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Abstract: The incidence of diabetes in Mauritius is amongst the highest in the world. Diabetic
retinopathy (DR), a complication resulting from the disease, can lead to blindness if not detected
early. The aim of this work was to investigate the use of transfer learning and data augmentation for
the classification of fundus images into five different stages of diabetic retinopathy. The five stages
are No DR, Mild nonproliferative DR, Moderate nonproliferative DR, Severe nonproliferative DR
and Proliferative. To this end, deep transfer learning and three pre-trained models, VGG16, ResNet50
and DenseNet169, were used to classify the APTOS dataset. The preliminary experiments resulted
in low training and validation accuracies, and hence, the APTOS dataset was augmented while
ensuring a balance between the five classes. This dataset was then used to train the three models,
and the best three models were used to classify a blind Mauritian test datum. We found that the
ResNet50 model produced the best results out of the three models and also achieved very good
accuracies for the five classes. The classification of class-4 Mauritian fundus images, severe cases,
produced some unexpected results, with some images being classified as mild, and therefore needs to
be further investigated.

Keywords: deep learning; diabetic retinopathy; retinal fundus images; transfer learning; data
augmentation

1. Introduction

Diabetes is one of the most challenging health problems in the world, impacting
roughly 537 million individuals according to the IDF Diabetes Atlas Tenth edition 2021 (Di-
abetes Atlas, 2021). According to the same atlas, countries have spent over USD 966 billion
on diabetes patients worldwide, a 316 percent increase over the previous 15 years, and
yet diabetes will be responsible for 6.7 million deaths in 2021, or 1 death every 5 s. Dia-
betes poses a danger to the health-care systems of low- and middle-income nations, which
account for 75 percent of the world’s diabetic population, resulting in many cases going
undetected. The most common complication in advanced or uncontrolled diabetic patients
is diabetic retinopathy, one of the leading cause of vision loss worldwide, accounting for
21.8 percent of patients across the globe [1]. With Mauritius currently ranking fifth in the
global standardized diabetes prevalence among ages 20–79 in 2019 and predicted to reach
the second position in 2030 [2], diabetic retinopathy is a serious threat to Mauritians. This
is especially true for people in their working years, since this group is more susceptible as
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per the article “Global estimates of the prevalence of diabetes for 2010 and 2030 in Diabetes
Atlas”. Patients who have had vision loss as a result of this condition typically have a
late diagnosis of diabetes or are unaware that they have diabetes and eye difficulties. A
recent study [3] found that diagnosing retinopathy early can prevent or delay a substantial
amount of vision loss. This can also help to speed up the healing process or halt disease
development. However, establishing a precise diagnosis and the stage of the disease is
difficult. Ophthalmologists conduct screenings by visually inspecting the fundus and
evaluating colour images. They rely on detecting the presence of microaneurysms, small
saccular outpouching of capillaries, retinal haemorrhages and ruptured blood vessels,
among many indicators, in the fundoscopic images. This manual method, however, results
in inconsistency among readers [4] and is costly and time-consuming. To address the
growing number of undiagnosed retinal patients, early disease identification and treatment
are critical.

