A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection
Abstract
:1. Introduction
2. Kinematic Model of the YS100 Robot
3. Selecting Optimal Measurement Poses by a Genetic Algorithm
- Initial population;
- Fitness function;
- Selection;
- Crossover;
- Mutation.
- The pool of the configuration measurement, , was initialized.
- The population was generated, including an individual. Each individual had an configuration of measurements.
- The fitness value of each individual based on the observability index, , (Equation (5)) was then calculated.
- Every individual was evaluated and ranked based on their fitness values.
- When the terminating condition was reached, the process was stopped. The outputs were the set of the m configuration of measurements of the individual with the highest observability index, .
- The GA was used to produce the new population based on the observability index, .
- Steps 3–6 were repeated until the stopping criterion was satisfied.
4. Identification of the Kinematic Parameters and Compliance Compensation Based on the Selected Optimal Measurement Poses
5. Experiments and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, S.H.; Nam, E.; Ha, T.I.; Hwang, S.-H.; Lee, J.H.; Park, S.-H.; Min, B.-K. Robotic machining: A review of recent progress. Int. J. Precis. Eng. Manuf. 2019, 20, 1629–1642. [Google Scholar] [CrossRef]
- Shu, T.; Gharaaty, S.; Xie, W.; Joubair, A.; Bonev, I.A. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor. IEEE/ASME Trans. Mechatron. 2018, 23, 1159–1170. [Google Scholar] [CrossRef]
- Shi, X.J.; Zhang, F.M.; Qu, X.; Liu, B.; Wang, J. Position and attitude measurement and online errors compensation for KUKA industrial robots. Chin. J. Mech. Eng. 2017, 53, 1–7. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, W.; Li, D.; He, X.; Liao, W. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system. Int. J. Adv. Manuf. Technol. 2017, 88, 2745–2755. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Cao, H.Q.; Nguyen, T.T.; Tran, T.N.-C.; Tran, H.N.; Jeon, J.W. Improving Robot Precision Positioning Using a Neural Network Based on Levenberg Marquardt—APSO Algorithm. IEEE Access 2021, 9, 75415–75425. [Google Scholar] [CrossRef]
- Denavit, J.; Hartenberg, R.S.; Mooring, B.W.; Tang, G.R.; Whitney, D.E.; Lozinski, C.A. A kinematic notation for low pair mechanisms based on matrices. J. Appl. Mech. 1955, 77, 215–221. [Google Scholar] [CrossRef]
- Klug, C.; Schmalstieg, D.; Gloor, T.; Arth, C. A complete workflow for automatic forward kinematics model extraction of robotic total stations using the Denavit-Hartenberg convention. J. Intell. Robot. Syst. 2019, 95, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhan, K.; Yang, X.; Zhang, D. Accuracy Improvement Method of a 3D Laser Scanner Based on the DH Model. Shock Vib. 2021, 2021, 9965904. [Google Scholar]
- Wang, Z.; Chen, Z.; Wang, Y.; Mao, C.; Hang, Q. A robot calibration method based on joint angle division and an artificial neural network. Math. Probl. Eng. 2019, 2019, 9293484. [Google Scholar] [CrossRef]
- Zu, H.; Chen, X.; Chen, Z.; Wang, Z.; Zhang, X. Positioning accuracy improvement method of industrial robot based on laser tracking measurement. Meas. Sens. 2021, 18, 100235. [Google Scholar] [CrossRef]
- Zhuang, H.; Wang, L.K.; Roth, Z.S. Error-model-based robot calibration using a modified CPC model. Robot. Comput. Integr. Manuf. 1993, 10, 287–299. [Google Scholar] [CrossRef]
- Okamura, K.; Park, F.C. Kinematic calibration using the product of exponentials formula. Robotica 1996, 14, 415–421. [Google Scholar] [CrossRef]
- Chen, G.; Kong, L.; Li, Q.; Wang, H.; Lin, Z. Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula. Mech. Mach. Theory 2018, 121, 844–856. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Sheng, C.; Zhang, Z.; Cui, W.; Li, Y. General frame for arbitrary 3R subproblems based on the POE model. Rob. Auton. Syst. 2018, 105, 138–145. [Google Scholar] [CrossRef]
- Gupta, K.C. Kinematic analysis of manipulators using the zero reference position description. Int. J. Rob. Res. 1986, 5, 5–13. [Google Scholar] [CrossRef]
- Cheng, L.-P.; Kazerounian, K. Study and enumeration of singular configurations for the kinematic model of human arm. In Proceedings of the IEEE 26th Annual Northeast Bioengineering Conference (Cat. No. 00CH37114), Storrs, CT, USA, 9 April 2000; pp. 3–4. [Google Scholar]
- Bai, Y.; Wang, D. Using Shallow Neural Network Fitting Technique to Improve Calibration Accuracy of Modeless Robots. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Hersonissos, Greece, 24–26 May 2019; pp. 623–631. [Google Scholar]
- Bai, Y.; Wang, D. On The Comparison of Fuzzy Interpolations and Neural Network Fitting Functions in Modeless Robot Calibrations. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 23–26 June 2019; pp. 1–6. [Google Scholar]
