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Abstract: This paper presents a robust method based on graph topology to find the topologically
correct and consistent subset of inter-robot relative pose measurements for multi-robot map fusion.
However, the absence of good prior on relative pose gives a severe challenge to distinguish the inliers
and outliers, and once the wrong inter-robot loop closures are used to optimize the pose graph,
which can seriously corrupt the fused global map. Existing works mainly rely on the consistency of
spatial dimension to select inter-robot measurements, while it does not always hold. In this paper, we
propose a fast inter-robot loop closure selection method that integrates the consistency and topology
relationship of inter-robot measurements, which both conform to the continuity characteristics of
similar scenes and spatiotemporal consistency. Firstly, a clustering method integrating topology
correctness of inter-robot loop closures is proposed to split the entire measurement set into multiple
clusters. Then, our method decomposes the traditional high-dimensional consistency matrix into the
sub-matrix blocks corresponding to the overlapping trajectory regions. Finally, we define the weight
function to find the topologically correct and consistent subset with the maximum cardinality, then
convert the weight function to the maximum clique problem from graph theory and solve it. We
evaluate the performance of our method in a simulation and in a real-world experiment. Compared
to state-of-the-art methods, the results show that our method can achieve competitive performance in
accuracy while reducing computation time by 75%.

Keywords: SLAM; multi-robot; map fusion; maximum clique problem

1. Introduction

Various schemes of simultaneous localization and mapping (SLAM) have been pro-
posed and applied in robotic communities, while most of these approaches focus more on a
single robot SLAM system. Multi-robot SLAM is attracted by the fact that collaboration-
based operations, such as exploration and mapping in large scenes, can be efficiently done
by multiple robots in a cooperative manner, compared to a single robot [1,2]. The key to
implementing multi-robot SLAM is to integrate the available information among robots
to establish a global reference frame; thus, the robots can estimate where the robots are
relative to each other and build a consistent global map [3].

Pose graph SLAM [4,5] formulates the map estimation problem as a factor graph and
plays an attractive role in the mentioned map fusion process. Inter-robot relative pose
measurements can be obtained by indirect observations or direct observations. In practice,
indirect observation is more flexible and effective than direct observation, because it does
not require encounters between robots. This allows different robots to repeatedly visit the
same position at different times, which is more suitable for multi-robot systems. However,
perception-derived indirect measurements are highly susceptible to perceptual aliasing due
to the lack of good prior for relative pose measurements and thus produce false positive
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measurements. It is a troublesome issue in appearance-based place recognition systems,
where two scenes are wrongly recognized as the same position even if they are far apart in
the environment. Multi-robot SLAM system usually uses the inter-robot loop closures to
optimize the pose graph and then fuse the local maps into a global map, while the false
positive inter-robot loop closures may corrupt the back-end optimization results.

Following pose graph SLAM formulation, wrong inter-robot loop closures are called
outliers. In [6], outliers are more commonly defined as “any observation in a set of data
that is inconsistent with the remainder of the observations in that dataset”. Therefore,
effectively identifying outliers and choosing a consistent subset of measurements is the key
to fusing the local maps into a global map.

Existing methods follow the idea of building a high-dimensional consistency matrix
at the level of the entire measurement set to find consistent subsets with high cardinality.
Unfortunately, on the one hand, solving the maximum clique problem directly in the
constructed high-dimensional consistency matrix takes a long time, which is not conducive
to real-time performance. On the other hand, this method considers the consistency in the
spatial dimension but not in the temporal dimension, while the neighboring constraints
in the region where the trajectories overlap are also consistent in the temporal dimension.
The topology relationship in the time dimension is a meaningful factor that should be
considered for the inter-robot loop closure selection method.

As we know, the accurate inter-robot measurements show that robots repeatedly
visit the same position at different times, meaning that the two trajectories are coincident
within the regions. This is the case when the appearance-based SLAM front-end generates
constraints. Once a constraint is detected, it is certain that other constraints will also be
generated in its neighboring regions or adjacent time intervals due to the continuity charac-
teristics of similar scenes. Further, a reasonable assumption can be made that the correct
constraints are most likely to occur in regions with a high degree of coincidence between
trajectories since both temporal and spatial dimensions are considered. On this basis, the
high-dimensional consistency matrix can be decomposed into multiple matrix blocks to
efficiently solve the consistency subset, significantly improving the real-time performance

This paper proposes a fast inter-robot loop closure selection method with spatiotem-
poral consistency for multi-robot map fusion by integrating the graph topology of loop
closures and consistency between constraints. Then, we introduce a clustering method
that considers the degree of topology correctness of inter-robot loop closures, partitioning
the entire measurement set containing inlier and outlier loop closures into clusters, where
the constraints within the cluster are topologically correct. A weight function is defined
to find the topologically correct and consistent subset with the maximum cardinality, in a
block way, instead of the traditional constraint by constraint. Determining the solution to
the weight function can be solved by transforming it into the maximum clique problem
from graph theory. The experimental results show that our method can effectively find the
proper pairwise internally consistent set for map fusion and has high real-time performance.
Although some of the potential true measurements may be discarded, the experimental
results demonstrate that the proposed method does not lose any important, meaningful
information. The main contributions of our work can be summarized as follows:

• We present a fast, robust method based on spatiotemporal consistency to find the
topologically correct and consistent subset of inter-robot loop closure for map fusion.

