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Featured Application: Malignant and benign thyroid nodules classification.

Abstract: A rapid classification method was developed for the malignant and benign thyroid nodules
with ultrasound guided-fine needle aspiration biopsy (FNAB) samples. With probe electrospray
ionization mass spectrometry, the mass-scan data of FNAB samples were used as datasets for machine
learning. The patients were marked as malignant (98 patients), benign (110 patients) or undetermined
(42 patients) by experienced doctors in terms of ultrasound, the B-Raf (BRAF) gene, and cytopathology
inspections. Pairwise coupling was performed on 163 ions to generate 3630 ion ratios as new features
for classifier training. With the new features, the performance of the multilayer perception (MLP)
classifier is much better than that with the 163 ions as features directly. After training, the accuracy of
the MLP classifier is as high as 92.0%. The accuracy of the single-blind test is 82.4%, which proved the
good generalization ability of the MLP classifier. The overall concordance is 73.0% between prediction
and six-month follow-up for patients in the undetermined group. Especially, the classifier showed
high accuracy for the undetermined patients with suspicious for papillary carcinoma diagnosis
(90.9%). In summary, the machine learning method based on FNAB samples has potential for real
clinical applications.

Keywords: thyroid nodules; fine needle aspiration biopsy; machine learning; probe electrospray

ionization; multilayer perceptron

1. Introduction

Ultrasound-guided fine needle aspiration biopsy (FNAB) is usually performed on
patients with thyroid nodules, which are clinically suspicious, or ultrasound features
suggestive of malignancy [1,2]. Cytopathological analysis would determine the malignancy
of thyroid nodules, which is the major reference for clinical treatment but is powerless
for some special cases. For instance, the follicular neoplasm is usually determined to be
malignant, but the majority are benign after ectomy [3]. Some reactive nuclear changes
observed in the follicular cell or the Hiirthle cell groups infiltrated by lymphocytes can
mimic papillary thyroid carcinoma (PTC) [4]. The efficacy of sampling may also affect
cytopathological diagnosis, and “insufficient cellularity” appears frequently even for some
nodules with sizes >1 cm. In addition, cytopathological analysis was time- and labor-
consuming. All the above defects and difficulties urged a new;, fast, efficient, and accurate
method for the determination of nodule malignancy.

In recent decades, machine learning has liberated doctors from repetitive and heavy
diagnostic work. Images from magnetic resonance, ultrasonic, and cytopathology are
common objects for machine learning [5-7]. However, the quality of images would be
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affected by an ambient electromagnetic field and patient-related factors that could cause
misdiagnosis. Mass spectrometry can measure disease-related substances, providing mass
number, intensity, and structure information that can also be used as features for machine
learning. Probe electrospray ionization tandem mass spectrometry (PESI-MS), as an ambi-
ent ionization mass spectrometry, could directly measure the extractions of tissue lesions
that do not need complex pretreatment. In the last decade, PESI-MS and machine learning
had already been used for the classification and diagnosis of many diseases. Previously,
Takeda and coauthors reported the clinical probability of PESI-MS for the diagnosis of ma-
lignant tumors [8]. Recently, they successfully classified high-cholesterol-diet-induced and
genetic-lipoprotein-receptor-deficiency-caused atherosclerosis with serum samples [9] and
classified cancerous and non-cancerous breast nodules in terms of breast core needle biopsy
samples with an accuracy rate of 100% [10]. The Davoli group developed a PESI-MS based
machine learning method to differentiate hepatocellular carcinoma and mass-forming
cholangiocarcinoma from normal and adjacent tissues, with an overall diagnostic accuracy
over 94% in both random forest and support vector machine algorithms [11]. Chung et al.
developed a fast-diagnostic method for detecting pancreatic cancer with peripheral blood
samples [12], which indicates malignant features of pancreatic cancer can be acquired from
serum but not directly from the foci of patients. However, PESI-MS-based machine learning
has not been used for the malignancy prediction of thyroid nodules.

This study aims to develop a PESI-MS-based machine learning method to classify
malignant and benign thyroid nodules with ultrasound-guided FNAB samples, which
were collected from patients in the China—Japan Friendship Hospital. The FNAB samples
were measured with PESI-MS, and the mass-scan dataset was used for machine learning.
Finally, a fast, easier, and more accurate machine learning method was developed.

