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Abstract: The surface quality of the sidewall in waveguide antennae is important, especially surface
roughness, which directly affects the electrical performance of the slotted waveguide antenna. Micro-
milling is a potentially effective processing technique for the antenna. However, surface roughness has
been difficult to guarantee within a reasonable accuracy range. In this study, orthogonal experiments
of micro-milling LF21 waveguide slits were conducted. The results of the range analysis mainly
sorted the factors that affected the surface roughness and also helped to determine how surface
roughness could be kept at a minimum. The surface roughness was predicted by using the group
method of data handling (GMDH). The importance of the applied GMDH was that it continuously
adjusted the network structure according to the potential relationship between cutting parameters
and the corresponding surface roughness, which helped determine the model most optimally fitted
to the experimental data. This research can be used as a reference for selecting cutting parameters in
micro-milling LF21.

Keywords: LF21; micro-milling; fine seam; surface roughness of sidewall

1. Introduction

LF21 has high electrical conductivity, plasticity, etch-resistant ability and solderability,
which explains why it is widely used in slotted waveguide antennae [1]. However, its
low strength and hardness mean that it has poor cutting properties and is prone to plastic
flow under cutting forces, resulting in machinery defects such as material extrusion and
build-up [2]. The surface roughness of the sidewall in waveguide slits has a significant
influence on the electrical performance of the waveguide antenna. To explain, Ra is required
to be less than 0.8 µm [3]. Generally, micro-milling is used to manufacture high-precision
parts with dimensions between 100 µm and 10 mm [4]. In the previous study, we achieved
0.2 µm Ra for the sidewall when micro-milling Inconel 718 [5], which strongly confirmed
that micro-milling was a potential effective processing technology for the manufacturing
of LF21 waveguide slits. However, the finished surface roughness is difficult to control
due to rapid tool wear and the complex, dynamic characteristics of micro-milling. More
importantly, elastic recovery, cutting-edge radius effects, tool runout, switching between
plough and shear states with minimum cutting thickness, etc., can lead to the output of
complex cutting forces and cutting heat, which ultimately have a direct impact on the
surface roughness of sidewalls [6–8]. This necessitates further analysis of the potential
relationship between surface roughness and cutting parameters in the micro-milling of LF21
waveguide slits, although this would be challenging in light of the complicated physics
and mechanics involved in the milling process and the material response.

One way to reduce the attention to physics and mechanics in machining is to take an
end-to-end approach, i.e., to investigate statistical learning models on cutting parameters
and surface roughness. V.S. Sooraj et al. [9] found that the spindle speed and feed per tooth
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significantly affected surface roughness when micro-end-milling brass; J.H. Ko et al. [10]
also found that the effects of spindle speed and feed per tooth on the surface roughness of
the processed sidewall were more obvious than the axial depth of cut during the micro-end-
milling of SUS 304 and Al 6061. Many scholars have developed mathematical–statistical
models on micro-milling surface roughness. Lu et al. [11] developed a surface roughness
prediction model on the micro-milling of Inconel 718 using the response surface method
in 2018 and indicated that the parameters impacting surface roughness, from high to low,
were cutting depth, feed rate and spindle speed. W.T. Shi [12] proposed a prediction model
on surface roughness based on the dual response surface method during the micro-milling
of hard aluminum alloys. C. Burlacu et al. [13] established a prediction model on surface
roughness based on the micro-milling of a C45W steel groove bottom, using the multiple
regression method.

Artificial neural networks (ANNs) lie at the frontier of complex, nonlinear science
and artificial intelligence science. They establish complex and nonlinear relationships
among variable parameters, which are too difficult to achieve by conventional models. C.
Bandapalli et al. [14] presented a prediction of surface roughness using back-propagation,
feed-forward neural network (BPNN), the Levenberg–Marquardt algorithm (LMA), the
group method of data handling (GMDH) and multiple regression analysis (MRA) in
the high-speed micro-end-milling of titanium alloy (grade 5). It has been shown that
the prediction accuracy of a neural network is higher than the accuracy of the other
methods. Furthermore, C. Bandapalli et al. [15] proposed that using the adaptive neuro-
fuzzy inference system (ANFIS) methodology to establish a prediction model on surface
roughness was reasonable, since it could generate prediction accuracy that reached 99.96%
by using the general bell membership function. Yazid Abdulsameea Mohammed Saif [16]
used an ANN to establish an optimal model on surface roughness during micro-end-milling.
Research has shown that the ANN method is more suitable for the prediction of surface
roughness in the micro-milling process.