Advancements in convolutional neural networks (CNNs), a type of deep learning, has
motivated researchers to use them in medical image analysis for different tasks, amongst
which is image classification of diabetic retinopathy. CNNs exhibit a better performance,
but they also need a lot of computing resources and large datasets to train. Transfer
learning (TL) strategies have been proposed to solve this problem [5–7]. It involves using a
previously learned model, on different images, to train a new model. The traits learned
by pre-training on the large dataset can be transferred to the new network, where only the
classification component is trained on the new smaller dataset, to fine-tune the new data [7].
TL reduces the amount of time spent constructing and training a deep CNN model as
well as the computing resources needed. The visual geometry group (VGG) [8], inception
modules (GoogleNet) [9], residual neural network (ResNet) [10] and neural architecture
search network (NasNetLarge) [10] are examples of the many high-performing pre-trained
models found in the literature. In 2017, Masood et al. [11] applied a pre-trained Inception
V3 model on the Eye-PACS fundus dataset and achieved an accuracy of 48.2%. Meanwhile,
Li et al. [12] investigated the use of transfer learning for identifying DR by comparing
several network topologies, such as AlexNet, VGG-S, VGG16 and VGG19, to two datasets:
the Messidor and DR1 datasets. With an area under the curve (AUC) of 98.34%, the VGG-S
architecture scored the best AUC for the Messidor dataset while an AUC score of 97.86%
was obtained for the DR1 dataset. Similarly, in 2019, using the EYE-PACS dataset, Challa
et al. [13] proposed a deep All-CNN architecture for DR classification. The model obtained
an accuracy of 86.64%, a loss of 0.46 and an average F1 score of 0.6318. Meanwhile, using
the Asia Pacific Tele-Ophthalmology Society 2019 Blindness Detection (APTOS 2019 BD)
dataset [14], Kassani et al. [15] described a classification method using a modified Xception
architecture model, which is an extension of the Inception architecture, on the dataset
and obtained an accuracy of 83.09%, a sensitivity of 88.24% and a specificity of 87.00%.
Khalifa et al. [16] implemented transfer learning using four pre-trained models, namely
AlexNet, Res-Net18, SqueezeNet and GoogleNet. AlexNet obtained the highest accuracy
of 97.9%. In Hagos et al. [17], a pre-trained Inception V3 model was applied to a subset
of the APTOS dataset for DR classification, and the accuracy was 90.9% and the loss was
3.94%. Sikder et al. [18] presented a method incorporating the ExtraTree classifier, which
is a popular ensemble learning algorithm based on decision trees and bagging learning
techniques, and achieved a classification accuracy of 91%. In 2020, Shaban et al. [19]
proposed a modified version of the VGG-19 that achieved an accuracy of 88%–89% when
both 5-fold, and 10-fold cross validation methods were used, respectively. Using the
same APTOS 2019 BD dataset, Mushtaq et al. [20] achieved a classification accuracy of
90% using a pre-trained Dense169 model. Before they trained the images, the latter were
pre-processed by removing the black border and applying Gaussian blur filter. Moreover,
Thota et al. [21] fine-tuned a pre-trained VGG16 model for classifying the severity of DR.
An average class accuracy of 74%, sensitivity of 80%, specificity of 65% and AUC of 0.80
were achieved. Gangwar et al. [22] developed a novel deep learning hybrid model with
pre-trained Inception-ResNet-v2 as a base model and it obtained a test accuracy of 72.33%
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on Messidor-1 and 82.18% on the APTOS dataset. On the other hand, Dai et al. [23] used a
deep learning model based on the ResNet architecture to classify fundus images into five
different classes. Images were obtained from the Shanghai Integrated Diabetes Prevention
and Care System study. Firstly, the different features, such as microaneurysm, hard exudate
and haemorrhage were detected, and then they concatenated the model used and the base
model for DR classification. The model achieved AUCs of 0.943, 0.955, 0.960 and 0.972,
for mild, moderate, severe and proliferative cases. Benson et al. [24] discussed the usage
of transfer learning by using a pre-trained Inception V3 on the DR dataset obtained from
the VisionQuest Biomedical database. The model classified fundus images into six classes
including identifying scars, and it achieved a sensitivity and specificity of 90%, with an
AUC of 95%.

The reviews described above highlight the fact that all work carried out to date was
for images from a specific country, and hence they were not targeted at a local multiracial
population such as Mauritius [25,26]. Therefore, this research work makes the follow-
ing contributions:

(1) Application of three pre-trained models, VGG16, DenseNet169 and ResNet50, on a
publicly available diabetic retinopathy dataset and the data-augmented version of the
dataset to solve the class imbalance problem;

(2) Enhance the pre-trained models to improve the performance obtained in (1);
(3) Apply the enhanced models on a blind Mauritian local cohort to predict the different

stages of diabetic retinopathy;
(4) Compare the predicted results obtained for the Mauritian dataset using the enhanced

models to an actual ophthalmologist’s diagnosis.

The paper is structured as follows. Section 2 presents the proposed solution and
describes the different components. Section 3 discusses the experimental results. Finally,
Section 4 concludes the paper.

2. Materials and Methods

This section highlights the methodology used in implementing deep transfer learning
for classification.

