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Abstract: Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible tech-
nique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s
disease (AD). In the last years, EEG signal analysis has become an important topic of research to
extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose
a novel simple and efficient method able to extract features with a finite response filter (FIR) in
the double time domain in order to discriminate among patients affected by AD, MCI, and healthy
controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using
their absolute differences to distinguish among the three classes of subjects by means of different
supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD,
37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina,
Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering
binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when
dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in
previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed
method might allow its future development on embedded devices for low-cost real-time diagnosis.

Keywords: Alzheimer’s disease; EEG signals; power spectrum; FIR filtering; supervised
machine learning

1. Introduction

Alzheimer’s diseases (AD) belong to the class of dementia, a neurodegenerative
disease characterized by a range of impairments in brain functions, especially memory and
learning, as well as executive and motor functions, complex attention, social cognition, and
language [1]. The estimated proportion of the general population with dementia is around
50 million of people worldwide, and 60% of those cases correspond to AD [2]. It begins
with a symptomatic stage of cognitive decline, called Mild Cognitive Impairment (MCI),
characterized by an impairment in cognition that is not severe enough to compromise social
and/or occupational functioning [3]. As the progression of this disease lasts for decades,
from the appearance of the first sign to the onset of severe clinical symptoms, the clinician’s
first challenge is to identify the first significant cognitive changes [4]. Indeed, the diagnosis
of dementia is usually made when the patient is at least partially dependent on his/her
family members [5]. However, a timely diagnosis can facilitate care and support patients
and their families in managing this very disabling disease [6].

Conventional techniques to detect AD are costly and distressing. However, electroen-
cephalography (EEG) is a fast, inexpensive, and noninvasive technique to gather brain data,
but its interpretation requires a visual inspection, which is often time-consuming and varies
with the expertise experience. Moreover, when the EEG recording is long, then its manual
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review requires a lot of time with the risk of errors because of the presence of artifacts in
the signal. Thus, automated methods based on EEG signal analysis in combination with
supervised machine learning have become an important topic of research to assist clinicians
in the challenging task of early AD detection [7].

The technique for the sampling of EEG signal consists of placing electrodes on the
scalp according to a certain configuration, and the most commonly used is the international
10–20 system [8]. The electrodes record the postsynaptic biopotentials of all the neurons
with the same spatial orientation in order to map the electrical activity of the cerebral
cortex. The biopotentials, which are sampled in bipolar mode by different electrode pairs
or in monopolar mode with a reference electrode, constitute the raw signals. Subsequently,
preprocessing procedures clean the raw signals from artefacts and apply band-pass filtering
to reject out-of-band noise. Basically, all preprocessing steps convert the raw signals into
EEG signals [9]. The composition of the EEG signal is complex, but it can be divided
into five frequency bands: delta (1–4 Hz, δ), theta (4–8 Hz, θ), alpha (8–13 Hz, α), beta
(13–30 Hz, β), and gamma (30–40 Hz, γ) [10].

Features are extracted from EEG data through a procedure denominated feature extrac-
tion. Features should be independent and discriminative to facilitate the classification of the
subjects. Usually, features such as complexity, coherence, or spectral power are extracted
from the time and frequency domains [7]. Fourier transform (FT) is the main technique
used to extract frequency domain features for AD detection. Nonetheless, EEG signals are
nonstationary and nonlinear in nature. The wavelet transform (WT), which decomposes a
signal into the combination of functions (wavelets) of finite length and different frequencies,
represents a suitable alternative to address this issue [11]. On the contrary, the frequency
domain represents the principal source of the EEG features for AD detection. Indeed,
different changes in the frequency patterns of the brain waves have been found in MCI
and AD patients compared to healthy aged subjects [12]. All feature extraction methods
extrapolate EEG signal features from different domains (e.g., frequency and time) [13].
Then, statistical or machine learning analyses [14] can use these features to develop and
validate models based on linear or nonlinear systems [15] to distinguish AD from MCI or
normal aging. In particular, supervised machine learning (SML) permits the development
of robust classification models for recognizing AD [16], frontotemporal dementia [17], and
other pathologies [18]. Complex and heterogeneous symptoms complicate the diagnosis,
because more often than not, biomarkers are intrinsically hidden in the EEG signal.