2. Materials and Methods
2.1. Patients

The study was approved by the Ethics Committee of the China-Japan Friendship
Hospital (2019-103-K71). From February to October in 2021, 267 FNAB samples were
collected from the Department of Endocrinology, the Department of Ultrasound, and the
Department of Intervention in the China—Japan Friendship Hospital. The patients had
been fully informed about the risk of FNAB and signed the Informed Consent Form before
sampling. For each patient, one more FNAB was performed to acquire samples for the
PESI-MS measurement.

2.2. Cytopathology and BRAF Gene Detection

All the 267 patients accepted BRAF V600E gene detection and cytopathology detection.
After FNAB, the samples were kept in either cell preservation solution or saline water for
cytopathology and BRAF V600E detection, respectively. The experiment and diagnosis methods
of gene and cytopathology are shown in Method S 1.1 and S 1.2 in the supporting information.

2.3. The Scheme of PESI-MS-Based Machine Learning

The experimental and machine learning protocols with FNAB samples are shown in
Figure 1, which is similar to the reported works [10,11]. After FNAB, the samples were
pretreated and then measured with PESI-MS. The obtained mass-scan dataset was grouped
and used for machine learning. Data preprocessing was used to produce data suitable for
classifier training. Model training was performed to obtain a classifier that was able to
discriminate malignant from benign nodules.
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Figure 1. The experimental and machine learning protocols with the FNAB samples.

2.4. Patient Grouping

Two hundred and sixty-seven patients were marked as ‘malignant’ (98), ‘benign’ (110),
or ‘undetermined’ (42), considering ultrasound, cytopathology, or BRAF gene diagnosis.
The patients marked malignant or benign were used for the classifier training. In addition,
17 patients participated in the single-blind test.

2.5. PESI-MS Measurement

After FNAB, each sample was kept in a sterile vial containing 0.2 mL of EtOH/H,0
mixture in a ratio of 1:1 and immediately stored at 4 °C until use. The preparation of
samples was performed similarly as previously described [10,11]. Briefly, the samples
were ultrasonicated for 1 min, vortexed for 10 s, and then subjected to centrifugation at
12,000 x g round per minute for 5 min. The supernatant was diluted 2-fold with ethanol-
water (50/50, v/v), and 9 pL of the resultant solution was added on a sample plate for
PESI-MS measurement. The PESI-MS measurement was conducted by DPiMS-8060 that
was equipped with a probe electrospray ionization source and a triple quadrupole mass
spectrometer (Shimadzu, Kyoto, Japan). Both positive and negative ion scan mode were
performed using the parameters listed in Table 1. Finally, it was found that 163 ions were
constantly detected in all samples (with 95% detection rate). These data were used for the
following machine learning process.

Table 1. The measurement conditions.

sampling time: 50 ms
sampling position: —46.0 mm
ionization time: 200 ms
heat block temperature: 30°C
interface voltage: 23kV (+)/—-2.0kV (-)
DL temperature : 250 °C
mass-scan range: 100-1000 Da

! The desolvation line temperature.

2.6. Data Preprocessing

The missing value interpolation and data normalization were performed with a home-
developed Python program on an Anaconda Jupyter Notebook (version 6.3.0). The missing
value interpolation was performed with a mean interpolation method. Then, data nor-
malization was performed with the ‘L2’ method, where the intensity of each ion was
divided by the square root of the sum of the squares of the intensity of all the ions. After-
wards, pairwise coupling was performed on the 163 ions, and totally 13,203 new features
could be obtained. From these features, a two-tail t-test was performed and new features
with p < 0.05 were selected (total 3630 features) by Excel software. Principle component
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analysis (PCA), PLSRegression (PLS), and T-distributed stochastic neighbor embedding
(TSNE) were used to obtain components for the classifier training.

2.7. Classifier Training

The classifier was trained with three established methods: the support vector machine
(SVM), random forest (RF), and multilayer perceptron (MLP) methods. For the method
comparison, the samples were split with the random state of 169, the training and test set
ratio was 8:2, and 9 components were used. Sensitivity, specificity, accuracy, and cross-
validation were calculated for each classifier. Sensitivity, specificity, and accuracy were
calculated for each classifier. Sensitivity = TP/(TP + FN); specificity = TN/(TN + FP); and
accuracy = (TP + TN)/(TP + EN + FP + TN), where TP, TN, FP, and FN represented true
positive, true negative, false-positive, and false negative, respectively. Three-fold cross-
validation was used to evaluate the stability of the trained classifier, where the training set
was divided into three groups; any two groups were used to train the classifier, and the
other one was used to evaluate the trained classifier.

