the system’s CCTV camera. In particular,
to maintain fast system performance, the information is sent only if a change is detected in
the orientation class, either in the vertical or horizontal direction.

Communication between parts of the system is wireless to maintain the compactness
and portability of the solution. Additionally, the system does not involve any external
network source, as it is designed to create its own WiFi Access Point and dedicated server.

The processing unit (on the surveillance camera side of the system) is responsible
for generating the control signal for the servomechanisms. There are two distinct control
signals for vertical and horizontal movements of the camera mounting. Several different
control strategies were examined on volunteer operators. The one that was the most
intuitive and comfortable for the users was chosen.

Moving the operator’s head in each direction generates control signals for vertical and
horizontal movement corresponding to that direction. For the users’ convenience, it has
been proposed to incorporate the head orientation classes in hysteresis to generate control
signals. The most distant head orientations (HT, HD, HL, HR) generate control signals
of camera mounting. Slight head orientations (ST, SD, SL, SR) are used as hysteresis of
the control signal, causing the previous control action to be maintained. Example control
signals for a pair, current and previous head orientation class, are gathered in Table 4.

Table 4. Control signals for example pairs of current and previous head orientation classes.

Vertical Movement Horizontal Movement

Current Previous Control Current Previous Control
Orient. Orient. Signal Orient. Orient. Signal

SL C stop ST C stop

SL HL move left ST HT move top

SR C stop SD C stop

SR HR move right SD HD move bottom
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The operator can view the video from both cameras; that is, the webcam (with a
bounding box) and the CCTV camera. Hysteresis applied to the control action ensured a
decrease in operator fatigue. If an operator’s task is to keep the position of the surveillance
camera fixed for a given time, slight movements of the head are possible without generating
any control action.

3. Results

In this section, the results of the fine estimation of the proposed CNN architecture
are presented. Furthermore, the results obtained for the overall system working online
are discussed.

3.1. Optimal CNN Estimator

CNN estimators, the architecture of which was described in Section 2.2, were trained
for various learning parameters. The following variables were considered: the learning
rate α ∈ {0.0001, 0.0005, 0.001, 0.005}, the size of the batch ∈ {32, 64, 128, 216}, and different
early stopping rules [31]. The most optimal results, in terms of high accuracy, low loss
function value, and proper generalization throughout the learning sets, were obtained for
the following set of parameters:

• learning rate α = 0.0005,
• batch size = 64,
• early stopping: learning was terminated when for 20 epochs, the accuracy of the

development set did not increase by 0.5%.

The values of the loss function and the accuracy achieved as a function of the epoch
number are presented in Figure 7. In the case of both estimators, the early stopping rule
was met before 60 epochs. No overfitting was observed, as the performance was similar for
the training and development sets.
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ss
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Figure 7. The results for all learning sets for both estimators: horizontal and vertical. (a) Loss function
(horizontal). (b) Loss function (vertical). (c) Accuracy (horizontal). (d) Accuracy (vertical).

The accuracy achieved from the development and training sets is combined with a
test set in Table 5. Both estimators provided satisfactory results, as they correctly classified
head orientation with high accuracy. The horizontal estimator acted better, and the reason
is directly related to the range of head movements. Previous studies have shown that
the normal functional range of motion of the neck during daily activities is higher in the
horizontal than in the vertical direction [32]. The same conclusion can be drawn from the
collected images. The accuracy of vertical CNN was reduced due to insignificant changes
between the central and slight orientations in this plane of motion.
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Table 5. The accuracy of both optimal orientation estimators.

Horizontal Vertical

Training set 84.72% 79.50%

Validation set 86.71% 74.73%

Test set 91.89% 81.76%

It is worth pointing out the accuracy gap between training and test sets. The main
reason lies in a slightly different distribution of the data in the sets. The test set comprised
web camera images that were of better quality (higher resolution, more information, less
blurry) than the images gathered from volunteers. The images that were classified incor-
rectly in the training set by the estimators were mostly of the lowest resolution, and/or the
person collecting the image did not follow the instructions of data acquisition precisely.

3.2. Overall System Results

The overall system worked fairly well online. Example image frames with the cor-
responding head orientation classes, as well as with the resulting control signals, are
presented in Figure 8. The white rectangle represents the bounding box (a result of coarse
estimation), while the above annotation represents the output of fine estimation (with
assigned probability). The control signal is generated in a hysteresis manner, as described
in Table 4. To begin to increase the angle of camera mounting, the user needs to achieve
the most distant directional orientation for an image frame (approximately 40 ms). After-
ward, if the estimated orientation class is not the center, the movement of a mounting is
maintained in the previously referenced direction.

Control signals
vertical:
horizontal:

stop
stop

stop
stop

stop
move left

stop
move left

move top
stop

Figure 8. Video frames from the camera pointed at the operator’s face. The white rectangle represents
the head bounding box, whereas the values above describe the head estimation output class, together
with probabilities.