Rhythms are often used to analyze the EEG in a particular sub-band through filtering,
due to the different activities between the frequency bands [19,20]. In fact, previous studies
have shown that the relative power in fast rhythms (α and β) decreases, while, in slow
rhythms (δ and θ), it increases [21,22]. This effect shifts the peak power towards lower
frequencies, which is why it is also called “shift-to-the-left” (STTL) [23]. The method
presented in this paper exploits the power intensity of EEG signals, filtered in the time
domain by using both high-pass and a low-pass filters in order to analyze the STTL
phenomenon. Our idea is to classify the absolute difference in power between fast and
slow rhythms for each individual, using it as a biomarker. For this purpose, we also use
the power spectrum density (PSD) calculated with the help of the spectrogram and SML to
choose the best filter cutoffs and improve the classification performance.

2. Materials and Methods

We used an EEG dataset composed of 109 EEG recordings (49 AD, 37 MCI, and 23 HC)
collected in resting condition and with closed eyes at the IRCCS Centro Neurolesi “Bonino-
Pulejo” in Messina (Italy). A diagnosis of AD or MCI was formulated following the guidelines
of the Diagnostic and Statistical Manual of Mental Disorders (fifth edition, DSM-5).

2.1. Data Acquisition and Preprocessing

Multi-channel EEG signals were recorded by using 19 electrodes placed according to
the 10–20 system [8] in monopolar connection with the earlobe electrode as a reference.
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Raw electrical brain activity (µV) recordings last about 300 s. For more details on data
collection, the reader can refer to the previous study [24].

In the preprocessing step, the sampling rate is normalized to 256 Hz, and EEG are
filtered at a 1-Hz low cutoff (high-pass) and at a 30-Hz high cutoff (low-pass). After filtering,
artifacts are detected by visual inspection and rejected. One hundred and fifty seconds of
cleaned EEG are considered for each subject, extracted from the central part of the EEG
signal in order to maintain the maximum signal information to train classifiers on the same
length signals but without losing too many instances. Thus, four subjects were excluded
(i.e., 1 AD and 3 HC) due to an excessive number of artifacts, and the dataset dropped to
105 EEG recordings.

2.2. Feature Extraction

The feature extraction procedure includes two main steps: (i) data exploration in the
time–frequency domains by means of PSD computed in the spectrogram and
(ii) construction of the double digital filter and its application.

2.2.1. Data Exploration in the Time–Frequency Domains

For each subject, we generated a unique signal by concatenating the 19 biopotentials
signals (i.e., one for each electrode). This concatenated signal provides a complete view of
the whole subject’s signal and allows to know the electrodes more involved in the STTL
phenomenon. Therefore, the 3 classes (AD, MCI, and HC) contain as many concatenated
signals as there are subjects in each of them. Then, the average of each class is calculated,
resulting in 3 average signals. Therefore, we apply the MATLAB pspectrum function (it
is included in the Signal Processing Toolbox introduced in version R2017b), setting the
spectrogram mode and providing input in the sampling frequency (fs) and the signal in the
time domain. The power spectrum density of the signal is computed, also performing the
Short-Time Fourier Transform (STFT) of the signal and evaluates its power [25,26]. This
step allows to find the best cutoff frequencies (fcut) that can separate the classes. For the
sake of clarity, recall that the spectrogram is a function used to plot the STFT of the signal,
determining both the sinusoidal frequency and phase contained in different time frames
and composing the entire signal.

