The Novel Role of Solvents in Non-Surgical Endodontic Retreatment
Abstract
:1. Introduction
2. Evolution of Endodontic Solvent Compounds
3. Solvent Specificity
4. Moment of Use
5. Solvent Agitation
6. Biocompatibility
7. Effects on Dentin Structure
8. Antimicrobial/Antibiofilm Activity
9. Future Directions
10. Concluding Remarks and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siqueira, J.F., Jr.; Rôças, I.N. Clinical implications and microbiology of bacterial persistence after treatment procedures. J. Endod. 2008, 34, 1291–1301.e3. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.F., Jr.; Bate, A.L.; Pitt Ford, T.R. Histologic investigation of root canal-treated teeth with apical periodontitis: A retrospective study from twenty-four patients. J. Endod. 2009, 35, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.F.; Chong, B.S. Removal of root filling materials. Endod. Top. 2008, 19, 33–57. [Google Scholar] [CrossRef]
- Bago, I.; Plotino, G.; Katić, M.; Ročan, M.; Batinić, M.; Anić, I. Evaluation of filling material remnants after basic preparation, apical enlargement and final irrigation in retreatment of severely curved root canals in extracted teeth. Int. Endod. J. 2020, 53, 962–973. [Google Scholar] [CrossRef]
- Martins, M.P.; Duarte, M.A.H.; Cavenago, B.C.; Kato, A.S.; da Silveira Bueno, C.E. Effectiveness of the ProTaper Next and Reciproc Systems in Removing Root Canal Filling Material with Sonic or Ultrasonic Irrigation: A Micro-computed Tomographic Study. J. Endod. 2017, 43, 467–471. [Google Scholar] [CrossRef]
- Silva, E.; Belladonna, F.G.; Zuolo, A.S.; Rodrigues, E.; Ehrhardt, I.C.; Souza, E.M.; De-Deus, G. Effectiveness of XP-endo Finisher and XP-endo Finisher R in removing root filling remnants: A micro-CT study. Int. Endod. J. 2018, 51, 86–91. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Mercade, M. Photodynamic therapy in endodontics. Int. Endod. J. 2019, 52, 760–774. [Google Scholar] [CrossRef] [Green Version]
- Keles, A.; Kamalak, A.; Keskin, C.; Akcay, M.; Uzun, I. The efficacy of laser, ultrasound and self-adjustable file in removing smear layer debris from oval root canals following retreatment: A scanning electron microscopy study. Aust. Endod. J. 2016, 42, 104–111. [Google Scholar] [CrossRef]
- Makati, D.; Shah, N.C.; Brave, D.; Singh Rathore, V.P.; Bhadra, D.; Dedania, M.S. Evaluation of remaining dentin thickness and fracture resistance of conventional and conservative access and biomechanical preparation in molars using cone-beam computed tomography: An in vitro study. J. Conserv. Dent. 2018, 21, 324–327. [Google Scholar] [CrossRef]
- Jakovljevic, A.; Nikolic, N.; Jacimovic, J.; Pavlovic, O.; Milicic, B.; Beljic-Ivanovic, K.; Miletic, M.; Andric, M.; Milasin, J. Prevalence of Apical Periodontitis and Conventional Nonsurgical Root Canal Treatment in General Adult Population: An Updated Systematic Review and Meta-analysis of Cross-sectional Studies Published between 2012 and 2020. J. Endod. 2020, 46, 1371–1386.e8. [Google Scholar] [CrossRef]
- Arias, A.; Peters, O.A. Present status and future directions: Canal shaping. Int. Endod. J. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Soares, S.; Sousa, J.; Barros, J.; Braga, A.C.; Lopes, M.A.; Pina-Vaz, I. New Insight into the Dissolution of Epoxy Resin-based Sealers. J. Endod. 2017, 43, 1505–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.; Grenho, L.; Gomes, P.; Braga, A.C.; Fernandes, M.H.; Lopes, M.A.; Pina-Vaz, I. Efficacy and Cytotoxicity of Binary Mixtures as Root Canal Filling Solvents. Materials 2020, 13, 3237. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Rodrigues, M.E.; Fernandes, L.; Henriques, M.; Pina-Vaz, I. Candida albicans Antimicrobial and Antibiofilm Activity of Novel Endodontic Solvents. Appl. Sci. 2021, 11, 7748. [Google Scholar] [CrossRef]