2.1. Proposed Workflow and Components

Figure 1 shows the proposed workflow for the system, which can accept different
datasets. For this work, two datasets, the APTOS original dataset and a constructed
Mauritian dataset, were used. The data were first pre-processed, and data augmentation
was applied to the APTOS dataset only. Next, three pre-trained models were applied to the
original and augmented APTOS dataset. The results were analyzed, and the models were
tuned to reach their ideal minima. The enhanced models were then applied to the blind
testing data from the APTOS dataset and the labelled Mauritian dataset, which was not
used for the training phase.
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Figure 1. Workflow of our proposed system.

The workflow shown in Figure 1 is as follows: (1) data pre-processing and augmenta-
tion (for the APTOS dataset only); (2) training and enhancing the CNN models using the
original and augmented APTOS dataset; (3) analyzing results; and (4) classification of the
images for the 3 datasets and comparison to actual data.

2.2. Datasets

In this research work, two fundus image datasets were used. The first dataset was
the APTOS 2019 diabetic retinopathy dataset, which is publicly available online on Kaggle
(https://www.kaggle.com/c/aptos2019-blindness-detection/data, accessed on 17 Febru-
ary 2022). This dataset was selected among the other publicly available datasets since it is
from India, which is close to the Mauritian population in terms of ethnicity. The second
dataset was created locally from the images obtained from the hospitals in Mauritius. Each
image in the APTOS 2019 dataset was assigned a class label of 0–4 according to the severity
of the disease, as shown in Figure 2. Each image from the local cohort was also assigned a
class label of 0–4 by a local doctor. The original dataset obtained from Kaggle is termed
as the original APTOS dataset. The class distribution of the original APTOS dataset is
illustrated in Figure 2.

Figure 2 reveals that, despite the data belonging to five different classes, the number of
samples in each class varied substantially, resulting in an unbalanced dataset. As discussed
in [27–29], an unbalanced dataset leads to a high misclassification rate and sub-optimal
performance. To mitigate this challenge, we applied data augmentation, which is one
possible solution to this problem. Traditional data augmentation techniques, namely
horizontal and vertical flipping and changes in the brightness range [30], were applied to
the original APTOS datasets to produce the augmented APTOS dataset.

https://www.kaggle.com/c/aptos2019-blindness-detection/data
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Figure 2. Original APTOS dataset.

Table 1 shows the total number of images for each class in the original APTOS dataset,
the augmented APTOS dataset and the local Mauritian dataset. We divided both the APTOS
dataset and the augmented APTOS dataset into a training set and testing set. There were
3662 images in the original Aptos dataset, whereby 70% (2563 images) were considered
for training and 30% (1099 images) were taken for the testing phase. For the augmented
APTOS dataset, data augmentation was performed on the training set only as performed by
Gangwar et al. [22]. Only the data from classes 1, 3 and 4 were augmented since the model
could not correctly classify these 3 classes in the original APTOS dataset. All the images in
these 3 classes were augmented. In this paper, we used two sets for testing data, one which
is made up of fundus images from the APTOS 2019 dataset (the remaining 30% of which
were not used as training data) and the second being the Mauritian dataset composed of
fundus images obtained from a local hospital in Mauritius. Table 1 presents the image
count for each class in the training and testing data for the original and augmented APTOS
datasets as well as the Mauritian dataset.

Table 1. Number of images class-wise in the 3 datasets.

Training Data

Number of Images in
Training/Validation Dataset

Number of Images in
Testing Dataset

Class 0 Class
1

Class
2 Class 3 Class 4 Class 0 Class 1 Class 2 Class 3 Class 4

Original APTOS
dataset

1265 272 697 138 191 540 98 302 55 104

Total images—2563 Total images—1099

Augmented APTOS
dataset

1265 1306 697 935 1264 540 98 302 55 104

Total images—5467 Total images—1099

Mauritian dataset
No training performed using

Mauritian data
54 62 45 12 33

Total images—208

Figure 3 presents the number of images in each of the 5 classes after the application of
data augmentation on the original APTOS dataset. It can be observed that the augmented
dataset was more balanced.
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Figure 3. Augmented APTOS dataset.