The GMDH on a polynomial basis is a feed-forward neural network commonly used
for data mining, knowledge discovery, the prediction of complex system modeling, opti-
mization and pattern recognition. It has higher stability compared with other ANNs, as
it is capable of adaptive synthesis by automatically filtering the model’s structure and its
variables, for example, avoiding the over-fitting and under-fitting of the model structure,
and reducing the influence of subjective factors on the network. Moreover, it can express
the functional relationship of input and output as polynomial-based equations. These
explicit model equations reveal the correlation and dependence amongst the variables [17].
Therefore, it is appropriate to apply the GMDH to surface-roughness prediction.

In summary, spindle speed and feed per tooth have a significant effect on the surface
roughness in micro-milling. As far as we know, previous work has focused only on the
surface roughness of sidewalls when micro-milling slots, i.e., only the Ra obtained after
single machining is studied when, actually, the study of surface roughness is of critical
significance for revealing machining mechanisms. We conducted experiments on the
micro-milling of LF21-slotted waveguide antennae and studied the influence principle of
cutting parameters (i.e., the spindle speed and the feed per tooth) on surface roughness.
Furthermore, we built a surface-roughness prediction model based on the GMDH. In the
construction of this model, machining output variables and input variables such as spindle
speed and feed per tooth were considered with regard to surface roughness. The quadratic
K-g polynomial was also selected, along with the Regularization criterion, i.e., organizing
the reference function and the screening during the training process for the GMDH. The
results signified that the GMDH model helped to produce surface-roughness predictions
with a high level of accuracy.
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2. Materials and Methods
2.1. Experimental Procedure
2.1.1. Experimental Device

Experiments were conducted on a self-developed, three-axis and vertical micro-milling
machine (Figure 1). The body size of the machine was 194 mm (X)× 194 mm (Y)× 400 mm (Z),
and the workspace size was 50 mm (X) × 50 mm (Y) × 102 mm (Z). The spindle speed
ranged from 40,000 rpm to 140,000 rpm. The absolute-position accuracy of the feed system
was 1 µm, and the repeat-position accuracy was 0.2 µm. The Tungsten–Carbide-coated,
flat-end mill made by the Nisshin Scientia company was adopted with a diameter of 300 µm
(MSE 230). The material compositions of the LF21 are shown in Table 1. The size of the
LF21 workpiece was 15 mm (X) × 40 mm (Y) × 0.5 mm (Z). The surface roughness of the
micro-milled surface was measured by a confocal laser microscope, made by the Keyence
company (VK-X200). The optical resolution of the instrument was 0.5 nm min. The 3D
surface topography and the 2D surface roughness of the LF21 sidewall micro-milling are
shown in Figure 2a,b, respectively. The arithmetic means deviation of the contour of the Ra
was used to evaluate the surface roughness of the sidewall surface.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 10 
 

2. Materials and Methods 

2.1. Experimental Procedure 

2.1.1. Experimental Device 

Experiments were conducted on a self-developed, three-axis and vertical micro-mill-

ing machine (Figure 1). The body size of the machine was 194 mm (X) × 194 mm (Y) × 400 

mm (Z), and the workspace size was 50 mm (X) × 50 mm (Y) × 102 mm (Z). The spindle 

speed ranged from 40,000 rpm to 140,000 rpm. The absolute-position accuracy of the feed 

system was 1 μm, and the repeat-position accuracy was 0.2 μm. The Tungsten–Carbide-

coated, flat-end mill made by the Nisshin Scientia company was adopted with a diameter 

of 300 μm (MSE 230). The material compositions of the LF21 are shown in Table 1. The 

size of the LF21 workpiece was 15 mm (X) × 40 mm (Y) × 0.5 mm (Z). The surface rough-

ness of the micro-milled surface was measured by a confocal laser microscope, made by 

the Keyence company (VK-X200). The optical resolution of the instrument was 0.5 nm 

min. The 3D surface topography and the 2D surface roughness of the LF21 sidewall micro-

milling are shown in Figure 2a,b, respectively. The arithmetic means deviation of the con-

tour of the Ra was used to evaluate the surface roughness of the sidewall surface. 