• Our method decomposes the traditional high-dimensional consistency matrix into
sub-matrix blocks corresponding to the overlapping trajectory regions, improving the
real-time performance greatly.

• Compared to state-of-the-art methods, the results show that our method can achieve
competitive performance in accuracy while reducing computation time by 75%.

The remaining paper is organized as follows. Section 2 gives a review of the literature.
We present the formulation for the single robot pose graph and its extension to the multi-
robot pose graph in Section 3. Section 4 presents a complete overview of our method. The
experimental results are shown in Section 5. Lastly, Section 6 concludes this paper.
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2. Related Works

SLAM has made significant development in the past 30 years [7–9]. As one of the indis-
pensable modules, various typical SLAM frameworks (e.g., VINS [10], ORB-SLAM2 [11],
LeGO-LOAM [12], Gr-LOAM [13]) have integrated loop closures modules to enhance the
robustness of the system.

Nevertheless, the robots performing long tasks are prone to perceptual aliasing and
generate incorrect loop closures, posing severe challenges for graph SLAM sensitive to
outliers. Regarding the susceptibility of graph SLAM to wrong loop closures, many works
try to establish a robust back-end optimizer to detect and filter outliers introduced by the
front-end algorithms [14,15]. Realizing, reversing, and recovering algorithm [16] can realize
that the appearance-based place recognition system has generated wrong constraints,
remove them if required, and re-optimize the state estimation. A robust solver is proposed
in [17] to address heavy-tailed measurement noise and develops convex relaxations for
pose graph optimization that approximately solve nonconvex optimization problems via
semidefinite programming. In order to build a globally consistent map, a robust back-end
solver is proposed in [18], which disables inaccurate loop closures and changes part of the
graph topology during optimization. The relative pose measurements are easy to estimate,
for intra-robot loop closures, because they can be obtained by odometry or estimated from
a visual frame or lidar frame matching algorithm [19–21]. In comparison, these methods
for outliers rejection are not suitable for multi-robot SLAM.

The vital issue of multi-robot SLAM is relative pose estimation, and most existing
works deal with this issue by analyzing the inter-robot loop closures and then detecting
and filtering the outliers. Researchers present a comprehensive review to illustrate the
challenges for multi-robot SLAM map fusion [22,23], many of which attempt to propose a
robust loop closure method to address the problem of outliers introduced by perceptual
aliasing and perform map fusion. For initialization problems, the concept of “anchor
nodes” is proposed to convert individual nodes of each pose graph into a global frame [24].
The pairwise consistency maximization (PCM) method [25] applies the binary switch
variables as weights to distinguish whether each pair of measurements is consistent. It
then utilizes the maximum clique problem derived from graph theory to determine the
largest pairwise internally consistent set. Following the solution of PCM, the definition
of proposes the maximum edge weight clique (MEWC) integrating consistency and data
similarity is proposed and then applies them as the weight for the objective function [26].
The expectation maximization algorithm is an effective solution for multi-robot pose graph
localization [27]. It is capable of inferring the initial relative pose of the robot and solving
the problem of multi-robot data association, in the absence of prior knowledge about
the initial relative pose measurements. When there is overlap between two maps, those
landmarks that appear repeatedly can provide additional information that is added to the
optimization process in the form of constraints to improve alignment accuracy [28]. Some
researchers propose to construct a semantic map in the unknown environment based on the
rich features of visual images for map fusion between robots [29,30]. DOOR-SLAM [31] is
a typical distributed SLAM solution with low communication bandwidth, which integrates
the PCM module at the back-end and includes a distributed SLAM front-end to detect
inter-robot loop closures. Distributed systems often rely on additional communication
channels to exchange maps for feature data, making it more challenging to implement.
The mentioned solutions do not consider the temporal dimension making it impossible to
determine the topology relationship of the measurements. In addition, as the definition
of consistency only involves the spatial dimension, this case does not conform to the
spatiotemporal consistency.

3. Multi-Robot SLAM

Thanks to the development of the SLAM technology, pose estimation for single robot
SLAM can be solved effectively through practical optimization algorithms such as g2o [32],
iSAM2 [33], and HOG-Man [34]. A set of measurements Z consists of odometry measure-
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ments with sequential nodes zij(j = i + 1) and loop closure measurements zij(j 6= i + 1)
with non-sequential nodes. Without loss of generality, the measurements are also named
constraints. Pose graph SLAM aims to estimate the full trajectory of robots, which can be
generalized as the maximum a posteriori (MAP) problem as below:

X∗ = arg max
x

P(X | Z) = argmin
x
{∑

i

∥∥xi+1 − f
(
xi, zij

)∥∥2
Σi︸ ︷︷ ︸

Odometry Constraints

+∑
ij

∥∥xj − f
(
xi, zij

)∥∥2
Λij︸ ︷︷ ︸

Loop Closure Constraints

}
(1)

where X =
(
x0, x1, . . . xi, . . . xj, . . .