2.3. Data Pre-Processing

The images were subjected to a pre-processing phase to improve their quality. They
were resized as each model accepted images of different resolutions. For the ResNet50
Model, the images were resized to 512 × 512 pixels, whereas they were resized to
224 × 224 pixels for the VGG16 and DenseNet169 models. Another reason for performing
pre-processing was the varying size and resolution of photos collected from the Kaggle
website. These pictures ranged from 474 × 358 pixels to 3388 × 2588 pixels in width and
height. After pre-processing the images, the different CNN models were applied to the
training data of the two APTOS datasets to perform classification.

2.4. Transfer Learning Using ResNet50, VGG16 and DenseNet169

In this paper, transfer learning (TL) using the architectures of the three CNNs models,
ResNet50, VGG16 and DenseNet169, was applied to the diabetic retinopathy images. In
TL, learned features from one task are applied to a different task without having to learn
from scratch. This is commonly used when building CNN models since the process of
training from scratch requires a lot of computational resources, large datasets and a lot of
time [31]. CNN models consist of multiple layers, namely: the convolution layer, pooling
layer and fully connected layer. CNN models employ multiple perceptrons to evaluate
picture inputs and eventually extract different patterns from the images to output to the
fully connected layer. Our CNN models extracted representative patterns to form the
feature maps. A 3 × 3 kernel was passed over the input matrix of the diabetic retinopathy
image, as illustrated in Figure 4.

Figure 4. Convolution layer.
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The classification function, which is the output of the fully connected layer, plays an impor-
tant role in the process, whereby the different patterns of the five stages of diabetic retinopathy,
learnt by the feature extraction layers, are used to perform the multiclass classification.

The VGG16 model, a CNN architecture pre-trained on the ImageNet dataset, was
adopted for the development of our diabetic retinopathy application as it has been fully
tested in a similar domain, achieving good performance [32,33]. VGG16 consists of 13 con-
volutional layers and 3 fully connected layers. There are 5 blocks each containing 2 or
3 convolution layers and ending with a max-pooling layer, as illustrated by Figure 5. A
fixed-size image of dimensions (224, 224, 3) is the input to the VGG16 model.

Figure 5. Architecture of the VGG16 model.

ResNet50, another popular CNN architecture, consists of 50 layers organized in so-
called residual blocks [9]. It is known for its skip connection approach, which eventually
solves the vanishing gradient problem. ResNet50 contains 48 convolution layers along
with 1 MaxPool and 1 AveragePool layer. This was desired in our diabetic retinopathy
application as it allows the later layers to learn lesser semantic information that was
captured in the early layers. A 3 × 3 filter was used to perform the spatial convolution,
which was eventually reduced using the max-pooling method. Figure 6 illustrates the
ResNet 50 model with the 48 convolution layers and the 16 skip connections.

Figure 6. Architecture of ResNet50 model.

The third model that was considered was the DenseNet169 model [34]. Compared
to the ResNet50 model, it has more layers. However, it contains a similar block to skip
connections called the dense block. With the increase in the number of layers, it gives the
model the opportunity to learn more distinctive features. In fact, the architecture consists
of four dense blocks with varying numbers of layers as illustrated in Figure 7. Our design
for this model consisted of the 2D average pooling, which is in the original architecture,
where a dropout layer set to 0.5 was added.
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Figure 7. Architecture of DenseNet169 model.

