Age-Related Changes in Landing Mechanics in Elite Male Youth Soccer Players: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometrics
2.2.2. Landing Error Score System
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Str. Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.A.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, Part 2: Barriers to success and potential solutions. J. Strength Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Price, R.J.; Hawkins, R.D.; Hulse, M.A.; Hodson, A. The Football Association medical research programme: An audit of injuries in academy youth football. Br. J. Sports Med. 2004, 38, 466–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfirrmann, D.; Herbst, M.; Ingelfinger, P.; Simon, P.; Tug, S. Analysis of injury incidences in male professional adult and elite youth soccer players: A systematic review. J. Athl. Train. 2016, 51, 410–424. [Google Scholar] [CrossRef] [Green Version]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. An audit of injuries in six English professional soccer academies. J. Sports Sci. 2018, 36, 1542–1548. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J. Injury incidence, body site, and severity in soccer players aged 6–18 years: Implications for injury prevention. Str. Cond. J. 2012, 34, 20–31. [Google Scholar] [CrossRef] [Green Version]
- van Beijsterveldt, A.M.C.; Stubbe, J.H.; Schmikli, S.L.; Van De Port, I.G.L.; Backx, F.J.G. Differences in injury risk and characteristics between Dutch amateur and professional soccer players. J. Sci. Med. Sport 2015, 18, 145–149. [Google Scholar] [CrossRef]
- Lie, M.M.; Risberg, M.A.; Storheim, K.; Engebretsen, L.; Øiestad, B.E. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sports Med. 2019, 53, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Bastos, F.N.; Vanderlei, F.M.; Vanderlei, L.C.M.; Júnior, J.N.; Pastre, C.M. Investigation of characteristics and risk factors of sports injuries in young soccer players: A retrospective study. Int. Arch. Med. 2013, 6, 14. [Google Scholar] [CrossRef]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Hopping and landing performance in male youth soccer players: Effects of age and maturation. Int. J. Sports Med. 2017, 38, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, A.; Goodwin, P.C. Injury incidence in a Premier League youth soccer academy using the consensus statement: A prospective cohort study. BMJ Open Sport Exerc. Med. 2016, 2, e000132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Neuromuscular risk factors for knee and ankle ligament injuries in male youth soccer players. Sports Med. 2016, 46, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, G.; Watkins, J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 2006, 36, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The jump-ACL Study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle activation during ACL injury risk movements in young female athletes: A narrative review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.A.; Hawkins, D. Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance. J. Biomech. 2010, 43, 2657–2664. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt Jr, R.S.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begalle, R.L.; Walsh, M.C.; McGrath, M.L.; Boling, M.C.; Blackburn, J.T.; Padua, D.A. Ankle dorsiflexion displacement during landing is associated with initial contact kinematics but not joint displacement. J. Appl. Biomech. 2015, 31, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.; North, J.S.; Waldron, M.; Bampouras, T.M. Restrictions in ankle dorsiflexion range of motion alter landing kinematics but not movement strategy when fatigued. J. Sport Rehab. 2021, 30, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.P.; Bampouras, T.M.; North, J.S.; Waldron, M. Improved ankle mobility after a 4-week training program affects landing mechanics: A randomized controlled trial. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41, i47–i51. [Google Scholar] [CrossRef] [Green Version]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J. Athl. Train. 2004, 39, 352–364. [Google Scholar]