 

Figure 1. The micro-milling machine tool. 

Table 1. Materials composition of LF21. 

 
Thermal  

Conductivity 
(𝐖/(𝐦 ⋅ ℃)) 

Coefficient of 

Thermal Ex-

pansion  
(𝟏/℃) 

Modulus of 

Elasticity 
(𝐌𝐩𝐚) 

Thermal Ca-

pacity 

(𝐍/(𝐦𝐦𝟐

⋅ ℃)) 

Poisson’s 

Ratio 
Hardness 

LF21 180.2 2.2 × 10−5 6.86 × 104 2.433 0.25 11 

  

Figure 1. The micro-milling machine tool.

Table 1. Materials composition of LF21.

Thermal
Conductivity
(W/(m · °C))

Coefficient of
Thermal Expansion

(1/°C)

Modulus of
Elasticity
(Mpa)

Thermal
Capacity(

N/
(
mm2 · °C

)) Poisson’s Ratio Hardness

LF21 180.2 2.2 × 10−5 6.86 × 104 2.433 0.25 11
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Where x and y represent the feed and the depth of cut directions. The averages of the
surface roughness values, measured at 4 equidistant locations on each slot, were used for
the analysis.

2.1.2. Process Setup

The experiments were conducted using the Design of Experiment (DoE) methodology.
We conducted an orthogonal trial with a mixed-level design utilising two factors: the
spindle speed n and the radial depth of the cut ae. The above experiments were conducted
to understand the effect of cutting parameters on surface roughness. Table 2 shows the
selection of cutting parameters.

Table 2. Process window.

Lower Limit Upper Limit

Spindle speed 40,000 rpm 65,000 rpm
Feed per tooth 0.2 µm/z 0.6 µm/z

Cutting depth in the axial direction 20 µm
Extended length of the tool 20 mm

2.2. Artificial Neural Networks

The GMDH was applied for the mathematical modeling of multi-parametric datasets,
which is characterized by an inductive procedure of extending and developing the network
until the working efficiency of the network reaches the desired point during the learning
process [18]. That is, the network structure was not fixed during the training. The structure
sample of the GMDH method for the surface-roughness prediction for the micro-milling of
brass is shown in Figure 3 [19].
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Where x1, x2, x3 and x4 represent the extended length of the micro-milling tool, spindle
speed, feed per tooth and cutting depth in the axial direction. y1 is an explicit model
equation, which represents the surface-roughness prediction model.

Figure 3 depicts an example structure of the GMDH used in the prediction of surface
roughness. The network has four inputs and one output above. The input layer of the
GMDH network forwards the input signal to the middle layer (that is, the first hidden layer
and the second hidden layer). Each neuron in the middle layer corresponds to two neurons
in the previous layer. Therefore, there must be only two neurons in the previous layer (the
middle layer) of the output layer.

Generally, only select, adaptive and linear elements as neurons of the GMDH network,
as shown in Figure 4, are considered. That is, only the functions of the two variables (neu-
rons) in linear, polynomial and quadratic forms are considered. The following Equation (1)
represents the quadratic form:

Zk,l = F(Zk−1,i, Zk−1,j) = a0 + a1Zk−1,i + a2Zk−1,j + a3Zk−1,iZk−1,j + a4Z2
k−1,i

+ a5Z2
k−1,j

(1)

where Zk,l represents the lth processing unit of the kth layer and the coefficients of a0 − a5
can be calculated by minimizing the root mean square error (RMSE), given in Equation (2)
by multiple regression analysis.

RMSE =

√√√√√ n
∑

i=1
(zk,l − Zk,l)

2

n
(2)

where Zk,l shows actual data. In this study, we developed an explicit equation that predicted
surface roughness based on the GMDH method. The flow chart of surface roughness
prediction by GMDH methodology is shown in Figure 5. The given steps were followed to
create the model equations utilizing the GMDH algorithm.