- Rossi-Fedele, G.; Ahmed, H.M. Assessment of Root Canal Filling Removal Effectiveness Using Micro-computed Tomography: A Systematic Review. J. Endod. 2017, 43, 520–526. [Google Scholar] [CrossRef]
- Horvath, S.D.; Altenburger, M.J.; Naumann, M.; Wolkewitz, M.; Schirrmeister, J.F. Cleanliness of dentinal tubules following gutta-percha removal with and without solvents: A scanning electron microscopic study. Int. Endod. J. 2009, 42, 1032–1038. [Google Scholar] [CrossRef]
- Takahashi, C.M.; Cunha, R.S.; de Martin, A.S.; Fontana, C.E.; Silveira, C.F.; da Silveira Bueno, C.E. In vitro evaluation of the effectiveness of ProTaper universal rotary retreatment system for gutta-percha removal with or without a solvent. J. Endod. 2009, 35, 1580–1583. [Google Scholar] [CrossRef]
- Tamse, A.; Unger, U.; Metzger, Z.; Rosenberg, M. Gutta-percha solvents—A comparative study. J. Endod. 1986, 12, 337–339. [Google Scholar] [CrossRef]
- Whitworth, J.M.; Boursin, E.M. Dissolution of root canal sealer cements in volatile solvents. Int. Endod. J. 2000, 33, 19–24. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Matsumoto, M.A.; Marques, M.E.; Salvadori, D.M. Biocompatibility of gutta-percha solvents using in vitro mammalian test-system. Oral Surg. Oral Med. Oral Pathol. 2007, 103, e106–e109. [Google Scholar] [CrossRef]
- Barbosa, S.V.; Burkard, D.H.; Spångberg, L.S. Cytotoxic effects of gutta-percha solvents. J. Endod. 1994, 20, 6–8. [Google Scholar] [CrossRef]
- IARC. Monographs on the Evaluation of Carcinogenic Risk to Humans. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono73-10.pdf (accessed on 15 March 2022).
- Chang, Y.-C.; Chou, M.-Y. Cytotoxicity of Halothane on Human Gingival Fibroblast Cultures In Vitro. J. Endod. 2001, 27, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Martos, J.; Bassotto, A.P.; Gonzalez-Rodriguez, M.P.; Ferrer-Luque, C.M. Dissolving efficacy of eucalyptus and orange oil, xylol and chloroform solvents on different root canal sealers. Int. Endod. J. 2011, 44, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, B.S.; Johann, J.E.; Lund, R.G.; Martos, J.; Del Pino, F.A. Dissolving efficacy of some organic solvents on gutta-percha. Braz. Oral Res. 2007, 21, 303–307. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Marques, M.E.; Salvador, D.M. In vitro cytotoxic and non-genotoxic effects of gutta-percha solvents on mouse lymphoma cells by single cell gel (comet) assay. Braz. Dent. J. 2006, 17, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Zaccaro Scelza, M.F.; Lima Oliveira, L.R.; Carvalho, F.B.; Corte-Real Faria, S. In vitro evaluation of macrophage viability after incubation in orange oil, eucalyptol, and chloroform. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, e24–e27. [Google Scholar] [CrossRef]
- Ferreira, I.; Braga, A.; Lopes, M.; Pina-Vaz, I. Improvement of the efficacy of endodontic solvents by ultrasonic agitation. Saudi Dent. J. 2021, 33, 39–43. [Google Scholar] [CrossRef]
- Hwang, J.I.; Chuang, A.H.; Sidow, S.J.; McNally, K.; Goodin, J.L.; McPherson, J.C. The effectiveness of endodontic solvents to remove endodontic sealers. Mil. Med. 2015, 180, 92–95. [Google Scholar] [CrossRef] [Green Version]
- EPA. Methyl Ethyl Ketone (2-Butanone). Available online: https://www.epa.gov/sites/production/files/2016-09/documents/methyl-ethyl-ketone.pdf (accessed on 7 March 2022).