)T presents the robot trajectory that consists of all pose
nodes xi ∈ SE(3) or xi ∈ SE(2) at the time i, f (·) is the nonlinear motion model, ∑i and Λij
are the odometry covariance and loop closure covariance, respectively.

The pose graph SLAM formulation mentioned above can be further extended to multi-
robot SLAM for fusing local maps to a global map. In the absence of a common reference
frame, the anchor nodes are introduced to estimate the relative pose transformation between
the local coordinate frames [24]. Based on all measurements, the multi-robot SLAM can be
formulated as

X∗, Tg∗ = arg max︸ ︷︷ ︸
X,Tg

P
(

X, Tg | Z, Zab
)

. (2)

For the convenience of description, let us assume that the scene contains two robots.
X =

{
Xa, Xb

}
is the set of robot trajectories representing the trajectory Xa of robot a

and the trajectory Xb of robot b. Z =
{

Za, Zb
}

is the set of intra-robot loop closure

corresponding to the measurements Za of robot a and the measurements Zb of robot b.
Zab =

{
zab

ij | zab
ij ∈ SE(2) or SE(3)

}
represents the set of inter-robot loop closures, and its

element zab
ij refers to the relative measurement of robot a at the time i and robot b at time j.

The variable Tg =
{

Tg
a , Tg

b | Tg
a , Tg

b ∈ SE(2) or SE(3)
}

denotes the relative transformation
of robot b and robot a to the global frame, respectively.

Inter-robot loop closures usually involve wrong measurements due to the lack of a
prior for the initial transformation. Existing work does not filter the inaccurate constraints
from the entire measurement set but attempts to select a subset that are free of wrong loop
closures, and it also names consistency [25]. In this paper, we adopt the metric proposed
in [35] to define the consistency

c
(

zab
ik , zab

jl

)
=
∥∥∥(�zab

ik

)
� x̂a

ij � zab
jl � x̂b

lk

∥∥∥
Σ

. (3)

where the notations � and � are used for pose composition and inversion [36], respectively,
and x̂a

ij is the pose estimation of robot a from the time i to time j. For inter-robot loop
closures, we make some necessary explanations for the convenience of description. In (3),
assume that node i and node j belong to the trajectory of robot a, the node k and node
l belong to robot b. ti denotes the timestamp related to node i. We further assume that
robot poses xa

ij on a single trajectory are directed in time, where transformations are from
past node to current

(
tj > ti, tl > tk

)
. The underlying hypothesis of consistency is that the

measurements in the selected subset are consistent with each other in the graph, implying
that the error is within a certain statistical threshold. Mathematically, for a set Z̃ to be
pairwise internally consistent, it can be formulated as

c
(

zab
ik , zab

jl

)
≤ χ2

α,δc
, ∀zab

ik , zab
jl ∈ Z̃, (4)

where ‖ · ‖Σ is the Mahalanobis distance, therefore the threshold follows the chisquared
distribution (using the χ2 threshold with α = 0.1), δc is the degrees of freedom of the graph.
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4. Proposed Method

Due to the presence of wrong constraints, not all the measurements Zab are inserted
into the pose graph, and only a part of the available ones can be accepted. PCM seeks
to find the largest subset of inter-robot measurements Zab that satisfies the consistency.
Based on the PCM, the MEWC method [26] determines such a subset with a high degree of
cardinality, consistency, and data similarity. However, exiting works on the consistency
of measurements are usually based on spatial dimension in (3). In fact, the accurate
measurements are also topologically (i.e., time) correct between two trajectories to a certain
extent, while the wrong ones do not hold. Given the inter-robot loop closures, the degree
of coincidence corresponding to the trajectories of two robots can be used to further assess
the consistency of the measurements. This case is reflected in the time dimension and
has not yet been introduced into the concept of consistency. Therefore, we propose a fast
loop closure selection method that integrates the essentials of spatiotemporal consistency.
Specifically, our method considers the degree of topology correctness, cardinality, and
consistency of inter-robot measurements.

4.1. Topologically Related Loop Closures

Following the definition of consistency proposed in [25], we know those accurate
measurements Zab are consistent with each other and further satisfy the consistency metric
(3). In terms of topology, accurate inter-robot loop closures are also all topologically correct
with each other, which refers to the sequence of measurements related to the overlapped
regions of robot trajectories. However, perceptual aliasing is nearly inevitable in natural
environments and can lead to false loop closures that will be mixed into the measurement
set as part of the measurement. This issue drives us to distinguish between true and false
measurements at the initial stage. The potential fact is that the false measurements may be
inconsistent or topologically incorrect.