During the experiments, no false-positive classes of head orientation were observed.
Importantly, if any false-positive would occur among neighbor output classes, hysteresis
in the control signal would cause the control system to omit these data. Figure 9 presents
time-series plots of one of the movement sequences.

The operator was asked to move their head in the direction of the point of interest
of the surveillance camera. Both orientations, horizontal and vertical, were estimated
simultaneously, and the corresponding graphs are gathered in Figure 9. Figure 9a,b show
the estimated orientation of each fine estimator, and Figure 9c,d show the corresponding
control signals. A delay of approximately 1.5 s was observed, as predicted for wireless
communication between the servomechanism and the PC. Figure 9e,f present the angle
changes for both servomotors. No errors in estimation and control signal generation
were observed during the tests. Importantly, users described the system as intuitive
and comfortable.
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Figure 9. Estimated head orientation, corresponding control signals, and the resulting angle change
of the CCTV camera. The left column represents the movement in the horizontal direction, whereas
the second—vertical. (a) Estimated orientation (horizontal). (b) Estimated orientation (vertical).
(c) Control signals (horizontal). (d) Control signals (vertical). (e) Servomechanism angle (horizontal).
(f) Servomechanism angle (vertical).

Admittedly, the estimation algorithm presented in this study is limited to a finite set
of head orientations. Meanwhile, other approaches consider continuous sets. The choice
of discrete values of head orientation was intentional. There was a trade-off between
the processing speed and applicability to the CCTV system. The choice of 17 output
classes was sufficient to generate a control signal and largely decreased the processing time.
The processing time of the whole estimation algorithm (between the acquisition of the input
image frame to the final estimation of the head orientation) is gathered in Table 6. Similar
values are presented for alternative solutions discussed previously. Note the difference
between Table 3, which presents results of a part of the algorithm, and Table 6, which
gathers values for the whole estimation. The processing time of the presented solution is
approximately seven times shorter compared to the others. The main reason for this is the
incorporation of a multiprocessing library, which enables parallel processing. Please note
that the proposed solution was partially based on OpenCV’s DNN library, but only for
coarse estimation.

Table 6. The results of an experimental comparison of accuracy and time needed to process a single
image frame for several different algorithms.

Neural network Our proposition MTCNN [23] OpenCV’s DNN [25]

Average processing time 243.87 ms 1672.3 ms 1666.6 ms

Accuracy 75.27% 93.61% 72.27%

4. Discussion

In this work, a complex solution was proposed that allows the control of a CCTV
camera for disabled people. The system estimates the user’s head orientation on image
frames acquired by the commonly available web camera. Several CNN estimators are
used, which work in a coarse-to-fine manner. The first estimates the head position and
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denotes its bounding box in the image. The second determines the head orientation output
class. Separate estimators are used for horizontal and vertical movements, assigning one
of the five classes each. The resulting class is used to generate a control signal for the
servomechanisms attached to the surveillance camera mount.

To accurately train CNN estimators, the data set reflecting the final application was
collected. In each image, a person looked in the direction of the camera, while the ori-
entation of the head differed between the pictures. The range of head tilt and turn was
limited by the comfort of each individual. The number of original image frames exceeds
1500, which corresponds to the amount of data in many publicly available and commonly
used datasets [3]. In particular, the collected dataset could be incorporated into other head
configuration estimation algorithms.

The experiments carried out on the overall system gave satisfactory results in terms of
processing time, accuracy, and ease of use. Fast operation was achieved by dividing the
problem into smaller parts (each solved by a different estimator) and optimal communica-
tion between the components.

The time between head movement and the corresponding action of the surveillance
camera was, on average, equal to 1.5 s. This includes head detection, orientation class
estimation, sending control signals to CCTV, and actual movement. The processing time is
not suitable for security applications, e.g., anomaly recognition systems. For this kind of
security system, usually, the camera mounting needs to follow fast-moving objects, contrary
to CCTV applications, where the camera is wide-angle and its movements are less dynamic.
Therefore, the processing speed is sufficient for the problem considered.

The accuracy of the head orientation estimators lies within the results achieved re-
cently [3]. However, the accuracy tends to decrease for a larger number of output classes.
In this work, the number of possible estimated head orientations is limited to 17, which
is far from a continuous estimation. Nevertheless, the proposed discrete set of classes is
sufficient for a given problem.

Preliminary research has been done on more densely defined output classes. This solu-
tion was abandoned due to user dissatisfaction. Our main goal was to create a comfortable
system and limit the fatigue of disabled users. Bear in mind that the system is intended to
be used for many hours, and it is obvious that holding the head still could be exhausting
for everyone. This was the main reason for choosing the hysteresis-based control action for
the servomechanisms. The application of hysteresis ensures that slight movements of the
head do not activate the servomechanism.

In particular, the images presented people with unique features (complexion, hair
color, hairstyle, glasses, mustache, etc.). The only limitation of the gathered dataset is the
lack of images of people with beards. Unfortunately, no experiments were conducted for
bearded operators, but it is highly probable that the system may result in an erroneous
result in this scenario.
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