2.5. Enhanced CNN Models

Initially, the architectures of VGG16, ResNet50 and DenseNet169 were applied to the
APTOS dataset. To be able to use these architectures in transfer learning and for classifying
the diabetic retinopathy images into five classes, fully connected layers were added. The
3-dimensional feature map obtained from the last convolutional layer was converted to one
dimension by using global average pooling 2D and passed to a series of a dropout layer, a
dense layer and a dropout layer and finally to a dense layer with five nodes, representing
the normal and the DR grades. The fully connected layers were selected as in the ResNet
model in Taormina et al. [35], and Zhang et al. [36] shows that adding fully connected
layers yields better results. The activation function used in the last dense layer was Softmax,
as used in ElBedwehy et al. [37] for face detection classification. The Adam optimizer was
applied to the 3 models with a learning rate of 1 × 10−3, and the loss entropy used was the
categorical cross entropy. In this work, data balancing was performed using basic image
manipulation techniques [38]. In the deep neural network, the Adam optimizer was used
instead of the stochastic gradient descent (SGD) since the former is computationally more
efficient. The Adam optimizer has been found to be faster in converging the algorithm to
the minima, hence reducing the training time [39]. The use of the SGD and other approaches
will be explored in future works. Here, only the last 5 layers, namely the global average
pooling 2D, dropout, dense, dropout and dense layers, were trained. The other layers were
frozen as we were only extracting the features from the base model. These steps resulted in
the models producing the relevant learnable parameters during the training process. For
example, for the ResNet model, out of the 27,794,309 parameters, 4,206,597 were trainable.
In this work, the sequential modelling approach was adopted for adding and customizing
the convolution, dropout, dense and optimizer layers. The sequential model is appropriate
for a plain stack of layers whereby each layer has exactly one input tensor and one output
tensor, which was the case in this application.

To improve the performance of the models and cater for underfitting/overfitting,
the 3 models were fine-tuned. The Adam optimizer was again used but this time with a
learning rate of 10−4. The learning rate was decremented by 10 as this has been shown
to both reduce the risk of overfitting [40] and to improve classification [41]. When the
validation loss metric stopped improving, the learning rate was halved as in [42]. Several
parameters were changed and added to the models for fine-tuning. Firstly, the loss function
was changed to binary cross entropy. Using the latter along with a SoftMax classifier helped
the model in reducing the cross entropy loss of each iteration in multiclass classification [43].
Afterwards, an early stopping feature was added to end training when the network began
to overfit the data according to the validation loss [44]. Eventually, all the convolutional
layers were unfrozen, and the models were set to be trained.

The enhanced transfer learning model that was trained on the augmented APTOS
dataset was tested on APTOS test data and on a blind Mauritian test datum annotated by a
medical practitioner.
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3. Results and Discussions

To evaluate the trained models both before and after fine-tuning, the accuracy regard-
ing training, validation and test sets was calculated. Classification accuracy is the fraction
of predictions that a given model predicted correctly. Firstly, a custom-built CNN model
similar to that developed by Jayalakshmi et al. [45] was used. The same fully connected
layers as in the case of our pre-trained models were joined, and the hyperparameters were
tuned to obtain the optimal accuracy. A classification accuracy of 0.73 was obtained here.
The model was only able to correctly predict classes 0 and 2. Although the accuracy is
quite satisfactory for a binary classification of DR and NoDR, this custom-built model
is very limited in the case of a multiclass DR classification. Next, pre-trained networks
were implemented. The training and validation accuracy obtained before fine-tuning of
the pre-trained networks are illustrated in Figure 8. From the results, it was found that
the accuracies were quite low for the models ResNet50 and DenseNet169. Hence, it was
deduced that these models were underfitting.

Figure 8. Overall training and validation accuracy before fine-tuning for the original APTOS dataset
(after 2 epochs).

Consequently, the models were enhanced, and the weights were adjusted. Different
learning rates were applied and evaluated to reach the minima. In addition, the number of
epochs were adjusted while analyzing the different accuracies, thus fine-tuning the models.
Each model was trained on the same training set used in the previous process. Figure 9
shows the results obtained for training and validation accuracy for each of the three models
after fine-tuning.

From Figures 8 and 9, it can be clearly seen that fine-tuning the models improved both
the training and the validation classification accuracy of the three models for the original
APTOS dataset. We also noticed that using the augmented data improved the generality
of transfer learning for the models for both the training and validation data. This can
be deduced from the accuracy for the augmented dataset being maintained or increasing
across all models compared to the original dataset. Furthermore, ResNet, with the highest
accuracy in all cases, showed a better generalization. In parallel, it was also observed that
the time taken to train the model decreased considerably (by at least 3 h).
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Figure 9. Overall training and validation accuracy of the CNN models after fine-tuning.

Both the overall training accuracy and the validation accuracy were above 90, which
is a good indication that the six trained models were able to guess the label for nearly all
of the training and validation sets of images. In three out of the six different CNN model
training, with ResNet50 using both the original APTOS dataset and the augmented APTOS
dataset as the training data, and the DenseNet169 model using the original APTOS dataset
as the training data, early stopping occurred to prevent the models from overfitting.