2.8. Classifier Evaluation

The classifier was first evaluated with a single-blind test containing 17 patients. The
diagnosis results were unknown to the classifier trainers. Their malignancy predictions
were compared with clinical diagnosis, and the concordance was calculated to evaluate the
generalization ability of the trained classifier.

Then, the classifier was used to predict the malignancy of patients in undetermined
group (42 patients). Patient follow-up was performed for these patients. A final clinical
diagnosis was made according to the follow-up, cytopathology, BRAF gene, and ultra-
sound features. In detail, Benign: (1) the clinical treatment was ultrasound recheck after
3-6 months; (2) the ultrasound recheck indicates low risk; and (3) reported benign after
surgery. Malignancy: reported malignancy after surgery. Suspicious for malignancy:
(1) BRAF (+), no recheck or surgery; (2) the ultrasound recheck is high-risk; (3) the cy-
topathologic recheck is suspicious for malignancy or malignancy; (4) a reported borderline
tumor after surgery. The concordance of classifier prediction with the final diagnosis was
calculated. Because the classifier could only provide a benign or malignant mark, when
calculating the concordance of prediction with a final diagnosis, suspicious for malignancy
was treated as malignant.

3. Results
3.1. Patient Grouping

The 267 patients were divided into three groups according to the diagnosis of ultrasonic
image grading, cytopathology, and BRAF gene detection results (Table 2).

Table 2. The grouping criteria and statistics.

Group Criteria Total BRAF ! Positive, %
. (1) Bethesda grade VI
malignant (2) Bethesda grade V, BRAF (+) %8 88.3
benign (1) benign, BRAF (—) 110 0
undetermined (1) insufficient cellularity

(2) undetermined significance

(3) suspicious for papillary 42 71
carcinoma, BRAF (—)
(4) others

single-blind test the same as above 17 59

1 B-Raf.
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3.2. PESI-MS Spectra

The representative PESI-MS spectra of malignant and benign nodule extractions were
illustrated in Figure 2. The FNAB samples exhibit a cluster of peaks at m/z 200-400, and
several minor peaks from m/z 400 to m/z 1000 are also observed. The ion intensity is group-
dependent. For instance, the intensity of m/z 471 and m/z 491 is over 10° in malignant
nodules but is lower in benign ones.
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Figure 2. Representative PESI-MS spectra of malignant and benign nodules in positive mass mode.

3.3. Features Selection

At the beginning, the 163 ions were directly used as features for classifier training. Each
ion represents a compound and had a detection rate over 95% in malignant group. Table 3
listed the accuracy, sensitivity, specificity, and cross-validation of the trained classifiers. The
accuracy of classifiers is from 66.0-80.0%, the sensitivity from 66.7-74.1%, and the specificity
from 65.2-87.0%. The highest accuracy is 80.0% with the random forest (RF) method.

Table 3. The accuracy, sensitivity, specificity, and cross-validation of classifiers.

Features 163 Ions, % 3630 Ion Ratios, % Improvement, %
method SVvM 1 RF2 MLP?3 SVM RF MLP SVM RF MLP
accuracy 72.0 80.0 66.0 84.0 74.0 92.0 12.0 —6.0 26.0
sensitivity 70.4 74.1 66.7 74.1 63.0 88.9 3.7 —11.1 222
specificity 73.9 87.0 65.2 95.7 87.0 95.7 21.8 0 30.5
cross-validation? 879+12 730+36 840+08 895+12 776'00i 8945; 1.6 4.0 45

! support vector machine, 2 random forest, 3 multilayer perceptron, and 4 the average of three-fold cross-validation.