2.2.2. Double Digital Filter Construction

The second step includes the construction of two Finite Impulse Response (FIR) digital
filters, i.e., a second-order Butterworth filter for high-pass (FIR-H) and low-pass (FIR-L)
frequencies by using the cutoff frequencies (fcut) previously identified [27]. Thus, each EEG
signals provided by an electrode is double-filtered, and two signals are generated in the
time domain, called EEG(L) and EEG(H), where the first value is the EEG filtered with
FIR-L, while the second value is the EEG filtered with FIR-H. Subsequently, we compute
the power (see Appendix A) of these two signals, P(L)

xx and P(H)
xx , with the aim to calculate

the square of their absolute difference:

P2
(L−H) =

∥∥∥P(L)
xx − P(H)

xx

∥∥∥2
(1)

This value is the extracted feature corresponding to our biomarker. Figure 1 shows a
schematic representation of the double digital filter construction.

In this way, we are able to represent each initial EEG signal as an array of values
sampled in a single feature, P2

(L−H), reducing the input size. This procedure is iterated for
all subjects, as shown in Table 1. To ensure that the cutoff frequencies identified in the first
stage of the procedure are really the best for class separation, we vary fcut from 1 Hz to
18 Hz with a step size of 1 Hz, in order to achieve the best class separation.
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Figure 1. Schematic representation of the double filtering method. The initial input is the subsequence
of the main EEG signal, which is divided and filtered according to the two main branches. The final
result is the square of the power absolute difference. The block “Power” is explained in Appendix A.

Table 1. Schema of the feature extraction procedure: features extracted from an EEG recording are
shown in the last column.

N-Subjects EEG Signals Label Extracted Features

1 EEG1, EEG2, . . . , EEG19 AD P2
(L−H)1

, P2
(L−H)2

, . . . , P2
(L−H)19

2 EEG1, EEG2, . . . , EEG19 MCI P2
(L−H)1

, P2
(L−H)2

, . . . , P2
(L−H)19

. . . . . . .. . . . . . . ..
109 EEG1, EEG2, . . . , EEG19 HC P2

(L−H)1
, P2

(L−H)2
, . . . , P2

(L−H)19

The column Label shows the initial labeling used in supervised machine learning.

2.3. Classification

The signal classification is performed by an SML analysis through three classification
methods: decision trees (DT), support vector machines (SVM), and k-nearest neighbor
(KNN) [28]. The algorithms are implemented in Python (version 3.7.21) by means of the
scikit-learn toolkit [29]. Python is an open-source programming language, and its choice
stems from the availability of many external libraries, frameworks, and tools from a huge
community distributed all over the world.

In this study, we define five classification problems: (i) AD vs. HC, (ii) AD vs. MCI,
(iii) MCI vs. HC, (iv) AD + MCI vs. HC, and (v) AD vs. MCI vs. HC. The first four problems
were addressed in our previous study [24], whereas the last one defines the three class
classification problem [30]. Then, for each problem, we perform 10 runs where the extracted
features are randomly sampled. Finally, we adopt the following procedure:

1. Dataset splitting in training 70% and data tests 30%, except for the (v) case where the
data has been divided into 80% training and 20% data tests;

2. Dataset size reduction with the Linear Discriminant Analysis (LDA) [31];
3. Application of the three aforementioned supervised machine learning methods;
4. Tuning of the hyperparameters of the machine learning algorithms combined with

k-fold cross validation [32];
5. Data validation and performance evaluation through the confusion matrices.
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Regarding point 1, data splitting can affect the performance of evaluators, so making
appropriate decisions during this step is very challenging, as highlighted in [33]. Here,
the authors summarize the challenges of data splitting into three main points: (i) Data
imbalance, (ii) Data loss, and (iii) Concept drift. Taking these points into consideration,
we divide the initial datasets into 70–30 and 80–20. The first choice shows very high
levels of accuracy in the first four cases of the classification; on the contrary, 80–20 has
an accuracy increase of 5% in the three-class classification problem. In order to reduce
the less meaningful features, we applied the LDA to the extracted features. The LDA,
cited at point 2, is a well-known data mining algorithm [34] and is suitable in those cases
where classes are unbalanced or nonlinearly separable, such as the EEG signal. LDA
automatically defines a separation hyperplane between the points that belongs to a class by
generating two subclasses from the main one. Consequently, the Fisher criterion [35], also
called Fisher’s linear discriminant, maximizes the ratio of the between-class variance to
the within-class variance in any particular dataset, ensuring the maximum separation. In
this way, it is possible to discard those values of the extracted features that do not affect the
variance of the main class, decreasing the sample dimensions.