Next, the six models were used to predict the class of the images in the testing data of
both the APTOS and the Mauritian datasets. Figure 10 shows the overall testing accuracy
obtained with the three CNN models for the original and augmented APTOS datasets.
For the ResNet50 model and DenseNet169 model, increases of 9% and 7% were observed,
respectively, when dealing with the augmented and balanced dataset. As for the VGG16
model, a decrease of 6.9% was noted for the augmented APTOS dataset.

Figure 10. Testing accuracy of the CNN models for the APTOS dataset.

However, this overall testing accuracy for the data is not a good indicator of per-
formance as the proportion of classes in the datasets was different. For example, in the
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original APTOS dataset, the number of images belonging to class 0 makes up nearly half
of the original data, whereas the images in the augmented APTOS dataset are more or
less equally distributed among the different classes. Hence, the models will exhibit bias
towards class 0 when they are applied to the original APTOS dataset, whereas for the
augmented APTOS dataset, the proportion is nearly the same, so comparing the overall
testing accuracy between the two datasets is not recommended. To address this issue, the
class-wise accuracy was calculated for the three datasets and plotted as shown in Figure 11.

Figure 11. Detailed testing accuracy for each class for the 3 datasets and the 3 models.

A closer study of the plots in Figure 11 shows that the three models were able to
predict class 0, “No DR” cases, quite easily for both the original and augmented APTOS
datasets; however, only the ResNet50 model was able to classify “No DR” cases for the
Mauritius dataset. This is to be expected since class 0 is quite distinct from the other classes
given the absence of DR features such as microaneurysms.

For the VGG16 model, class 3 was the one that achieved the lowest accuracy out of all
three datasets with none of the 55 cases being correctly classified for the original APTOS
dataset. We also noted that none of the cases of class 1 for the Mauritian dataset were
correctly identified. This shows that the model was unable to learn to distinguish the
features of these two classes. A closer look at the results obtained shows that most of the
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cases for class 3 were misclassified as class 2 and a few cases as classes 1 and 4. Class 3
represents the moderate cases, which fall between the mild and proliferative cases and
therefore may be difficult to identify. There may be intraretinal haemorrhage, which also
complicates the task.

For the ResNet50 model, classes 1, 3 and 4 were the most difficult to classify for the
original dataset, classes 1 and 3 were the most difficult to classify for the augmented dataset,
and class 4 was the most difficult class to classify for the Mauritian dataset. The difficulty
in the classification of class 4 for the Mauritian cohort may be due to choroidal fronts and
troughs being more pronounced in the local dataset due to presence of pigments. This is
due to the local population having different skin colours.

For the DensetNet169 model, the results obtained for the three datasets are variable
with classes 1 and 4 being the less distinctive for the original dataset, classes 1 and 3 being
less distinctive for the augmented dataset and classes 1, 2 and 3 being less distinctive for
the Mauritian dataset. Here, none of the 202 cases for classes 1 and 4 in the original APTOS
dataset were correctly identified. A closer look at the class-wise results shows that most
of the images from class 1 were wrongly classified as class 2, and a few were classified as
classes 0 and 3. Similarly, for class 4, we found that most of the images from class 4 were
wrongly classified as class 2 and the rest as class 3. Based on these results, we concluded
that for the APTOS dataset, classes 1 and 3 were the most difficult to learn.

Although none of the models had been trained with the data from Mauritius, the
ResNet50 model achieved quite good results on this blind test dataset, achieving accuracies
of 60% and above. It also obtained the best results compared to the other two models. This
can be explained by the fact that the Densenet169 has more layers and may be overlearning
and therefore generalizing less. Resnet50 has residual connections between layers, meaning
that the output of a layer is a convolution of its input plus its input. It is also deeper than
VGG16 with fewer parameters and is better able to identify the features to distinguish
between the different classes of diabetic retinopathy. Moreover, although ResNet is much
deeper than VGG16, the model size is substantially smaller due to the use of global average
pooling rather than fully connected layers. Based on the results of the ResNet50 model, the
results were further investigated, and a confusion matrix of the predicted vs. actual results
was plotted, as shown in Figure 12.