- Pollard, C.D.; Sigward, S.M.; Powers, C.M. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin. Biomech. 2010, 25, 142–146. [Google Scholar] [CrossRef] [Green Version]
- DeVita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Della Villa, F.; Tosarelli, F.; Ferrari, R.; Grassi, A.; Ciampone, L.; Nanni, G.; Zaffagnini, S.; Buckthorpe, M. Systematic video analysis of anterior cruciate ligament injuries in professional male rugby players: Pattern, injury mechanism, and biomechanics in 57 consecutive cases. Orthop. J. Sports Med. 2021, 9. [Google Scholar] [CrossRef]
- Dowling, B.; McPherson, A.L.; Paci, J.M. Weightbearing ankle dorsiflexion range of motion and sagittal plane kinematics during single leg drop jump landing in healthy male athletes. J. Sports Med. Phys. Fitness 2018, 58, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Parkkari, J.; Pasanen, K.; Manila, V.M.; Kannus, P.; Rimpelä, A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: A population-based cohort study of 46 500 people with a 9 year follow-up. Br. J. Sports Med. 2008, 42, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.A.; Chounthirath, T.; Xiang, H. Soccer-related injuries treated in emergency departments: 1990-2014. Pediatrics 2016, 138, e20160346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Landing kinematics in elite male youth soccer players of different chronologic ages and stages of maturation. J. Athl. Train. 2018, 53, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Van Der Sluis, A.; Elferink-Gemser, M.T.; Brink, M.S.; Visscher, C. Importance of peak height velocity timing in terms of injuries in talented soccer players. Int. J. Sports Med. 2015, 36, 327–332. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Robles-Palazón, F.J.; Ayala, F.; Cejudo, A.; De Ste Croix, M.; Sainz de Baranda, P.; Santonja, F. Effects of age and maturation on lower extremity range of motion in male youth soccer players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Lisman, P.; Wilder, J.N.; Berenbach, J.; Jiao, E.; Hansberger, B. The relationship between Landing Error Scoring System performance and injury in female collegiate athletes. Int. J. Sports Phys. Ther. 2021, 16, 1415–1425. [Google Scholar] [CrossRef]
- Christopher, R.; Brandt, C.; Benjamin-Damon, N. Systematic review of screening tools for common soccer injuries and their risk factors. S. Afr. J. Physiother. 2021, 77, 1496. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Is the Landing Error Scoring System reliable and valid? A systematic review. Sports Health 2020, 12, 181–188. [Google Scholar] [CrossRef]
- Kuenze, C.M.; Trigsted, S.; Lisee, C.; Post, E.; Bell, D.R. Sex differences on the Landing Error Scoring System among individuals with anterior cruciate ligament reconstruction. J. Athl. Train. 2018, 53, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Hanzlíková, I.; Athens, J.; Hébert-Losier, K. Clinical implications of Landing Error Scoring System calculation methods. Phys. Ther. Sport 2020, 44, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Dingenen, B.; Malfait, B.; Nijs, S.; Peers, K.H.E.; Vereecken, S.; Verschueren, S.M.P.; Staes, F.F. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin. Biomech. 2015, 30, 781–787. [Google Scholar] [CrossRef]
- Mok, K.M.; Bahr, R.; Krosshaug, T. The effect of overhead target on the lower limb biomechanics during a vertical drop jump test in elite female athletes. Scand. J. Med. Sci. Sports 2017, 27, 161–166. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Ford, K.R.; Shapiro, R.; Myer, G.D.; Van Den Bogert, A.J.; Hewett, T.E. Longitudinal sex differences during landing in knee abduction in young athletes. Med. Sci. Sports Exerc. 2010, 42, 1923–1931. [Google Scholar] [CrossRef] [Green Version]