- Garrib, M.; Camilleri, J. Retreatment efficacy of hydraulic calcium silicate sealers used in single cone obturation. J. Dent. 2020, 98, 103370. [Google Scholar] [CrossRef]
- Septodont. Endosolv. Available online: https://www.septodont.co.uk/sites/uk/files/2020-06/ENDOSOLV-GB.pdf (accessed on 7 March 2022).
- Faria-Junior, N.B.; Loiola, L.E.; Guerreiro-Tanomaru, J.M.; Berbert, F.L.; Tanomaru-Filho, M. Effectiveness of three solvents and two associations of solvents on gutta-percha and resilon. Braz. Dent. J. 2011, 22, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Cavenago, B.C.; Ordinola-Zapata, R.; Duarte, M.A.; del Carpio-Perochena, A.E.; Villas-Boas, M.H.; Marciano, M.A.; Bramante, C.M.; Moraes, I.G. Efficacy of xylene and passive ultrasonic irrigation on remaining root filling material during retreatment of anatomically complex teeth. Int. Endod. J. 2014, 47, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Fruchi Lde, C.; Ordinola-Zapata, R.; Cavenago, B.C.; Hungaro Duarte, M.A.; Bueno, C.E.; De Martin, A.S. Efficacy of reciprocating instruments for removing filling material in curved canals obturated with a single-cone technique: A micro-computed tomographic analysis. J. Endod. 2014, 40, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.S.; Rosa, R.A.; Santini, M.F.; Cavenago, B.C.; Duarte, M.A.; Bier, C.A.; So, M.V. Efficacy of ultrasonic activation of NaOCl and orange oil in removing filling material from mesial canals of mandibular molars with and without isthmus. J. Appl. Oral Sci. 2016, 24, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.; Babo, P.S.; Braga, A.C.; Lopes, M.A.; Gomes, M.E.; Pina-Vaz, I. Supplementary solvent irrigation efficacy on filling remnants removal comparing XP-endo Finisher R vs IrriSafe. Sci. Rep. 2021, 11, 12659. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Babo, P.S.; Braga, A.C.; Gomes, M.E.; Pina-Vaz, I. Effect of Sonic Agitation of a Binary Mixture of Solvents on Filling Remnants Removal as an Alternative to Apical Enlargement-A Micro-CT Study. J. Clin. Med. 2020, 9, 2465. [Google Scholar] [CrossRef] [PubMed]
- Macedo, R.G.; Robinson, J.P.; Verhaagen, B.; Walmsley, A.D.; Versluis, M.; Cooper, P.R.; van der Sluis, L.W. A novel methodology providing insights into removal of biofilm-mimicking hydrogel from lateral morphological features of the root canal during irrigation procedures. Int. Endod. J. 2014, 47, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Loghin, S.; Gonçalves, L.S.; Rôças, I.N.; Siqueira, J.F., Jr. Histobacteriologic Conditions of the Apical Root Canal System and Periapical Tissues in Teeth Associated with Sinus Tracts. J. Endod. 2018, 44, 405–413. [Google Scholar] [CrossRef]
- Müller, G.G.; Schönhofen, Â.P.; Móra, P.M.; Grecca, F.S.; Só, M.V.; Bodanezi, A. Efficacy of an organic solvent and ultrasound for filling material removal. Braz. Dent. J. 2013, 24, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, L.; Huerta, I.R.; Michelon, C.; Bello, M.C.; Pillar, R.; Souza Bier, C.A. The Efficacy of Passive Ultrasonic Activation of Organic Solvents on Dissolving Two Root Canal Sealers. Iran. Endod. J. 2017, 12, 25–28. [Google Scholar] [CrossRef]