1. Prepare the dataset. Arrange the dataset part of learning (Part A) {xi, yi}, testing (Part
B) {xj, yj} and predicting (Part C) {xk, yk}, obtained by the micro-milling experiments,
where the sample data in Table 1 are dynamically divided into Part A and Part B. Part
C comes from the new sample data and not those used to establish the model. Use
Part A to generate the model to be selected, Part B to verify and filter the generated
model and Part C to verify the surface roughness model. x is a multi-dimensional
input variable that consists of the spindle speed and the feed per tooth. y is the output
variable, which is the roughness measurement obtained by the test.

2. Preprocess the dataset above, that is, normalize the dataset and remove the static
DC component. Generally, for the existing dataset, the following transformation is
performed before the training of the neural network:{

x∗i = xi−x
σx

y∗i = yi−y
σy

(3)

where xi and yi are the values before preprocessing, x and y are the average values of
xi and yi, σx and σy are standard deviations of xi and yi.

3. Select the reference function and external criterion. Establish the general relationship
between the dependent variable (output) and the independent variable (input) as a
reference function. Select the quadratic K-g polynomial (Equation (1)) as a reference
function and the Regularization criterion (Equation (4)) as the basis of screening:

∆B =
1

NB
‖yB − XB âA‖2 (4)
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where ∆B is the criterion value of the equation in Part B, NB is the number of ex-
periments in Part B, yB is the measured value obtained by the test, XB is the cutting
parameter corresponding to yB and âA represents the estimated coefficients in Part A.

4. Determine the transfer function. Using the reference function, obtain the initial model
function of network structures (Equation (5)), fit the equation of output variables for
xi and xj by RMSE in Part A, estimate the coefficients of a0 − a5, and then calculate
the criterion value of the equation in Part B.

y = a0
y = a0 + a1xi
y = a0 + a1xi + a2xj
y = a0 + a1xi + a2xj + a3xixj
y = a0 + a1xi + a2xj + a3xixj + a4x2

i
y = a0 + a1xi + a2xj + a3xixj + a4x2

i + a5x2
j

(5)
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When finding out the minimum deviation criterion, use the critical local function,
corresponding to the criterion, as the transfer function of the active neuron.

5. Screen for intramolecular neurons. For m × (m − 1)/2, active neurons generated by
m input neurons are in the input layer. Confirm and screen them according to the
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criterion value in Part B. Determine the number of selected neurons by ensuring the
criterion value is less than a certain threshold. In this study, the threshold is set as
root mean square error in Part A and Part B. The selected neurons will continue to
participate in the next generation of neurons, while those that are not selected will
be eliminated.

6. Obtain the optimal complexity model network structure. Use the neurons selected
in each layer, that is, those closest to the output layer as new input neurons. This
is similar to step 5 and step 6 and will create a new generation of neurons in pairs.
When the error in the new generation of neurons is no less than that of the previous
generation, the optimal network structure will be found. Select the neuron with the
smallest criterion value in the last layer and deduct its transfer function, step by
step, to obtain the explicit model equation for between the output variable and the
input variable.

7. Verify the validity of the model. For the evaluation of the accuracy of the established
model, use Part C to predict the surface roughness.

3. Results
3.1. Experimental Results

The combination of cutting parameters and the experimental results are presented in
Table 3. The surface roughness Ra ranged from 0.842 µm to 1.481 µm. The experimental
value of the surface roughness Ra was fitted with the input variable, using the cubic
interpolation method (based on MATLAB), and these results are shown in Figure 6.

Table 3. Experimental results of micro-milling LF21.

Group Spindle Speed
(rpm)

Feed per Tooth
(µm/z)

Cutting Depth in the
Axial Direction

(µm)

Extended Length
of Tool
(mm)

Surface
Roughness

(µm)

1 40,000 0.2 20 20 1.271
2 40,000 0.4 20 20 1.350
3 40,000 0.6 20 20 1.275
4 45,000 0.2 20 20 1.375
5 45,000 0.4 20 20 1.481
6 45,000 0.6 20 20 1.327
7 50,000 0.2 20 20 0.962
8 50,000 0.4 20 20 1.048
9 50,000 0.6 20 20 0.810

10 55,000 0.2 20 20 1.007
11 55,000 0.4 20 20 0.925
12 55,000 0.6 20 20 0.869
13 60,000 0.2 20 20 1.211
14 60,000 0.4 20 20 1.462
15 60,000 0.6 20 20 1.119
16 65,000 0.2 20 20 1.165
17 65,000 0.4 20 20 1.380
18 65,000 0.6 20 20 0.842