The definition of consistency allows us to determine which subset is trusted from the
perspective of entire measurement set in the inter-robot Zab, whereas it cannot be used to
evaluate the degree of coincidence between two trajectories. It is certain that the presence of
measurements Zab means that the robots repeatedly observed the same location at different
moments or by different robots. The distribution of inter-robot loop closures, to a certain
extent, agrees with the distribution of regions where the two robot trajectories overlap.
Accordingly, we seek to determine which portions of the two trajectories are overlapped,
where the overlapped portions only consist of topologically related links (sequences of loop
closures that relate coincident parts of the robot trajectories). For the sake of brevity, we
embody each of these portions as a cluster. The measurements Zab consist of the several
clusters such that

Zab =

{⋃
c=1

Zab
c | Zab

m ∩ Zab
n = ∅, ∀(m 6= n)

}
(5)

Assuming that if there are no false constraints in the measurement set, the constraints
within each cluster agree with each other and are topologically correct, the inter-clusters
are mutually consistent, and the true subset of the inter-robot measurements should consist
of all clusters. If the front-end introduces false measurements, the subsets can only be
composed of partial constraints within clusters. Once the measurement set is divided
into multiple clusters by the proposed method, it allows to search the entire measurement
set in a block-wise way, instead of the traditional one-constraint-by-constraint, and then
segmentally identify the regions of loop closures. In this paper, we demonstrate that
the proposed clustering method is feasible and practical since the idea of segmentation
conforms to the characteristics of the continuity of similar scenes.

Now, we explain how the proposed method divides the measurement set into multiple
clusters consisting of topologically related loop closures. As previously described, the
cluster is initialized and maintained according to the timestamp of measurements, which
belongs to the time category. We initialize a cluster Zab

c =
{

zab
ik

}
with the measurement zab

ik
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generated by the front-end. Next, the formulation (6) is introduced to evaluate whether the
new measurement zab

jl belongs to an existing cluster or reinitializes a new cluster.{
∃zab

jl ∈ Zab
c :

∥∥ti − tj
∥∥ ≤ tg ⊕ ‖tk − tl‖ ≤ tg

}
(6)

where tg is the threshold to distinguish cluster area, which is set by the running frequency
of the front-end place recognition. The operator ⊕ is AND operation in the Boolean logic
function. Specifically, once the first measurement zab

ik generates in the front-end, it assembles
a new cluster. When the second measurement zab

jl generates, both node j and node l of this
measurement should be within threshold tg from node i and node k respectively of some
measurements already present in the cluster, in order to be inserted to the same cluster. If
not, a new cluster will be created comprising this measurement.

Building on this solution, only measurements that link the overlapped portions of
trajectories are allowed to construct the corresponding clusters. As measurements are
continuously generated by the front-end, they will be dynamically assigned to already
existing clusters if they satisfy the criterion in (6); otherwise, new clusters are formed. For
example, a set of public datasets New College [16] was run to illustrate the effectiveness
of the proposed clustering method for topology correctness of inter-robot constraints, as
shown in Figure 1. The dataset was split into two parts representing two completely
independent pose graphs. We draw the two original 2D trajectories and measurements
in a 3D form for readability, and the scale of the z-axis has no meaning in the plot. Our
method successfully processed the raw inter-robot measurements into multiple clusters,
where the largest cluster includes 93 constraints and the smallest one consists of only
one measurement. The threshold tg was set to 50, where the timestamp interval between
measurements was smaller than the threshold to be believed the same cluster. To maintain
the scale of the cluster, the cluster is believed completed if no measurement is inserted
within the threshold period.

X /m
−25

25
75

125

Y /m −200−150−100−50

0.0

0.5

1.0

The trajectory of robot 1
The trajectory of robot 2

(a) Clustering inter-robot loop closures

−25 25 75 125
X /m

−200

−150

−100

−50

Y 
/m

The trajectory of robot 1
The trajectory of robot 2
Start position of robot 1 
Start position of robot 2 

(b) Robot trajectories

Figure 1. (a) Clusters consist of topologically related measurements and are labeled by different
colors. (b) Two sets of robot trajectories, the blue square represents the end position of trajectory 1,
which is also the start position of trajectory 2.

A larger cluster means that the two trajectories have a higher degree of coincidence;
there is a greater probability that the robot will repeatedly pass the same place. Because
similar scenes usually appear in the form of local regions, rather than flashing by in the
form of isolated points. Following this logic, clusters that are scattered and consist of only
one or two constraints are more likely to be outliers. Based on the above analysis, we can
make a reasonable assumption as follows.

Assumption 1. The scale of the cluster is positively correlated with the coincident area between two
trajectories and is more likely to dominate the distribution of the pairwise internally consistent set.
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Our method requires that every pair of measurements zab
jl and zab

ik are topologically
correct, i.e., consistent in the temporal dimension, and consistent in the spatial dimension.
Accordingly, a weight function is defined to evaluate the clusters and then estimate the
proper pairwise internally consistent set Z∗ as follows.

Z∗ = arg max
Z∈Zab

∑
zab

jl ,zab
ik ∈Zab

h
(

zab
jl , zab

ik

)
⊕ c
(

zab
jl , zab

ik

)
(7)

where h
(

zab
jl , zab

ik

)
is to calculate whether the two constraints are topologically correct,

c
(

zab
jl , zab

ik

)
is to compute the pairwise consistency value. The maximization of the weight

function means that the subset should include as many inter-robot measurements as
possible, which is consistent with the existing assumptions. Meantime, the larger the
cumulative sum of weight function, the more measurements that satisfy the topology
correctness at the same time, and the case is compatible with the proposed assumption
in this paper. The formulation (7) estimates the topologically correct and consistent set
with the maximum cardinality. It is reasonable to find the pairwise internally consistent set
in the region where the coincident segment of the two trajectories is the largest without
prior knowledge. Inspired by [25,26], Z∗ can be calculated by introducing graph theory to
solve the Formulation (7) and then adding it into the existing SLAM back-end optimizer
for map fusion.