- Alzraikat, H.; Taha, N.A.; Hassouneh, L. Dissolution of a mineral trioxide aggregate sealer in endodontic solvents compared to conventional sealers. Braz. Oral Res. 2016, 30. [Google Scholar] [CrossRef]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Dotto, L.; Sarkis-Onofre, R.; Bacchi, A.; Pereira, G.K.R. The use of solvents for gutta-percha dissolution/removal during endodontic retreatments: A scoping review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 890–901. [Google Scholar] [CrossRef] [PubMed]
- Vajrabhaya, L.O.; Suwannawong, S.K.; Kamolroongwarakul, R.; Pewklieng, L. Cytotoxicity evaluation of gutta-percha solvents: Chloroform and GP-Solvent (limonene). Oral Surg. Oral Med. Oral Pathol. 2004, 98, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Chutich, M.J.; Kaminski, E.J.; Miller, D.A.; Lautenschlager, E.P. Risk assessment of the toxicity of solvents of gutta-percha used in endodontic retreatment. J. Endod. 1998, 24, 213–216. [Google Scholar] [CrossRef]
- Canakci, B.C.; Er, O.; Dincer, A. Do the Sealer Solvents Used Affect Apically Extruded Debris in Retreatment? J. Endod. 2015, 41, 1507–1509. [Google Scholar] [CrossRef]
- Keskin, C.; Sariyilmaz, E.; Sariyilmaz, O. Effect of solvents on apically extruded debris and irrigant during root canal retreatment using reciprocating instruments. Int. Endod. J. 2017, 50, 1084–1088. [Google Scholar] [CrossRef]
- Genc Sen, O.; Erdemir, A.; Canakci, B.C. Effect of solvent use on postoperative pain in root canal retreatment: A randomized, controlled clinical trial. Clin. Oral Investig. 2020, 24, 257–263. [Google Scholar] [CrossRef]
- Rotstein, I.; Cohenca, N.; Teperovich, E.; Moshonov, J.; Mor, C.; Roman, I.; Gedalia, I. Effect of chloroform, xylene, and halothane on enamel and dentin microhardness of human teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 366–368. [Google Scholar] [CrossRef]
- Erdemir, A.; Eldeniz, A.U.; Belli, S. Effect of the gutta-percha solvents on the microhardness and the roughness of human root dentine. J. Oral Rehabil. 2004, 31, 1145–1148. [Google Scholar] [CrossRef]
- Khedmat, S.; Hashemi, A.; Dibaji, F.; Kharrazifard, M.J. Effect of chloroform, eucalyptol and orange oil solvents on the microhardness of human root dentin. J. Dent. 2015, 12, 25–30. [Google Scholar]
- Topcuoglu, H.S.; Demirbuga, S.; Tuncay, O.; Arslan, H.; Kesim, B.; Yasa, B. The bond strength of endodontic sealers to root dentine exposed to different gutta-percha solvents. Int. Endod. J. 2014, 47, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Braga, A.C.; Pina-Vaz, I. Effect of Gutta-percha Solvents on the Bond Strength of Sealers to Intraradicular Dentin: A Systematic Review. Iran. Endod. J. 2021, 16, 17–25. [Google Scholar] [CrossRef]
- Nalci, G.; Alaçam, T.; Altukaynak, B. Microhardness evaluation of root dentin after using resin sealer solvents. J. Dent. Res. Dent. Clin. Dent. Prospects 2021, 15, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Braga, A.C.; Lopes, M.A.; Pina-Vaz, I. Adjunctive procedure with solvent mixtures in non-surgical endodontic retreatment: Does it affect root dentin hardness? Odontology 2021, 109, 812–818. [Google Scholar] [CrossRef]
- Arslan, H.; Yeter, K.Y.; Karatas, E.; Yilmaz, C.B.; Ayranci, L.B.; Ozsu, D. Effect of agitation of EDTA with 808-nm diode laser on dentin microhardness. Lasers Med. Sci. 2015, 30, 599–604. [Google Scholar] [CrossRef]