It was observed that when the spindle speed was constant at 50,000 rpm with 0.2 µm/z,
0.4 µm/z and 0.6 µm/z feed per tooth, the surface roughness was almost constant and
smaller. Initially, the cutting temperature in the shear zone may have increased significantly
along with the increasing spindle speed, which may have resulted in a decrease in the
yield strength, chip thickness, and tool-chip contact length of the workpiece material, with
a consequent decrease in surface roughness. As the spindle speed increased further, the
surface harshness expanded continuously, as can be seen from the increase in the feed
rate and the chip cross-section. When the feed per tooth was constant at 0.4 µm/z with
40,000 rpm, 45,000 rpm, 50,000 rpm, 55,000 rpm, 60,000 rpm and 65,000 rpm spindle speeds,
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the surface roughness was higher. Theoretically, roughness increases with the increase
in feed per tooth. However, in the case of LF21, the sensitivity of the surface roughness
to the cutting parameters may have been different at high feed rates. This is because of
the problem of chip evacuation, caused by the sticking tendency and thermal softening of
LF21. The increase in cutting temperatures with the increase in feeds per tooth may have
influenced the surface roughness.
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Based on Table 3, the range analyses were performed to obtain the average response
from the surface roughness of the micro-milled LF21 sidewall, as shown in Table 4.

Table 4. The average responses of the surface roughness of sidewall.

No Spindle Speed
(rpm)

Feed per Tooth
(µm/z)

1 1.2987 1.1652
2 1.3943 1.2743
3 0.9400 1.0403
4 0.9337
5 1.2640
6 1.1290

Range 0.4607 0.2340

The parameters impacting the surface roughness from high to low were spindle speed
and feed per tooth, based on the average response table, which was consistent with the
research results above [5]. Furthermore, the optimal combination of surface roughness was
a spindle speed of 50,000 rpm and a feed per tooth of 0.6 µm/z.

3.2. Additional Value of Process Data

Table 5 shows the predictive values and the measured values. It can be seen from
Table 5 that the maximum relative error was 28.78% and the average relative error was
12.41%, having used the GMDH model on surface roughness established in this study.
These results indicate that the training for the GMDH method allowed for reasonable
accuracy when predicting surface roughness.
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Table 5. Predicted and measured surface roughness.

No
Spindle
Speed

n/(rpm)

Feed per
Tooth

fz/(µm/z)

Cutting Depth in
the Axial
Direction

/(µm)

Extended
Length of
the Tool
L/(mm)

Measured
Value
Ra/µm

Predictive
Value
Ra/µm

Error

1 37.68 0.1 20 20 1.004 0.982 2.20%
2 42.39 0.3 20 20 1.552 1.263 18.64%
3 47.10 0.5 20 20 0.932 1.200 28.78%
4 51.81 0.1 20 20 0.958 0.982 2.49%
5 56.52 0.3 20 20 1.402 1.263 9.94%

Mean relative error 12.41%

4. Conclusions

This paper used a GMDH neural network to predict the surface roughness of sidewalls
when micro-milling LF21 waveguide slits. The present work included the estimation of
the optimal values for the process factors, such as spindle speed and feed per tooth,
while the surface roughness was taken as the output. Experiments were conducted to
verify the accuracy of the model; the maximum relative error was 21.22% and the average
relative error was 13.92%. The obtained results prove the ability of the GMDH method
for micro-milling modeling. In the final validation of the predictive models, through
another machining test, the GMDH model helped us to find that the external criterion and
threshold selection had a great influence on model accuracy. This paper’s contributions
are its influence on breaking conventional thinking by confirming that milling is not the
only option and that micro-milling can be considered during the machining of waveguide
slits. Within a specific range of cutting parameters, we argue that the spindle speed had a
more significant effect on the surface roughness of the sidewall in the slit than the feed per
tooth. We have confirmed that the GMDH can be used to predict the surface roughness of
the sidewall when micro-milling a waveguide slit. It is encouraged to further refine the
range of cutting parameters and to seek the optimal combination to meet the requirements
of the sidewall when micro-milling waveguide slits, to ensure processing efficiency.

The shortcomings of this paper are that the effects of the extended length of the tool
and the single cutting depth in the axial direction for the surface roughness of sidewall are
not considered.
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