Figure 12. Confusion matrix for Mauritian data classified by ResNet50.

The precision, recall and F1 score were computed for each individual class and are
displayed in Table 2. Additionally, the weighted average was also calculated.
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Table 2. Performance metrics for Mauritian data classified by ResNet50.

Precision Recall F1 Score

Class 0 0.9600 0.8889 0.9231
Class 1 0.8600 0.6935 0.7679
Class 2 0.7551 0.8222 0.7872
Class 3 0.7778 0.5000 0.6087
Class 4 0.6000 0.9091 0.7229

Weighted Average 0.8165 0.7933 0.7945

From the confusion matrix, we found that very good accuracies were achieved for all
the classes, and the cases that were wrongly classified were close to the diagonal, being
either from the class just before or just after. Thus, for class 0, the cases that were wrongly
classified were actually from classes 1 and 2, for class 1, they were from classes 0 and 2, for
class 2, they were from classes 1 and 3 with few cases from class 4, and for class 3, they
were from class 4. This behaviour is not followed by class 4, where the wrongly classified
classes were from all classes with the majority from class 2, which is quite far from class 4.
Class 4 is of interest and requires further investigation. A comparison of our proposed
model with the other available works in DR classification is given in Table 3.

Table 3. Comparison table of similar work.

Authors Techniques Used Discussions

Dai et al. [23]

Model: deep model based on ResNet
Dataset: Shanghai Integrated Diabetes Prevention
and Care System (Shanghai Integration Model,
SIM) between 2014 and 2017
Number of images: 666,383 images

Pre-trained models (ResNet and R-CNN) were
used. ROC was used to evaluate performance.
Performance: AUC scores of 0.943, 0.955, 0.960
and 0.972 for mild, moderate, severe and
proliferative cases were achieved, showing good
performance using transfer learning

Masood et al. [11]

Model: pre-trained Inception V3 model
Dataset: Eye-PACS dataset
Number of images: 3908 images (800 from each
class except 708 from class 4)

Performance: accuracy—48.2%, limitations:
low accuracy

Li et al. [12]

Model: different pre-trained networks such as
AlexNet, VGG-S, VGG16 and VGG19 Dataset: the
Messidor and DR1 datasets
Number of images: 1014 images (DR1), 1200
images (Messidor)

Performance: best area under the curve (AUC)
(VGG-S)—98.34% (Messidor dataset), 97.86%
(DR1 dataset)
Limitations: number of classes is limited to DR
and No DR only

Challa et al. [13]
Model: developed a deep All-CNN architecture
Dataset: Eye-PACS dataset
Number of images: 35,126 images

Performance: accuracy—86.64%, loss—0.46,
average F1 score—0.6318
Limitation: no detailed information
on overfitting

Khalifa et al. [16]

Model: AlexNet, Res-Net18, SqueezeNet and
GoogleNet
Dataset: APTOS dataset
Number of images: 3662 images

Performance: best accuracy (AlexNet)—97.9%
Limitation: high computational power needed
(Intel Xeon E5-2620 processor (2 GHz), 96 GB of
RAM) since the model needed to train on
14,648 images. Additionally, no detailed
information was given for model overfitting
during the training phase. The only method used
to counter overfitting was data augmentation,
which takes place before the model
training phase.
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Table 3. Cont.

Authors Techniques Used Discussions

Hagos et al. [17]

Model: pre-trained Inception V3 model
Dataset: APTOS dataset
Number of images: 2500 images (1250 for NoDR
and 1250 for DR)

Performance: accuracy—90.9%, loss—3.94%
Limitation: number of classes is limited to DR
and No DR only

Gangwar et al. [22]

Model: deep learning hybrid model with
pre-trained Inception-ResNet-v2 as a base model
Dataset: Messidor-1 and APTOS dataset
Number of images: 1200 images (Messidor-1), 3662
images (APTOS)

Performance: accuracy—72.33% (Messidor-1),
82.18% (APTOS dataset)
Limitation: did not check whether model
was overfitting

Benson et al. [24]