4.2. Graph Theory for Clique

In this section, we first perform the outlier rejection for a pair of pose graphs and
then conduct to merge the local robot maps into a global map. Before starting, some basic
concepts of graph theory are presented for ease of description. In an undirected graph
G = {V, E}, an edge e(i, j) connects two vertices, i and j, where e ∈ E and i, j ∈ V. The
graph may contain more than one clique Gc = {Vc, Ec | Vc ⊆ V, Ec ⊆ E}. The clique is
a subset of the graph in which there is an edge between each pair of vertices, and the
maximum clique is the one with the most vertices in such a subset in the graph.

By leveraging the associated definitions of cliques, we discuss how the problem
defined in (7) is reformulated into the maximum clique problem using a small case. Assume
that there are two pose graphs containing 13 inter-robot loop closures, which constitute the
entire measurement set Zab, as shown in Figure 2a. According to the clustering method, it
can be seen that there are three overlapped segments between trajectories.

Based on the previous assumption, accurate inter-robot measurements are consistent
and topologically correct. The proposed clustering method based on (6) introduces the
topology dimension to segment the entire measurement set that contains outliers and inliers
into multiple clusters. We redefine function h

(
zab

jl , zab
ik

)
in (7) to evaluate the topology

relationship of inter-robot measurements as follows.

h
(

zab
jl , zab

ik

)
=

{
1, zab

jl , zab
ik ∈ Zab

c

0, others .
(8)

Each cluster Zab
c corresponds to a topology matrix Hc, which is used to store the

topology values in (8). The matrix Hc is a symmetric matrix whose main diagonal elements
are zero as the topology with itself is meaningless; the rest of the elements are hi,j, (i 6= j),
as shown in Figure 2b. The proposed clustering method divides the measurement set into
two clusters of different scales following the definition of topology correctness. On the one
hand, inter-robot loop closures tagged 6, 7, 12, and 13 are not included in these two clusters
because they do not satisfy the criterion of topology correctness. On the other hand, for
those isolated inter-robot measurements, those smaller clusters consisting of only one or
two measurements can generally be considered outliers based on the above analysis of the
continuity of similar scenes. Therefore, the cluster consisting of inter-robot loop closure
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tagged 8 is likely to be outliers and can be discarded. These discarded measurements are
no longer used for subsequent consistency evaluation.

(a)

(b) (c) (d)

(e)

Figure 2. A small case for the proposed loop closure selection method. (a) Diagram of inter-robot
measurement based on continuity of similar scenes. The solid black line in the local trajectory of the
single robot connects two sequential pose nodes, while the dotted line connects two non-sequential
pose nodes. (b) Topologically correct matrix. (c) Cliques Topologically correct and consistent matrix.
(d) corresponding to the overlapping trajectory regions. (e) Selected subset.

Our method takes each cluster as the basic unit to calculate its corresponding pairwise
consistency values. Similar to matrix Hc, a new matrix is constructed to store the pairwise
consistency values calculated in (4). According to the definition of an undirected graph,
this matrix is also symmetric, and the elements on the main diagonal are all zeros because
the consistency with itself has no practical meaning. Next, all items mi,j in the matrix that
are smaller than the threshold are reset to zeros, indicating that these measurements do not
meet the definition of consistency with each other. The matrix is redefined as a topologically
correct and consistent matrix Mc, as shown in Figure 2c.

The latest matrix Mc can be further transformed into its corresponding undirected
graph in the form of an adjacency matrix, as shown in Figure 2d. It can be seen that each
topologically correct and consistent set corresponds to a clique in the graph, and accordingly,
the definitions of its nodes and edges have also changed. Nodes in an undirected graph
represent inter-robot measurements, and two nodes are connected by an edge if and only if
the corresponding element in the matrix Mc is not zero. Considering that the clique is fully
connected, all inter-robot measurements represented by nodes in the clique are pairwise
internally consistent. In other words, the topologically correct and consistent subset with
the largest cardinality in the graph is the solution to the weight function, and this subset
has the highest cumulative sum. Finally, the inter-robot loop closures corresponding to
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the selected subset Z∗ are represented in the pose graphs, as shown in Figure 2e. Now, the
solution of the weight function has been transformed into the maximum clique problem.

In graph theory, finding the maximum clique in a given undirected graph is the
maximum clique problem. We select the method proposed in [37] for the maximum clique
problem because it is easy to perform and has been open-sourced. Once the proper loop
closure selection is solved, the trusted subset of inter-robot measurements can be inserted
into the existing SLAM back-end optimizer for map fusion, such as factor graph and
graph optimization.

