Fast Loop Closure Selection Method with Spatiotemporal Consistency for Multi-Robot Map Fusion
Abstract
:1. Introduction
- •
- We present a fast, robust method based on spatiotemporal consistency to find the topologically correct and consistent subset of inter-robot loop closure for map fusion.
- •
- Our method decomposes the traditional high-dimensional consistency matrix into sub-matrix blocks corresponding to the overlapping trajectory regions, improving the real-time performance greatly.
- •
- Compared to state-of-the-art methods, the results show that our method can achieve competitive performance in accuracy while reducing computation time by 75%.
2. Related Works
3. Multi-Robot SLAM
4. Proposed Method
4.1. Topologically Related Loop Closures
4.2. Graph Theory for Clique
5. Experiments Evaluation
5.1. Simulations in Synthetic Datasets
5.2. Real-World Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Zhou, Y.; Huang, L.; Kong, Y.; Cheng, H. Ground and aerial collaborative mapping in urban environments. IEEE Robot. Autom. Lett. 2020, 6, 95–102. [Google Scholar] [CrossRef]
- Dong, J.; Nelson, E.; Indelman, V.; Michael, N.; Dellaert, F. Distributed real-time cooperative localization and mapping using an uncertainty-aware expectation maximization approach. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5807–5814. [Google Scholar]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Lee, D.; Myung, H. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor. Sensors 2014, 14, 12467–12496. [Google Scholar] [CrossRef] [PubMed]
- Dubbelman, G.; Browning, B. COP-SLAM: Closed-form online pose-chain optimization for visual SLAM. IEEE Trans. Robot. 2015, 31, 1194–1213. [Google Scholar] [CrossRef] [Green Version]
- Pragyan Paramita Das, M.N. Outlier Detection Methods—An Analysis. Intern. J. Eng. Res. Technol. 2013, 2. Available online: https://www.ijert.org/research/outlier-detection-methods-an-analysis-IJERTV2IS90377.pdf (accessed on 28 April 2022).
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef] [Green Version]
- Durrantwhyte, H.F.; Bailey, T. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Amp Amp Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Yousef, K.M.A.; Kak, A.C. Building 3D visual maps of interior space with a new hierarchical sensor fusion architecture. Robot. Auton. Syst. 2013, 61, 749–767. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Su, Y.; Wang, T.; Shao, S.; Yao, C.; Wang, Z. GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain. Robot. Auton. Syst. 2021, 140, 103759. [Google Scholar] [CrossRef]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Elfring, J.; Dubbelman, G. Real-time vehicle positioning and mapping using graph optimization. Sensors 2021, 21, 2815. [Google Scholar] [CrossRef] [PubMed]
- Latif, Y.; Cadena, C.; Neira, J. Robust loop closing over time for pose graph SLAM. Int. J. Robot. Res. 2013, 32, 1611–1626. [Google Scholar] [CrossRef]
- Carlone, L.; Calafiore, G.C. Convex relaxations for pose graph optimization with outliers. IEEE Robot. Autom. Lett. 2018, 3, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Sünderhauf, N.; Protzel, P. Towards a robust back-end for pose graph slam. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Guangzhou, China, 11–14 December 2012; pp. 1254–1261. [Google Scholar]
- Koenig, A.; Kessler, J.; Gross, H.M. A graph matching technique for an appearance-based, visual slam-approach using rao-blackwellized particle filters. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1576–1581. [Google Scholar]
- Piasco, N.; Sidibé, D.; Demonceaux, C.; Gouet-Brunet, V. A survey on visual-based localization: On the benefit of heterogeneous data. Pattern Recognit. 2018, 74, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435. Available online: https://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf (accessed on 28 April 2022).
- Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 2016, 33, 3–46. [Google Scholar] [CrossRef]
- Andersone, I. Heterogeneous map merging: State of the art. Robotics 2019, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kaess, M.; Fletcher, L.; Leonard, J.; Bachrach, A.; Roy, N.; Teller, S. Multiple relative pose graphs for robust cooperative mapping. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 3185–3192. [Google Scholar]
- Mangelson, J.G.; Dominic, D.; Eustice, R.M.; Vasudevan, R. Pairwise consistent measurement set maximization for robust multi-robot map merging. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2916–2923. [Google Scholar]
- Do, H.; Hong, S.; Kim, J. Robust loop closure method for multi-robot map fusion by integration of consistency and data similarity. IEEE Robot. Autom. Lett. 2020, 5, 5701–5708. [Google Scholar] [CrossRef]
- Indelman, V.; Nelson, E.; Michael, N.; Dellaert, F. Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 593–600. [Google Scholar]
- Zhou, X.S.; Roumeliotis, S.I. Multi-robot SLAM with unknown initial correspondence: The robot rendezvous case. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1785–1792. [Google Scholar]
- Berrio, J.S.; Shan, M.; Worrall, S.; Nebot, E. Camera-LIDAR integration: Probabilistic sensor fusion for semantic mapping. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Tchuiev, V.; Indelman, V. Distributed consistent multi-robot semantic localization and mapping. IEEE Robot. Autom. Lett. 2020, 5, 4649–4656. [Google Scholar] [CrossRef]
- Lajoie, P.; Ramtoula, B.; Chang, Y.; Carlone, L.; Beltrame, G. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams. IEEE Robot. Autom. Lett. 2020, 5, 1656–1663. [Google Scholar] [CrossRef] [Green Version]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar]
- Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [Google Scholar] [CrossRef]
- Grisetti, G.; Kümmerle, R.; Stachniss, C.; Frese, U.; Hertzberg, C. Hierarchical optimization on manifolds for online 2D and 3D mapping. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 273–278. [Google Scholar]
- Olson, E. Recognizing places using spectrally clustered local matches. Robot. Auton. Syst. 2009, 57, 1157–1172. [Google Scholar] [CrossRef]
- Smith, R.; Self, M.; Cheeseman, P. Estimating uncertain spatial relationships in robotics. In Autonomous Robot Vehicles; Springer: Berlin/Heidelberg, Germany, 1990; pp. 167–193. [Google Scholar]
- Shimizu, S.; Yamaguchi, K.; Masuda, S. A maximum edge-weight clique extraction algorithm based on branch-and-bound. Discret. Optim. 2020, 37, 100583. [Google Scholar] [CrossRef]
- Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/MichaelGrupp/evo (accessed on 28 April 2022).
- Carlone, L.; Aragues, R.; Castellanos, J.A.; Bona, B. A fast and accurate approximation for planar pose graph optimization. Int. J. Robot. Res. 2014, 33, 965–987. [Google Scholar] [CrossRef]
- Teller, S.; Olson, E.; Leonard, J. Fast iterative optimization of pose graphs with poor inital estimates. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 2262–2269. [Google Scholar]
Outliers | Ave Time (s) | Max Size of Cluster | Num of Cluster | TPR | FPR | |
---|---|---|---|---|---|---|
50 | 0.09 | 28 | 14 | 0.35 | 0.00 | |
100 | 0.10 | 30 | 20 | 0.35 | 0.00 | |
Our | 150 | 0.13 | 36 | 21 | 0.33 | 0.00 |
200 | 0.15 | 40 | 20 | 0.29 | 0.00 | |
250 | 0.24 | 62 | 19 | 0.26 | 0.00 | |
PCM | 250 | 1.35 | – | 0.70 | 0.00 |
Method | Outliers | Ave Time (/s) | TPR | FPR | Ave ATE (/m) | Max ATE (/m) |
---|---|---|---|---|---|---|
PCM | 200 | 19.81 | 0.98 | 0.01 | 0.27 | 0.60 |
500 | 53.73 | 0.92 | 0.008 | 0.37 | 0.62 | |
MEWC | 200 | 19.75 | 0.98 | 0.008 | 0.29 | 0.60 |
500 | 53.90 | 0.92 | 0.008 | 0.37 | 0.62 | |
Our | 200 | 2.61 | 0.59 | 0.005 | 0.30 | 0.60 |
500 | 3.51 | 0.54 | 0.002 | 0.36 | 0.67 |
Method | Scene | Time (s) | TPR | FPR | Deviation Trans (/m) | Deviation Rot (/rad) |
---|---|---|---|---|---|---|
PCM | Scene 1 | 19.81 | 0.80 | 0.03 | 0.8332 | 0.1260 |
Scene 2 | 53.73 | 0.13 | 0.00 | 4.3790 | 0.0890 | |
MEWC | Scene 1 | 19.75 | 0.60 | 0.00 | 0.6331 | 0.0169 |
Scene 2 | 53.90 | 0.33 | 0.00 | 4.1805 | 0.0840 | |
Our | Scene 1 | 2.61 | 0.80 | 0.00 | 0.6232 | 0.0169 |
Scene 2 | 3.51 | 0.13 | 0.00 | 4.1110 | 0.0890 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Sun, J.; Zheng, Q. Fast Loop Closure Selection Method with Spatiotemporal Consistency for Multi-Robot Map Fusion. Appl. Sci. 2022, 12, 5291. https://doi.org/10.3390/app12115291
Chen W, Sun J, Zheng Q. Fast Loop Closure Selection Method with Spatiotemporal Consistency for Multi-Robot Map Fusion. Applied Sciences. 2022; 12(11):5291. https://doi.org/10.3390/app12115291
Chicago/Turabian StyleChen, Wei, Jian Sun, and Qiang Zheng. 2022. "Fast Loop Closure Selection Method with Spatiotemporal Consistency for Multi-Robot Map Fusion" Applied Sciences 12, no. 11: 5291. https://doi.org/10.3390/app12115291
APA StyleChen, W., Sun, J., & Zheng, Q. (2022). Fast Loop Closure Selection Method with Spatiotemporal Consistency for Multi-Robot Map Fusion. Applied Sciences, 12(11), 5291. https://doi.org/10.3390/app12115291