- Gillen, Z.M.; Shoemaker, M.E.; McKay, B.D.; Bohannon, N.A.; Gibson, S.M.; Cramer, J.T. Muscle strength, size, and neuromuscular function before and during adolescence. Eur. J. Appl. Physiol. 2019, 119, 1619–1632. [Google Scholar] [CrossRef]
- Grosset, J.F.; Mora, I.; Lambertz, D.; Pérot, C. Voluntary activation of the triceps surae in prepubertal children. J. Electromyogr. Kinesiol. 2008, 18, 455–465. [Google Scholar] [CrossRef]
- Kubo, K.; Teshima, T.; Hirose, N.; Tsunoda, N. Growth changes in morphological and mechanical properties of human patellar tendon in vivo. J. Appl. Biomech. 2014, 30, 415–422. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Kiefer, A.W.; Ford, K.R. Longitudinal Increases in Knee Abduction Moments in Females during Adolescent Growth. Med. Sci. Sports Exerc. 2015, 47, 2579–2585. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; Dobbs, I.J.; Wong, M.A.; Kumar, N.T.A.; Lloyd, R.S. The effects of a four-week neuromuscular training program on landing kinematics in pre- and post-peak height velocity male athletes. J. Sci. Sport Exerc. 2021, 3, 37–46. [Google Scholar] [CrossRef]
- Swartz, E.E.; Decoster, L.C.; Russell, P.J.; Croce, R.V. Effects of developmental stage and sex on lower extremity kinematics and vertical ground reaction forces during landing. J. Athl. Train. 2005, 40, 9–14. [Google Scholar]
- Yeow, C.H.; Lee, P.V.S.; Goh, J.C.H. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing. Knee 2009, 16, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.N.; Bates, B.T.; Dufek, J.S. Contributions of lower extremity joints to energy dissipation during landings. Med. Sci. Sports Exerc. 2000, 32, 812–819. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation leads to gender differences in landing force and vertical jump performance: A longitudinal study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Di Stefano, L.J.; Martinez, J.C.; Crowley, E.; Matteau, E.; Kerner, M.S.; Boling, M.C.; Nguyen, A.D.; Trojian, T.H. Maturation and sex differences in neuromuscular characteristics of youth athletes. J. Strength Cond. Res. 2015, 29, 2465–2473. [Google Scholar] [CrossRef]
Year | U14 (n = 15) | U16 (n = 10) | p | |
---|---|---|---|---|
Chronological age (years) | 1st | 13.3 ± 0.4 | 15.4 ± 0.4 | 0.31 |
2nd | 14.3 ± 0.4 | 16.4 ± 0.4 | ||
3rd | 15.2 ± 0.3 | 17.4 ± 0.3 | ||
Maturity offset (years) | 1st | −0.3 ± 0.7 | 1.8 ± 0.5 | 0.023 |
2nd | 0.6 ± 0.7 | 2.8 ± 0.6 | ||
3rd | 1.2 ± 0.7 | 3.3 ± 0.6 | ||
Stature (cm) | 1st | 161.2 ± 8.7 | 178.7 ± 3.7 | 0.023 |
2nd | 168.9 ± 9.4 | 181.9 ± 4.5 | ||
3rd | 171.9 ± 10.2 | 182.5 ± 4.2 | ||
Body mass (kg) | 1st | 47.8 ± 9.6 | 67.2 ± 5.2 | 0.12 |
2nd | 57.8 ± 10.5 | 72.5 ± 4.6 | ||
3rd | 63.7 ± 12.0 | 75.7 ± 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, M.; Krejčí, J.; Janura, M.; De Ste Croix, M. Age-Related Changes in Landing Mechanics in Elite Male Youth Soccer Players: A Longitudinal Study. Appl. Sci. 2022, 12, 5324. https://doi.org/10.3390/app12115324
Lehnert M, Krejčí J, Janura M, De Ste Croix M. Age-Related Changes in Landing Mechanics in Elite Male Youth Soccer Players: A Longitudinal Study. Applied Sciences. 2022; 12(11):5324. https://doi.org/10.3390/app12115324
Chicago/Turabian StyleLehnert, Michal, Jakub Krejčí, Miroslav Janura, and Mark De Ste Croix. 2022. "Age-Related Changes in Landing Mechanics in Elite Male Youth Soccer Players: A Longitudinal Study" Applied Sciences 12, no. 11: 5324. https://doi.org/10.3390/app12115324
APA StyleLehnert, M., Krejčí, J., Janura, M., & De Ste Croix, M. (2022). Age-Related Changes in Landing Mechanics in Elite Male Youth Soccer Players: A Longitudinal Study. Applied Sciences, 12(11), 5324. https://doi.org/10.3390/app12115324