Although the focus of this paper is to discuss map fusion in terms of two pose graphs,
this solution can seamlessly be extended and applied to multiple pose graphs. We first
compute the topology and consistency matrices of each pair of local maps, and then con-
struct the corresponding adjacency matrix and solve for the maximum clique to determine
the proper subset of the inter-robot loop closure set. Next, the two trajectories with the
highest degree of coincidence and consistency are fused into a new map according to the
selected subset, and the newly fused map is used as a new local map. This process can be
performed iteratively until all local maps are merged into a global map. In the process of
map fusion, it should be noted that the local maps with the highest degree of coincidence
and consistency are preferentially selected each time, which can maintain the certainty of
map fusion.

5. Experiments Evaluation

In this section, To verify the practicability of our method in the natural environments,
several sets of experiments in two different scenarios were carried out based on the self-built
mobile robot platform to determine whether the inter-robot measurements are accurate
or not. Figure 3 shows the physical platform that a Leishen C-16 lidar and a MicroStrain
3DM-GX3-25 IMU are installed on the ground mobile robot-TIABBOT TOM08Q2. We
also implemented two other state-of-the-art methods, including PCM and MEWC, to
compare the simulation and experimental results with our method. All the experiments
and simulations are run in C++ and executed on an Intel NUC equipped with a Core i7-7567
CPU and 8Gib memory using the robot operating system (ROS) in Ubuntu 18.04 Linux.

Figure 3. Mobile robot platform.

The system framework of the multi-robot map fusion algorithm is shown in Figure 4.
The system consists of three main modules: the local single-robot SALM module, the
inter-robot loop closure detection module, and the multi-robot pose graph optimizer. Each
robot builds its local map, and the inter-robot loop closure detection module estimates the
relative pose among robots. The robust inter-robot loop closure selection method proposed
in this paper selects the proper subset of measurements that satisfy the conditions. The
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measurements contained in the subset are then inserted into the optimizer to fuse local
maps into a global map.

Figure 4. Diagram of system framework.

In order to qualitatively analyze the experimental results, the SLAM accuracy assess-
ment tool evaluation of odometry (EVO) [38] is used to calculate the absolute trajectory
error (ATE). In terms of accuracy, we use ATE as the metric to evaluate the maps generated
by existing algorithms. We introduced some basic concepts in the loop closure, where
TP, TN, FP, and FN correspond for true positive, true negative, false positive, and false
negative, respectively. The true positive rate (TPR) and false positive rate (FPR) are defined
as follows:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(9)

5.1. Simulations in Synthetic Datasets

The main goal of the first set of simulations is to demonstrate the effectiveness of the
proposed method and to further qualitatively evaluate the performance of the methods on
varying numbers of outliers. To simulate the scenarios of two pose graphs, we divided a
complete robot trajectory released with dataset CASIL [39] into two independent segments
representing pose graphs. In this way, a part of intra-robot loop closures is converted
to inter-robot loop closures. Therefore we can quickly determine whether an inter-robot
constraint is accurate or not as the relative pose between two robots is known. The
newly inter-robot measurements that link two pose graphs were used as inliers. We
added randomly generated inaccurate measurements to the pose graphs to evaluate the
performance of methods under the variable number of outliers, where the number of
outliers was from 0 to 250 with a step of 50. It is necessary to explain that some of the
outliers are the false positive loop closures corresponding to perceptual aliasing, and the
other is randomly produced with random mean and covariance. In our simulations, the
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threshold tg was set to 50 to distinguish cluster. Lastly, based on the selected trust subset of
inter-robot measurements, the pose graphs were optimized with open-source iSAM [33]
and the concept of anchor node [24]. Figure 5 presents the maps estimated by our method.

(a) 50 outliers (b) 150 outliers (c) 250 outliers

Figure 5. Estimated maps for CSAIL dataset. (a–c): Optimized graph after our method in the presence
of 50, 150, and 250 outliers. Correctly accepted inlier constraints are green, disabled outliers in gray,
final optimized map in blue.

Table 1 quantitatively shows the numerical results of the estimated maps shown in
Figure 5. According to the results, we use three metrics to evaluate the performance of the
methods in detail, including time, TPR, and FPR. In addition, there are also two related
metrics, the maximum size cluster and number of clusters, to describe clusters generated
by our method in Table 1. The maximum size cluster is the one that contains the most
inter-robot measurements

Table 1. Simulation Results: CASIL.

Outliers Ave Time (s) Max Size of Cluster Num of Cluster TPR FPR

Our

50 0.09 28 14 0.35 0.00
100 0.10 30 20 0.35 0.00
150 0.13 36 21 0.33 0.00
200 0.15 40 20 0.29 0.00
250 0.24 62 19 0.26 0.00

PCM 250 1.35 – 0.70 0.00

As the number of outliers increases, the number of clusters gradually increases to
21 first, and then reduces to 19 when the number of outliers is 250. The reason is that
those originally isolated clusters are associated with gradually increasing outliers, and then
multiple discrete measurements are merged into a new cluster, so the number of clusters
first increases and then decreases. In terms of computation time, our method takes clusters
as the basic unit to estimate the topologically correct and consistent subset, dividing the
entire measurement set into multiple sub-matrix blocks for solving. Compared to existing
methods for building a high-dimensional consistency matrix over the entire measurement
set, our method reduces the optimization time by 82%. The TPR of our method is lower
than PCM, and this case is in accordance with the assumption proposed in this paper.
Our method selects the pairwise internally consistent set from the region where the two
trajectories overlap the most rather than the entire measurement set. In the following
simulations, we will show that this assumption is feasible and meaningful.