Model: pre-trained Inception V3 model
Dataset: DR dataset obtained from VisionQuest
Biomedical database
Number of images: 6805 images

Performance: sensitivity—90%, specificity—90%,
AUC—95%
Limitation: results for No DR, MildDR,
Moderate DR were 47%, 50% and 35%

Thota et al. [21]
Model: Fine-tuned and pre-trained VGG16 model
Dataset: Eye-PACS dataset
Number of images: 34,126 images

Performance: accuracy—74%, sensitivity—80%,
a specificity—65%, AUC—80%Limitation: low
accuracy compared to similar experimentations

Our proposed Model

Model: Fine-tuned and pre-trained ResNet50,
VGG16, DenseNet169 models
Dataset: APTOS dataset, Mauritian dataset
Number of images: 3662 images (APTOS), 208
images (Mauritius)

Performance: accuracy (ResNet50)—82%
(APTOS dataset), 79% (Mauritian dataset)
Novelty: performed multiclass classification
(5 different classes) for Mauritian dataset

Compared to similar work carried out in the field of DR classification, our proposed
enhanced model was able to classify the different stages of diabetic retinopathy for a
Mauritian dataset. The enhanced model was trained using the APTOS augmented dataset,
and this model was used to classify the Mauritian dataset images with an overall accuracy
of 79%. Furthermore, it can be said that our proposed model can be used for early detection
of DR compared to Benson et al. [24], where the proposed model had a low accuracy for
the early stages of DR. Meanwhile, Li et al. [12] and Hagos et al. [17] applied transfer
learning for a binary classification, namely images having DR or No DR, whereas our
model was used to classify all 5 stages of DR both for the APTOS and Mauritian dataset.
In this paper, we have reported the use of several parameters to address overfitting of the
models compared to the work of Gangwar et al. [22] and Challa et al. [13]. Finally, our
model outperforms Thota et al. [21] and Masood et al. [11] in terms of accuracy.

4. Conclusions

In this work, transfer learning was applied at multiple levels with the aim of train-
ing multiple models to classify diabetic retinopathy for a completely blind dataset, the
Mauritian cohort. At the initial stage, transfer learning was performed with three general
pre-trained models, VGG16, ResNet50 and DenseNet169, using the APTOS dataset for
diabetic retinopathy. Even after fine-tuning the three models, some classes were not being
classified, and accuracies were not very high. This could be due to the dataset being highly
imbalanced with almost 50% of the dataset belonging to “No DR” cases and the remaining
50% being distributed amongst the four DR classes. Hence, the dataset was augmented
to achieve a comparable number of cases in each of the classes. Transfer learning was
performed on the augmented APTOS dataset, and a better performance was achieved in the
various experiments. It was found that the ResNet50 model produced equivalent or better
results for all the classes compared to the VGG16 and DenseNet169 models. These trained
enhanced models were then applied to the blind Mauritian dataset, and the results obtained
are compared to the annotated local images. Again, the ResNet50, given its architecture,
achieved the best results amongst the three models, and the accuracies obtained were very
good. Class 0 achieved accuracies of 98%, 95% and 96% for the original APTOS dataset,
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the augmented APTOS dataset and the Mauritian dataset, respectively, clearly indicating
that the model is able to easily distinguish this class from the other classes, thus confirming
the potential of training a precursor model for class 0 versus others. It was observed that
some classes performed much better than others, and this needs to be further investigated.
Classes 1, 2 and 3 achieved acceptable performances while class 4 was the most difficult to
classify. The diabetic retinopathy expert observed that class 3 was graded more precisely.
Moreover, retinal images with pronounced choroidal fronds seemed to be identified as
class 4 by the software, which clinically rates as normal variants. This is an unexpected
behaviour of class 4, representing a major difference between the training APTOS data and
the Mauritius data. This can be solved by further transfer learning (or fine-tuning) from the
APTOS-based model to a Mauritian-specific model.

In the future, more data, such as patient demographics, can be included to ensure
clinical correlation. In addition, the Mauritian cohort can be analyzed to determine whether
the data are demographically representative of the population and also the extent to which
they are similar to those of the APTOS cohort. Our research shows the need for a precursor
software to identify normal retinal images.
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