Afterwards, 13,203 new features were generated from the 163 ions by pairwise cou-
pling, and 3630 features were used for classifier training. The accuracy of classifiers is from
74.0-92.0%, the sensitivity from 63.0-88.9%, and the specificity from 87.0-95.7%. The use of
new features significantly increased the performance of the MLP and SVM classifiers.
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3.4. Data Decompostion

principle component 2 principle component 2

principle component 2

Data decomposition was performed with three methods: principle component analysis
(PCA), PLS-regression (PLS), and t-distributed stochastic neighbor embedding (TSNE).
Figure 3 illustrated the score plots of PCA, TSNE, and PLS, and corresponding violin plots
of PCA (5 illustrated), TSNE (2 illustrated), and PLS (5 illustrated) components. Clearly,
PLS decomposition could provide better separation for the malignant and benign samples.
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Figure 3. Score plots of PCA (a), TSNE (c), and PLS (e), and violin plots of PCA (b), TSNE (d), and
PLS (f) components.
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The contribution of each ion ratio to the separation of malignant and benign nodules
can be approximated with Y = AX. Figure 4 illustrates 10 major features that contribute the
most to the separation of malignant and benign nodules by PLS decomposition.
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Figure 4. Regression coefficients of 10 major features by PLS decomposition.

3.5. Classifier Optimizaion

The classifier was trained with the SVM, RF, and MLP methods. After training with
the 3630 new features, it is found that the MLP classifier obtained the best accuracy of
92.0%, which is much better than the SVM classifier (84.0%) and the RF classifier (74.0%).
Consequently, the MLP classifier was further optimized.

Weight parameters would affect the accuracy of the MLP classifier. Figure 5 exhibited
the false predictions ((a), (c), (e)), and corresponding receiver operating characteristic
(ROC) curves ((b), (d), (f)) of MLP classifier trained with ‘sgd’, ‘adam’, and ‘Ibfgs’ as solver,
respectively. Clearly, the MLP classifier with ‘lbfgs” as the solver performs the best and
only has four false predictions.

3.6. Single-Blind Test

A total of 17 patients participated in the single-blind test, and the patient information
was listed in Table S1. Before a single-blind test, the MLP classifier was trained based on all
the malignant (98) and benign (110) samples. In general, three false-positive predictions
were made by MLP classifier with an accuracy of 82.4% (14/17), which is comparable with
the accuracy during model optimization.

3.7. Prediction of Undetermined Patients

A total of 42 patients participated in the single-blind test, and 5 patients could not be
contacted by telephone follow-up. The patient information and prediction by the classifier
were listed in Table S2. The general concordance between prediction and follow-up was
73.0% (27/37). In the 37 undetermined patients, 11 were diagnosed as undetermined
significance (follicular lesion or atypia), 11 as suspicious for papillary carcinoma, 13 as
insufficient cellularity, and 2 with others by cytopathology. The corresponding prediction
accuracy was 72.7% (8/11), 90.9% (10/11), 61.5% (8/13), and 50.0% (1/2), respectively.
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Figure 5. False predictions of the MLP classifier trained with ‘sgd’ (a), ‘adam’ (c), and ‘Ibfgs’ (e) as
solver and corresponding ROC curves (b), (d) and (f).

4. Discussion
4.1. The Scheme of PESI-MS Based Machine Leaning

FNAB samples has long been used for the malignancy determination of thyroid
nodules, followed by cytopathology and mutation gene detection. In this study, the sample
pretreatment followed the instructions of clinical samples for PESI-MS analysis [13] but
was slightly modified. The pretreatment time is around 7 min (2 min extraction, vortex, and
5 min centrifugation) for one sample, which is very fast and efficient compared with the
pretreatment and analysis of traditional cytopathology or the BRAF gene method (at least
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half to one hour). The obtained extractions of FNAB samples could be directly measured
without further pretreatment. For the PESI-MS analysis, 9 uL of the sample was directly
put on the sample plate, and several dozens of repetitions and hundreds of mass peaks
were obtained within 1 min. The repetitions guaranteed the accuracy of the malignancy
prediction. The hundreds of mass peaks include substances abundant in either malignant
or benign nodules, which could be used as features for machine learning, as was done in
previous reports [14,15].