With the purpose of improving the performance of the classification algorithms, we
automatically introduce additional parameters, namely hyperparameters, provided by an
external constructor. However, a wrong choice of the hyperparameters can lead to incorrect
results and to obtaining a poor performance model [36,37]. In this work, we chose the grid
search algorithm (GScv) [38], implemented through the python function GridSearchCV.
GScv is the simplest algorithm for hyperparameter optimization [39]. However, it is time-
consuming, since it considers all combinations to find the best point (Figure 2a), and each
grid point needs cross-validation in the training phase.
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Figure 2. (a) Example of a grid search domain, where the hyperparameters are distributed into a matrix.
(b) A schematic representation of 5-fold cross-validation. In (b), the data train (the blue boxes) is split in
“k” subsegments, and one (the orange box) of them is used as the validation in each iteration.

In addition, the cross-validation procedure resamples the data randomly for the better
evaluation of machine learning models. To improve the model validation, the procedure of
cross-validation is iterated k times. Consequently, the data training is segmented into k
subgroups [40]. For this reason, the procedure is often called k-fold cross-validation. Here,
we split the training datasets into k = 10-fold without reinsertion, where 9-folds are used to
train the model and 1-fold for the performance evaluation [41], as represented in Figure 2b.
The estimator evaluation (e.g., accuracy) is the average of each estimator computed over
the kth iteration.
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3. Results

In this section, we report the results obtained after any steps of our method, e.g., from
the feature extraction to the classification process, providing the accuracy measures of the
classification algorithms.

First, we show in Figure 3 the allocation of the power spectrum for each patient.
Looking closely at Figure 3, we can enhance that the PSD in AD and MCI is restricted in low
frequencies (<7 Hz), while, in HC, the power is spread up to about 14 Hz. Thus, we expect
that the next part of the feature extraction procedure also identifies that these frequencies
are the best cutoffs for a good separation between classes.
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Figure 3. Computed pspectrum from 19 biopotentials (EEG signals) in a frequency range of 0–20 Hz
for AD (a), MCI (b), and HC (c). The dashed red line separates each individual signal from the 19
biopotentials that make up the preprocessed EEG signal.

As viewable in Figure 4a, the statistical test carried out on the characteristics shows a
good separation between classes in these fcut values. Indeed, we found an excellent class
separation between HC and AD-MCI for the value of fcut equal to 7 Hz, as can be seen in
Figure 4b, and an excellent separation between AD and MCI with fcut = 16 Hz (Figure 4c).
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These interesting results suggest applying the first filtering at 7 Hz to exclude controls and
the subsequent filtering at 16 Hz for a better classification between MDI and AD.
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Figure 4. (a) The mean value of the feature extraction, the black double arrows, show the maximum
distance between HC and AD + MCI for fcut = 7 Hz and between AD and MCI for fcut = 16 Hz. The
statistical results are shown in (b) for 7 Hz and (c) for 16 Hz. In both of the last two graphs, the main
box represents the data distribution, while the red line represents the median value, and the whisker
stretches from the box show the range of the data, except for the outlays that are represented, such as
the floating point (+).