- Zhou, J.; Nguyen, H.-N.; Kang, H.-J. Simultaneous identification of joint compliance and kinematic parameters of industrial robots. Int. J. Precis. Eng. Manuf. 2014, 15, 2257–2264. [Google Scholar] [CrossRef]
- Cao, C.-T.; Do, V.-P.; Lee, B.-R. A novel indirect calibration approach for robot positioning error compensation based on neural network and hand-eye vision. Appl. Sci. 2019, 9, 1940. [Google Scholar] [CrossRef] [Green Version]
- Le, P.-N.; Kang, H.-J. A Robotic Calibration Method Using a Model-Based Identification Technique and an Invasive Weed Optimization Neural Network Compensator. Appl. Sci. 2020, 10, 7320. [Google Scholar] [CrossRef]
- Meggiolaro, M.A.; Dubowsky, S.; Mavroidis, C. Geometric and elastic error calibration of a high accuracy patient positioning system. Mech. Mach. Theory 2005, 40, 415–427. [Google Scholar] [CrossRef]
- Daney, D.; Papegay, Y.; Madeline, B. Choosing measurement poses for robot calibration with the local convergence method and Tabu search. Int. J. Rob. Res. 2005, 24, 501–518. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, M.; Tang, X.; Song, B.; Guo, Y. Observability index optimization of robot calibration based on multiple identification spaces. Auton. Robots 2020, 44, 1029–1046. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, S.; Chen, G.; Wang, L.; Sun, H. A novel optimal design of measurement configurations in robot calibration. Math. Probl. Eng. 2018, 2018, 4689710. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Song, H.; Yan, Z.; Sun, L.; Du, Z. A universal index and an improved PSO algorithm for optimal pose selection in kinematic calibration of a novel surgical robot. Robot. Comput. Integr. Manuf. 2018, 50, 90–101. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [Google Scholar] [CrossRef]
- Khalil, W.; Gautier, M.; Enguehard, C. Identifiable parameters and optimum configurations for robots calibration. Robotica 1991, 9, 63–70. [Google Scholar] [CrossRef]
- Menq, C.-H.; Borm, J.-H.; Lai, J.Z. Identification and observability measure of a basis set of error parameters in robot calibration. J. Mech. Transm. Autom. Des. 1989, 111, 513–518. [Google Scholar] [CrossRef]
- Driels, M.R.; Pathre, U.S. Significance of observation strategy on the design of robot calibration experiments. J. Robot. Syst. 1990, 7, 197–223. [Google Scholar] [CrossRef]
- Nahvi, A.; Hollerbach, J.M.; Hayward, V. Calibration of a parallel robot using multiple kinematic closed loops. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 407–412. [Google Scholar]
- Borm, J.-H.; Menq, C.-H. Experimental study of observability of parameter errors in robot calibration. In Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 587–588. [Google Scholar]
- Sun, Y.; Hollerbach, J.M. Observability index selection for robot calibration. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 831–836. [Google Scholar]
- Zhou, J.; Nguyen, H.-N.; Kang, H.-J. Selecting optimal measurement poses for kinematic calibration of industrial robots. Adv. Mech. Eng. 2014, 6, 291389. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Ghodoussi, M. Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators. Int. Conf. Robot. Autom. 1989, 5, 294–302. [Google Scholar] [CrossRef]
- Le, P.-N.; Kang, H.-J. A New Hybrid Calibration Method for Robot Manipulators by Combining Model--Based Identification Technique and a Radial Basis Function–Based Error Compensation. In Proceedings of the International Conference on Intelligent Computing, Nanchang, China, 3–6 August 2019; pp. 20–31. [Google Scholar]
- Le, P.-N.; Kang, H.-J. A New Robotic Manipulator Calibration Method of Identification Kinematic and Compliance Errors. In Proceedings of the International Conference on Intelligent Computing, Bari, Italy, 2–5 October 2020; pp. 16–27. [Google Scholar]
i | αi−1 (deg) | ai−1 (m) | βi−1 (deg) | bi−1 (m) | di (deg) | θi (deg) |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0.48 | θ1 |
2 | 90 | 0.32 | - | - | 0 | θ2 |
3 | 0 | 0.87 | 0 | - | 0 | θ3 |
4 | 90 | 0.2 | - | - | 1.03 | θ4 |
5 | −90 | 0 | - | - | 0 | θ5 |
6 | 90 | 0 | - | - | 0.185 | θ6 |
T | - | 0.2 | - | 0.05 | 0.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, P.-N.; Kang, H.-J. A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection. Appl. Sci. 2022, 12, 5422. https://doi.org/10.3390/app12115422
Le P-N, Kang H-J. A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection. Applied Sciences. 2022; 12(11):5422. https://doi.org/10.3390/app12115422
Chicago/Turabian StyleLe, Phu-Nguyen, and Hee-Jun Kang. 2022. "A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection" Applied Sciences 12, no. 11: 5422. https://doi.org/10.3390/app12115422
APA StyleLe, P. -N., & Kang, H. -J. (2022). A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection. Applied Sciences, 12(11), 5422. https://doi.org/10.3390/app12115422