Machine learning is widely used for the malignancy determination of thyroid nodules;
however, most of the studies deal with images of cytopathology [16,17]. Conversely, Galli
developed a machine learning method with FNAB samples to discriminate between malig-
nant and benign thyroid nodules. After pretreatment, 43 cytological smears were directly
analyzed with MALDI imaging with an accuracy of 81.8% after feature selection [18]. With
a LC tandem Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (LC-QTRAP),
Sun analyzed peptides from prototypic proteins in thyroid tissue cores, and in terms of ma-
chine learning, the classification accuracy is over 90% for the classification of malignant and
benign nodules [19]. Although the accuracy is acceptable, the sample analysis of MALDI
imaging and LC-QTRAP is complicated, time-consuming, and costly. In this study, PESI-MS
was firstly used to analyze thyroid FNAB samples with a dataset containing 267 patients.
PESI-MS is less complicated and more cost-effective than MALDI imaging and LC-QTRAP.
In addition, the number of patients in the dataset, to the best of our knowledge, is also the
largest mass spectra dataset of thyroid FNAB samples. In general, PESI-MS based machine
leaning is much easier, faster, and more cost-effective than traditional and reported methods
to discriminate between malignant and benign thyroid nodules.

4.2. Feature Selection

Feature selection is the key step before machine learning. Primarily, it was found
that 163 ions were frequently detected (a 95% detection rate in malignant FNAB samples),
and they were directly used as features for classifier training. The highest accuracy is
80.0%, obtained by an RF classifier with a sensitivity and a specificity of 74.1% and 87.0%,
respectively. However, the accuracy, sensitivity, and specificity are not as high as the
reported values, due to the poor homogeneity of the FNAB samples.

Using the ion ratio is one way to eliminate the inhomogeneity of the clinical samples.
For instance, Nakamura reported the ability of the amyloid-3 precursor protein (APP)
669-711/amyloid-f3 (Af3) 1-42 and A3 1-40/A 1-42 ratios, and their composites, to predict
individual brain amyloid-3-positive or -negative status [20]. Rathbone found that im-
munoglobulin x:A ratios in cerebrospinal fluid determined at the time of diagnostic lumbar
puncture could predict MS disease progression and may be useful prognostic markers for
early therapeutic stratification [21]. Rabizadeh showed that the LDL-C/apolipoprotein B
(Apo B) ratio may be considered as an indicator of coronary heart disease independent of
the ASCVD risk score in patients with type 2 diabetes [22].

However, no ion ratios were reported to homogenize the FNAB samples. Pairwise
coupling will not ignore any potential ion ratios, and, consequently, 13,203 new features
were generated from the 163 ions. However, the number of the new features was too large;
therefore, a t-test was carried out to select features for classifier training (p < 0.05 between
malignant and benign group, total 3630 features). With these new features, although the
accuracy and sensitivity of the RF classifier decreased, the accuracy of the SVM and MLP
classifiers improved by 12.0% and 26.0%, the specificity improved by 21.8% and 30.5%, and
the sensitivity improved by 3.7% and 22.2%, respectively. Especially, the MLP classifier had
an accuracy of 92.0%, which is comparable with the hepatic tumor (94%) [11], breast cancer
(100%) [10], and pancreatic cancer classification (91.2%) [12]. The high accuracy, sensitivity,
and specificity obtained proved that pairwise coupling was an effective way to eliminate
the inhomogeneity of the FNAB samples.
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4.3. Data Decomposition and Classifier Optimization

Either the 163 ions or the 3630 new features are too large for classifier training. Data
decomposition could eliminate the ‘curse of dimensionality” by generating a reasonable
number of components. Three decomposition methods were compared: PCA, TSNE, and
PLS. PCA is a widely used and unsupervised decomposition method that is suitable for
group separation with significant different features. TSNE is also an unsupervised decom-
position method, but it can only generate two or three components. PLS is a supervised
decomposition method that keeps the features with the most variance and considers fea-
tures that are relevant to predict the target. In our study, PLS decomposition can separate
the malignant and benign groups better than the other two. The individual difference is
significant in patients. Therefore, a supervised machine learning method (PLS) should
work better than the unsupervised one.

Major features contributed most to the separation of malignant and benign nodules by
PLS decomposition were illustrated in Figure 4. Clearly, m/z 285 was present three times
in the 10 ion ratios, and m/z 833.5 and m/z 699.4 were present twice in the 10 ion ratios.
They could be good internal standards for the generation of ions ratios for the separation of
malignant and benign nodules. However, they are still unknown substances, and further
studies must be carried out to identify their structures.