The classification of the samples achieves a high level of accuracy, especially in dis-
tinguishing AD vs. HC and MDI vs. HC cases. In fact, the three classification procedures
achieve an accuracy value of more than 87% and up to 97%, as shown in Figure 5a,b.
Moreover, when we consider AD + MCI vs. HC, the accuracy reaches a value between 84%
and 89% (Figure 5c). The effectiveness of the proposed method consists of tunneling fcut,
as shown in Figure 5d for the AD vs. MCI case. Here, the accuracy of the classification
methods improves from 49–60% to 80–83% when fcut is increased from 7 Hz to 16 Hz.
Finally, Figure 5e shows the comparison between the three different cases and reinforces
the hypothesis of the effectiveness of the proposed method for feature extraction. In the
latter case, the accuracy value is between 73% and 86%.
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Figure 5. Each subfigure displays the comparison between the three classification methods: decision
tree (DT), support vector machine (SVM), K-nearest neighbors (KNN) in the different problems:
(a) AD vs. HC, (b) AD vs. MCI, (c) MCI vs. HC, (d) AD + MCI vs. HC, and (e) AD vs. MCI vs. HC.
Furthermore, all the subfigures show the accuracy results achieved in percentages at fcut = 7 Hz in the
blue column and fcut = 16 Hz in the red column.

In Table 2, we present the computation times of the classification procedure. The costs
of feature extraction are low, and the computation time is about 0.1 s for a single subject.
On the contrary, in the classification process, the computation time is higher because of the
search for the best hyperparameters improving the accuracy. In the binary classification
problems, the total execution time is, on average, 39.5 s, of which the DT takes about 21 s,
the SVM takes about 15 s, and the K-NN takes about 3 s, except in the last case, when the
execution time increases by two seconds. K-NN is the algorithm with the lowest runtime,
while DT is the slowest. This is because KNN stores the training data in an n-dimensional
space defining the pattern’s spaces, and for each unknown sample, it assigns the pattern’s
space with a minor distance function [42] while DT extracts a classification model composed
of features and value assignments requiring a longer runtime, although DT provides a
better interpretation of the classification solution.
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Table 2. Average execution time of the classification algorithm, including tuning of the hyperparameters.

Case fcut (Hz) Time (s)
DT/SVM/K-NN Tot. Time (s)

AD vs. HC
7 21.8/14.0/3.0 38.8

16 20.9/14.0/3.0 38.0

AD vs. MCI
7 22.3/14.8/3.0 40.1

16 21.1/15.0/3.0 39.1

MCI vs. HC
7 20.7/13.3/3.0 37.0

16 21.1/13.6/3.0 37.7

AD + MCI vs. HC
7 20.6/16.4/3.0 40.0

16 21.1/18.5/3.0 42.6

AD vs. MCI vs. HC
7 25.0/22.6/4.0 51.6

16 25.9/24.1/4.8 54.8
The Time column shows the execution time of each classifier, where DT = decision tree, SVM = support vector
machine, and K-NN = K-nearest neighbors. The last column shows the sum of the execution times.

4. Discussion

In this paper, we proposed a new method for the feature extraction in AD recognition
from EEG signals. Our findings confirm that AD affects the power spectrum of the patient,
according to previous studies [43,44]. The proposed method is carried out in the time
domain, exploiting the knowledge a priori of the EEG signals, i.e., power spectrum, spectral
entropy, and phase synchronization. We used three different classification algorithms to
validate our method, obtaining promising results. Indeed, the accuracy ranged between
73% and 97%, overcoming previous studies [24,45]. In particular, in [45], the best accuracy
rate was 94%, obtained by using discrete wavelet transform to extract features, whereas,
in [24], we used a DT classifier (i.e., the C4.5 algorithm), reaching the following levels
of accuracy: 83%, 92%, 79%, and 73% in HC vs. AD, HC vs. MCI, MCI vs. AD, and
HC vs. MCI + AD classification problems, respectively. Furthermore, in the last two
cases, we increased the level of accuracy, with values higher than 80% combining in the
information gain filter. Here, K-NN was the best classification algorithm as concerning the
accuracy (almost always greater than 80%), as shown in Figure 5, with a runtime of about
3 s (Table 2). On the contrary, the accuracy of DT was the lowest, and its running times
the highest because of the computation complexity in the construction of the solution in a
human interpretable format.