This set of simulations is used to compare the performance of the methods in the
presence of dense inter-robot measurements. We evaluate the consistency and accuracy of
methods by running the manhattan dataset [40], which simulates a world with 3500 nodes
and 2099 ground truth loop closures. Similarly, we split the single complete trajectory
generated on a full dataset into two pose graphs. The number of inter-robot loop closures
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is not a fixed value but is related to the respective lengths of the two trajectories. In this
simulation, the number of inliers was 140, and we generated two versions of the dataset,
including 200 outliers and 500 outliers, respectively, based on the number of outliers. Ten
random experiments were conducted for each level of outliers to compare the estimated
maps. Figure 6 presents the sample plots of the estimated maps. Intuitively, all three
methods effectively reject outliers in dense inter-robot measurements. Once the outliers
introduced by perceptual confusion are accepted, they corrupt the consistency of the
fused map.

(a) Output of our method (b) Output of PCM (c) Output of MEWC

Figure 6. Results for manhattan dataset estimated by our method, PCM, and MEWC, in presence
of 500 outliers. Final optimized map in red, correctly accepted inlier constraints are green, disabled
outliers in gray.

We compared the results of multiple experiments, as shown in Table 2. In terms of real-
time, when the number of outliers is 500, the computation time of both PCM and MEWC
methods exceeds 50 s, while our method only takes 3.5 s, which reduces the computation
time by 93%. In addition, PCM and MEWC determine consistent subset of inter-robot loop
closures at the level of the entire measurement set, and the corresponding TPR both exceed
0.9, which is higher than the TPR estimated by our method. Note that the similarity in
MEWC is all set to 1, as the dataset does not provide data similarity of loop closures.

Table 2. Simulation Results: manhattan.

Method Outliers Ave Time (/s) TPR FPR Ave ATE (/m) Max ATE (/m)

PCM 200 19.81 0.98 0.01 0.27 0.60
500 53.73 0.92 0.008 0.37 0.62

MEWC 200 19.75 0.98 0.008 0.29 0.60
500 53.90 0.92 0.008 0.37 0.62

Our 200 2.61 0.59 0.005 0.30 0.60
500 3.51 0.54 0.002 0.36 0.67

Analysis of the above two sets of simulation results, Tables 1 and 2, both prove that
different numbers of outliers will have an impact on TPR, FPR, and time:

(1) Associating TPR and ATE for analysis, the worst result of TPR corresponding to
our method is 0.54 in Table 2. However, the average ATE between the global map estimated
by our method and the ground truth is only 0.36, which is approximately the same as
the ATE corresponding to the PCM and MEWC. The quantitative experimental result is
transformed into an intuitive map for comparison. The EVO [38] is used to compare the
trajectory estimated by our method and the ground truth of the manhattan dataset and
calculate the statistics of the whole trajectory, as shown in Figure 7. The results are suitable
for testing the global consistency of the trajectory, and it can be seen that the maximum
error in this experiment does not exceed 0.5.
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(2) For existing methods, the larger the scale of the measurement set, the higher
the corresponding consistency matrix dimension, and the longer the time required to
solve the high-dimensional matrix. Our method takes the cluster corresponding to the
trajectory overlap region as the basic unit to estimate the consistency subset. It decomposes
the high-dimensional matrix into multiple sub-matrix blocks, significantly reducing the
computational time required to solve the maximum clique problem.

Combined with the experimental results, it can be concluded that the lower TPR
means that our method discards a part of the potential true inter-robot loop closures,
but the lower ATE demonstrates that the proposed method does not lose any important,
meaningful information.
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Figure 7. Results of ATE between the ground truth of the manhattan dataset and the map estimated
by our method. The color changes from blue to red, and the error gradually increases.

5.2. Real-World Experiments

The primary sensor of the front-end place recognition system was a 3D lidar, where
the iterative closest point (ICP) [21] algorithm was performed to calculate the inter-robot
loop closures. For MEWC, the residual generated by ICP was used to represent the degree
of data similarity between two frames.

In this experiment, one of the challenges comes from the lack of ground truth, so we
collected a complete dataset in the same scene, as a reference metric, to provide a global
trajectory for the local maps. The metric has no other practical meaning, as this section
aims to verify the algorithm’s performance for outlier rejection of inter-robot loop closures,
not navigation. We collected multiple local maps of this scene at different moments for
each robot, where every pair of local maps contained repeatedly visited areas to generate
potential inter-robot measurements. In addition, the end position of robot 1 is the starting
position of the trajectory of robot 2, which is convenient for quantitative analysis because,
theoretically, these two positions should be coincident in the fused map. We took the
deviation between these two positions in the fused map as a new evaluation metric. The
complete datasets were run multiple times to determine the number of loop closures within
the overlapping region of the two maps. Figure 8 represents two independent local robot
trajectories, and solid green lines represent inter-robot loop closures. From the local maps,
the starting positions of two trajectories are coincident due to the lack of prior information
on relative measurements.
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(a) Local maps in scene 1 (b) Local maps in scene 2

Figure 8. The local trajectories of robots in different scenes. The trajectories of robot 1 and robot 2 are
shown in red and blue, respectively.