- Akbulut, M.B.; Terlemez, A. Does the Photon-Induced Photoacoustic Streaming Activation of Irrigation Solutions Alter the Dentin Microhardness? Photomed. Laser Surg. 2019, 37, 38–44. [Google Scholar] [CrossRef]
- Ricucci, D.; Siqueira, J.F., Jr. Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod. 2010, 36, 1277–1288. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Rôças, I.N. Present status and future directions: Microbiology of endodontic infections. Int. Endod. J. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Karlovic, Z.; Anic, I.; Miletic, I.; Prpic-Mehicic, G.; Pezelj-Ribaric, S.; Marπan, T. Antibacterial Activity of Halothane, Eucalyptol and Orange Oil. Acta Stomat. Croat. 2000, 34, 307–309. [Google Scholar]
- Edgar, S.W.; Marshall, J.G.; Baumgartner, J.C. The antimicrobial effect of chloroform on Enterococcus faecalis after gutta-percha removal. J. Endod. 2006, 32, 1185–1187. [Google Scholar] [CrossRef]
- Subbiya, A.; Padmavathy, K.; Mahalakshmi, K. Evaluation of the antibacterial activity of three gutta-percha solvents against Enterococcus faecalis. Int. J. Artif. Organs 2013, 36, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Martos, J.; Ferrer Luque, C.M.; González-Rodríguez, M.P.; Arias-Moliz, M.T.; Baca, P. Antimicrobial activity of essential oils and chloroform alone and combinated with cetrimide against Enterococcus faecalis biofilm. Eur. J. Microbiol. Immunol. 2013, 3, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zancan, R.F.; Calefi, P.H.S.; Borges, M.M.B.; Lopes, M.R.M.; de Andrade, F.B.; Vivan, R.R.; Duarte, M.A.H. Antimicrobial activity of intracanal medications against both Enterococcus faecalis and Candida albicans biofilm. Microsc. Res. Tech. 2019, 82, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.R.; Almeida, B.M.; Neves, M.A.; Moreno, J.O.; Rocas, I.N.; Siqueira, J.F., Jr. Disinfecting oval-shaped root canals: Effectiveness of different supplementary approaches. J. Endod. 2011, 37, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Alshanta, O.A.; Shaban, S.; Nile, C.J.; McLean, W.; Ramage, G. Candida albicans Biofilm Heterogeneity and Tolerance of Clinical Isolates: Implications for Secondary Endodontic Infections. Antibiotics 2019, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.F., Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int. Endod. J. 2001, 34, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.F., Jr.; Rôças, I.N. A critical analysis of research methods and experimental models to study the root canal microbiome. Int. Endod. J. 2022, 55 (Suppl. S1), 46–71. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, I.; Pina-Vaz, I. The Novel Role of Solvents in Non-Surgical Endodontic Retreatment. Appl. Sci. 2022, 12, 5492. https://doi.org/10.3390/app12115492
Ferreira I, Pina-Vaz I. The Novel Role of Solvents in Non-Surgical Endodontic Retreatment. Applied Sciences. 2022; 12(11):5492. https://doi.org/10.3390/app12115492
Chicago/Turabian StyleFerreira, Inês, and Irene Pina-Vaz. 2022. "The Novel Role of Solvents in Non-Surgical Endodontic Retreatment" Applied Sciences 12, no. 11: 5492. https://doi.org/10.3390/app12115492
APA StyleFerreira, I., & Pina-Vaz, I. (2022). The Novel Role of Solvents in Non-Surgical Endodontic Retreatment. Applied Sciences, 12(11), 5492. https://doi.org/10.3390/app12115492