The recent literature has reported several techniques using EEG signals for the early di-
agnosis of AD, differing in how features are extracted. Some of these, such as event-related
potentials, signal a complexity analysis and relative power, involving a time domain signal
analysis. Other techniques, instead, work in the Fourier domain, such as the coherence
metric that evaluates the synchrony between two signals. In addition, there are techniques
exploiting the analysis in the frequency domain, such as the continuous or discrete wavelet
transform [7]. Cejnek et al. [46] employed a linear neural unit with gradient descent adapta-
tion as the filter to predict AD, achieving a specificity of 85% and a sensitivity between 85%
and 94%, depending on the classifier. In Reference [47], the authors developed an algorithm
that consists of three cascade methods for analysis: discrete WT, PSD, and coherence. They
tested this method on 35 subjects by means of the bagged trees classifier trained with
five-fold cross-validation, obtaining a 96.5% accuracy.

There are only a limited number of works that have exploited time–frequency or
bispectrum-based features, such as discriminating coefficients. The multimodal machine
learning approach of Ieracitano et al. [48], where EEG signals are projected into the time–
frequency domains by means of the continuous WT to extract a set of features from EEG
sub-bands, while the nonlinear the phase-coupling information of EEG signals is also used
to generate a second set of features from the bispectrum representation. This method
provides high levels of accuracy with different classifiers in all considered problems: AD
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vs. HC, Ad vs. MCI, MCI vs. HC, and AD vs. MCI vs. HC and on a large cohort of subjects
(i.e., 189 subjects: 63 AD, 63 MCI, and 63 HC). Similar to our method for the early detection
of AD, the Lacosogram tool [21] performs a statistical analysis to measure distances between
EEG sub-bands, obtaining an accuracy of 98.06% for HC vs. MCI, 95.99% for HC vs. AD,
and 93.85% for MCI vs. AD. Kulkarni and Bairagi in [49] decomposed EEG by using the
WT to decompose the EEG signal into its five sub-bands. The means and variances of the
wavelet coefficients were evaluated and used as input to a SVM classifier, achieving an
accuracy value of 88% in AD vs. HC classification.

Although, in our previous work [24], the experimental results showed that wavelet
coefficients evaluated by applying the discrete wavelet transform achieved the highest
accuracy rates (i.e., 83.3% for AD vs. HC, 91.7% for MCI vs. HC, and 79.1% for AD vs.
MCI), the three-class classification did not achieve good results when we used only Fourier
or Wavelet transform. On the contrary, here, the results of the three-class classification
problem (AD vs. MCI vs. HC) were also reported, showing an average accuracy of 78%
for the three classifiers and longer running times. This further proved the validity of this
feature extraction method, which plays a key role in the analysis. Indeed, the method
separates the high frequencies and the low frequencies of the EEG signal, and then, it
computes their powers. The comparison of these powers shows an imbalance of energies
in the frequency range, demonstrating the phenomenon of the STTL described in [15].

Our findings showed that a correct choice of fcut increases the accuracy of discrimi-
nation between AD, MCI, and HC subjects. In addition, the proposed method for feature
extraction is simple and fast in running time, and therefore, it is easily replicable in dif-
ferent development environments. This is undoubtedly its greatest strength, making its
implementation and understanding very easy. The model, tested on a larger sample, could
lead to the identification of biomarkers capable of determining features that discriminate
electrical signals between different AD cohorts at specific electrodes.

As a future work, we plan to improve the classification method to the point of remov-
ing all the HC subjects, applying double filtering with fcut = 7 Hz from the main sample,
and distinguish AD from MCI by applying double filtering with fcut = 16 Hz. However,
given the heterogeneity of the disease, a larger cohort is necessary to confirm the results of
this study. We also plan to test the method in different EEG recording protocols, maybe
while the subject performs a cognitive task, in order to provide insights on how AD affects
certain cognitive areas.