The self-collected dataset is not as large as the synthetic dataset, so we reset the
threshold tg to 15 to define the clusters, making it more suitable for real situations. Likewise,
to increase the difficulty of outlier rejection, we added 30 outliers generated randomly with
random mean and covariance to the measurement set. Figures 9 and 10 shows example
plots of the map fusion results. For convenience, the dataset corresponding to robot 1 is
abbreviated as session 1, and robot 2 is referred to as session 2.
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(b) Output of Our method in scene 1
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(c) Output of MEWC in scene 1
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Figure 9. The fused global map corresponding to scene 1 shown in Figure 8a. The red square and
blue triangle represent the end position of session 1 and the start position of the trajectory of session
2, respectively. Correctly accepted inlier constraints are green, disabled outliers in gray.

Figures 9a and 10a represent the complete trajectories of the two experimental sce-
narios, respectively, as global references. Figure 9 shows the test results of the different
algorithms in scene 1, where the red and blue lines indicate the local pose graphs of the two
robots, and the thick green lines represent the inter-robot measurements corresponding
to the selected subset. Then, the subset of inter-robot measurements selected by each
algorithm can be inserted into the existing SLAM back-end optimizer for map fusion. The
maps estimated by MEWC, PCM, and our method are shown in Figure 9b–d. Although
there is a certain deviation between the red square and blue triangle in the fused map, it
can be intuitively seen that the three methods are succeeded in map fusion, and the fused
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map approximately conforms to the reference trajectory. This case indicates that all three
methods consider and apply the concept of consistency to select measurement subset. Next,
we quantitatively analyze the performance of the algorithm by evaluating the experimental
results. Due to the lack of ground truth in the experiments, ATE cannot be used as an
available evaluation metric. The performance of the algorithms is evaluated based on four
indicators: time, FPR, TPR, and deviation mentioned above, as shown in Table 3.
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−40 −20 0 20 40 60 80 100 120
X /m

−20

0

20

40

60

80

100

120

140
Y 

/m
Session 1
Session 2
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Figure 10. The fused global map corresponding to scene 2 shown in Figure 8b.

Table 3. Results of real-world experiments.

Method Scene Time (s) TPR FPR Deviation Trans (/m) Deviation Rot (/rad)

PCM Scene 1 19.81 0.80 0.03 0.8332 0.1260
Scene 2 53.73 0.13 0.00 4.3790 0.0890

MEWC Scene 1 19.75 0.60 0.00 0.6331 0.0169
Scene 2 53.90 0.33 0.00 4.1805 0.0840

Our Scene 1 2.61 0.80 0.00 0.6232 0.0169
Scene 2 3.51 0.13 0.00 4.1110 0.0890

In the case of approximately the same deviation, our method takes the shortest com-
putation time of 0.01 s while MEWC expenses the longest 0.071 s. For our method, the
high-dimensional consistency matrix corresponding to the entire measurement set is decom-
posed into multiple sub-matrix blocks for solving, improving the real-time performance
greatly. Second, MEWC considers consistency and introduces data similarity between
frames as one of the weights, so the cardinality of the pairwise internally consistent set
is not always the largest, which corresponds to its lower TPR. As PCM assumes that all
constraints satisfying the threshold have the same weight, it has to determine the true
subset at the level of the entire measurement set and cannot always reject false positive
measurements caused by perceptual aliasing. The PCM method accepted a false positive
measurement in scene 1, exacerbating the deviation between the positions corresponding
to the red squares and blue triangles in the global map.

In the absence of prior information, not every inter-robot measurement is meaningful
for map fusion. Combined with the simulation results, the experiments in this section
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again verify the feasibility of our method. Although there is a part of potential inter-
robot measurements is discarded following the topologically correct and consistent subset
proposed in this paper, our method does not lose any important, meaningful information
and achieves high real-time.

6. Conclusions

In this paper, we introduced a robust inter-robot of measurements for map fusion
in multi-robot SLAM in the absence of prior knowledge of relative pose. Considering
the continuity characteristics of similar scenes, we make an assumption that the pairwise
internally consistent set should be with a high degree of consistency, cardinality, and
topology correctness of inter-robot loop closures. A newly defined clustering method
is used to evaluate the topology relationship of inter-robot measurements. We exploit
the proposed weight function to find an appropriate subset that is topologically correct
and consistent, convert it to a clique problem in the graph, and solve it. Simulation and
experimental results show that our method is more competitive in accuracy and time,
compared to existing methods such as MEWC and PCM. In future work, we will focus on
map fusion in multi-robot SLAM in large-scale scenarios and collaborative map fusion of
more than two robots.
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