Training methods and parameters produced classifiers with different performances.
Three common training methods were applied to train classifiers: the support vector
machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. With the
163 ions as features, RF performed better than SVM and MLP. In comparison, SVM and
MLP performed better than RF with the 3630 new features. From an application point of
view, the MLP method performs the best, and its parameters optimization were conducted.
The solver of weight optimization is one of the key parameters of the MLP classifier. The
weight optimization solvers include ‘sgd’, ‘adam’, and ‘lIbfgs’. The best performance was
obtained with ‘Ibfgs” as the solver, and it has been announced that the solver ‘adam’ works
well on relatively large datasets (with thousands of training samples or more). For small
datasets, ‘Ibfgs’ can converge faster and perform better [23].

4.4. Single-Blind Test

For the single-blind test, patients in malignant (98) and benign groups (110) were used
to train the MLP classifier. After training, pathologists initiated a single-blind test, including
17 patients with definite malignant or benign diagnosis. The accuracy of the MLP classifier
obtained an accuracy of 82.4% (14/17) that is comparable with the accuracy during model
optimization and proved the good generalization ability of the trained classifier.

4.5. Prediction of Undetermined Samples

Although not trained by undetermined patients, the MLP classifier was used to
determine their malignancy, and the predictions were compared with 6-month follow-up
results. For the undetermined patients, no clear and definite diagnosis could be provided by
the traditional cytopathology and BRAF gene detection. In comparison, the PESI-MS-based
machine learning strategy shows the potential for their malignancy determination.

The 37 undetermined patients can be divided into four groups: the patients marked as
suspicious for papillary carcinoma, undetermined significance, insufficient cellularity, and
others. For the patients marked with suspicious for papillary carcinoma, the classifier could
correctly predict their malignancy with an accuracy of 90.9%. For the patients marked with
insufficient cellularity, the accuracy was as low as 61.5%. This is probably because most of
the FNAB could provide enough thyroid lesions for either microscopy observation or mass
measurement. Resampling or the changing of sampling position should be considered for
FNARB. For the prediction of patients marked with undetermined significance, the accuracy
is 72.7%, which is not as satisfactory as that of the patients marked with suspicious for
papillary carcinoma (90.9%). Probably, a better classifier could be trained when enough
undetermined samples were accumulated with reliable follow-up results in the future.
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4.6. Deficiencies and Expectations

In this study, only 267 patients were involved in the development of classifier training
and evaluation. Meanwhile, the FNAB samples were obtained by a few doctors in the
Department of Endocrinology, the Department of Ultrasound, and the Department of
Intervention in the China—Japan Friendship Hospital. Not only the numbers of the FNAB
samples but more departments and hospitals should participate in the development of
machine learning methods and validate the developed classifiers.

5. Conclusions

A fast diagnosis method for thyroid nodules was developed with the PESI-MS based
machine learning and fine needle biopsy samples. In total, 267 patients contributed to the
development of the machine learning method. The inhomogeneity of ultrasound guided-
fine needle aspiration biopsy (FNAB) samples had a negative effect on the malignancy
determination. Fortunately, it can be overcome with 3630 new features for classifier training,
which were generated from 163 ions by a pairwise-coupling method. m/z 285, m/z 833.5,
and m/z 699.4 could be good internal standards to eliminate the inhomogeneity of the
FNAB samples. For the principle components, PLS is better than PCA and TSNE to
separate malignant and benign samples. For the classifier training, MLP is better than
SVM and REF, considering both prediction accuracy and cross-validation. The single-blind
test with 17 patients had an accuracy of 82.4%, which proved the good generalization
ability of the MLP classifier. The malignancy prediction of the undetermined patients
had a concordance of 73.0% between prediction and 6-month follow-up. The classifier
showed high accuracy for the undermined patients with suspicious for papillary carcinoma
diagnosis (90.9%). Although the low prediction accuracy is not satisfying for patients
with undetermined significance and an insufficient cellularity diagnosis in undetermined
group, the improvement of FNAB or the development of a new classifier would be effective
ways to improve the prediction accuracy. In addition, for each FNAB sample, only 10 min
is needed to determine its malignancy, which is much easier and faster than traditional
cytopathology and BRAF gene diagnosis. In summary, a promising auxiliary diagnosis
technique was developed for the malignancy determination of thyroid nodules.
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