Since AD is expected to affect a large part of the worldwide population in the following
years, EEG represents a suitable technique to assist clinicians in an early diagnosis. From
this perspective, the method could be implemented on embedded devices and used in real
time during EEG signal acquisition due to its low computational resource requirements.
Considering the simplicity and robustness of the double filtering, we could promote it as an
inexpensive and portable software suite by programming the current embedded electronic
microprocessor, such as a Dev Board [50].

Author Contributions: Conceptualization, E.W. and D.P.; methodology, D.P.; software, D.P. and
P.D.P.; validation, E.W., M.C.D.C. and S.D.S.; formal analysis, E.W. and D.P.; investigation, M.C.D.C.;
resources, M.C.D.C.; data curation, S.D.S.; writing—original draft preparation, D.P., M.C.D.C. and
E.W.; writing—review and editing, E.W. and M.C.D.C.; supervision, E.W. and M.C.D.C.; project
administration, E.W. and M.C.D.C.; and funding acquisition, M.C.D.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by Current Research Funds 2021, Ministry of Health, Italy.

Institutional Review Board Statement: The Ethical Committee of the IRCCS Centro Neurolesi
“Bonino-Pulejo” approved the study after informed consent to participate in the study was signed by
the enrolled subjects (reference number 40/2013).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Appl. Sci. 2022, 12, 5413 11 of 13

Data Availability Statement: The datasets analyzed during the current study are available upon
request from the IRCCS Centro Neurolesi “Bonino-Pulejo” (M.C.D.C.).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we explain how we calculate the power of the EEG signal after splitting
the signal into the high- and low-frequency components. This operation describes the
function of the block “Power” in Figure 1. The power of a generical signal s(t) in a time
interval or period T is calculated as [51]:

Pxx =
1
T
∗
∫ t0+T

t0

‖s(t)‖2 dt (A1)

In our work, we considered t0 = 0, and the EEG is a sampled signal, i.e., a discrete-time
signal, so that (A1) can be rewritten as:

Pxx =
1
N
∗

N

∑
n=0

EEG(n)2 (A2)

where n is the index of the nth sample that compose the EEG, and N is the total number of
samples. As well-known, the ratio between N and the sampling rate returns T, and this
indicates the linear dependence between N and T.
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47. Oltu, B.; Akşahin, M.F.; Kibaroğlu, S. A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive
impairment detection. Biomed. Signal. Process. Control 2021, 63, 102223. [CrossRef]

48. Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based approach for automatic
classification of EEG recordings in dementia. Neural Netw. 2021, 121, 176–190. [CrossRef] [PubMed]

49. Kulkarni, N.N.; Bairagi, V.K. Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector
machine classifier. IETE J. Res. 2017, 63, 11–22. [CrossRef]

50. Available online: https://coral.ai/docs/dev-board/datasheet/#features (accessed on 18 March 2022).
51. Cariolaro, G. Classical Signal Theory. In Unified Signal Theory; Springer: London, UK, 2011; p. 23.

http://doi.org/10.1007/s41870-018-0165-5
http://doi.org/10.1007/s11517-021-02427-6
http://doi.org/10.1016/j.bspc.2020.102223
http://doi.org/10.1016/j.neunet.2019.12.006
http://www.ncbi.nlm.nih.gov/pubmed/31884180
http://doi.org/10.1080/03772063.2016.1241164
https://coral.ai/docs/dev-board/datasheet/#features

	Introduction 
	Materials and Methods 
	Data Acquisition and Preprocessing 
	Feature Extraction 
	Data Exploration in the Time–Frequency Domains 
	Double Digital Filter Construction 

	Classification 

	Results 
	Discussion 
	Appendix A
	References

