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Abstract: Lower limb rehabilitation robot (LLRR) users, to successfully conduct isotonic exercises,
require real-time feedback on the torque they exert on the robot to meet the goal of the treatment. Still,
direct torque measuring is expensive, and indirect encoder-based estimation strategies, such as inverse
dynamics (ID) and Nonlinear Disturbance Observers (NDO), are sensitive to Body Segment Inertial
Parameters (BSIPs) uncertainties. We envision a way to minimize such parametric uncertainties. This
paper proposes two human-robot interaction torque estimation methods: the Identified ID-based
method (IID) and the Identified NDO-based method (INDO). Evaluating in simulation the proposal
to apply, in each rehabilitation session, a sequential two-phase method: (1) An initial calibration phase
will use an online parameter estimation to reduce sensitivity to BSIPs uncertainties. (2) The torque
estimation phase uses the estimated parameters to obtain a better result. We conducted simulations
under signal-to-noise ratio (SNR) = 40 dB and 20% BSIPs uncertainties. In addition, we compared the
effectiveness with two of the best methods reported in the literature via simulation. Both proposed
methods obtained the best Coefficient of Correlation, Mean Absolute Error, and Root Mean Squared
Error compared to the benchmarks. Moreover, the IID and INDO fulfilled more than 72.2% and
88.9% of the requirements, respectively. In contrast, both methods reported in the literature only
accomplish 27.8% and 33.3% of the requirements when using simulations under noise and BSIPs
uncertainties. Therefore, this paper extends two methods reported in the literature and copes with
BSIPs uncertainties without using additional sensors.

Keywords: exoskeletons; system identification; force feedback; computer simulation; mathematical
model; nonlinear systems

1. Introduction

According to the World Health Organization (WHO), in the last World Report on
Disability, there are one thousand million people worldwide with some disability, and about
200 million have function disabilities. These people tend to have lower health and academic
outcomes, lower economic participation, and higher poverty rates than people without
disabilities [1]. Moreover, the Sustainable Development Goals (SDGs) reported that people
living with disabilities are socially excluded. Therefore, they have fewer opportunities to
improve their lives and reduce their poverty [2,3].

In the European Union, almost 45 million people aged between 15 and 64 had a
disability during 2014, which corresponds to 14.1% of that age group [4]. Between 2001 and
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2013, about 70 million people lived with disabilities in Latin America and the Caribbean,
which is equivalent to a 12.5% of the regional population. The Pan American Health
Organization (PAHO) reported that 6.3% of the people in Colombia had a state of disability,
taking second place in Latin American countries after Brazil [5]. Additionally, 29% of those
persons with disabilities have limitations to move or walk [6].

Multiple causes can trigger these types of limitations. In Colombia, one of the most
disturbing causes is the high incidence of victims of antipersonnel mines (APM), impro-
vised explosive devices (IED), and unexploded ordnance (UXO). There have been more
than 11,700 APM and UXO victims since 1990. According to the Colombian National
Development Plan 2018-2022, this situation is one of the most unfortunate consequences
of the armed conflict in Colombia. These artifacts may have been activated for 20 years,
and today, they are still hidden in several areas of the country, which makes it one of the
main challenges to be faced in the post-conflict. Within the total of the victims, 20% died
and the remaining 80% were injured, requiring physical rehabilitation during pre-prosthetic
and prosthetic phases [7,8].

There are many traditional methods for rehabilitation purposes. However, the study
of new technologies applied in automation and bioengineering has brought research and
experimentation in robotic platforms for lower limb rehabilitation [9]. A lower limb re-
habilitation robot (LLRR) may be used to conduct isotonic exercises for victims of APM,
IED, and UXO. According to Hyunchoi et al. [10], an isotonic exercise is a type of re-
sisted mode. A resistive method is an exercise where the patient is asked to overcome a
given force during the movements imposed by the LLRR. Ideally, during isotonic exercises,
the force of the subject is constant. In contrast, the muscle’s length changes, i.e., the joint
angle changes, and the velocity changes. Such ideal isotonic exercise may be satisfied
by quantifying the interaction torque that the subject performs. This variable is also de-
fined as human-robot interaction torque. Force/torque sensors [11] could measure this
torque, but it significantly adds to device cost. In the case of an LLRR for a developing
country’s market, the costs of the sensors would be prohibitive. Moreover, these sensors
add complexity and weight to the device unless miniaturized custom-made force/torque
sensors are used [12]. Other approaches require using additional pressure sensors [13],
Foot Contact Forces (FCFs) [14], or ground reaction forces (GRFs) [15]. Moreover, several
approaches use Surface Electromyography (sEMG) sensors and signal processing tech-
niques to estimate the human-robot interaction torque. However, using sEMG signals adds
additional procedures and costs. In addition, they are also subject to variabilities inherent
to the SEMG signal acquisition [16-18]. In addition, other studies report only the tests for a
one-Degree-of-Freedom (DOF) LLRR, such as the estimation of ankle dynamic joint torque
by a neuromusculoskeletal solver-informed Neural Network (NN) model [19]. These meth-
ods do not take into account the coupled dynamics of multiple joints. Saadatzi et al. [12]
reported an Inverse Dynamics (ID) and Nonlinear Disturbance Observer (NDO) method
to estimate the human-robot interaction torque without using additional sensors. As a
result, their methods can produce accurate estimations. However, they rely on a precise
model. Therefore, they reported the need to extend their methods for the cases when there
are uncertainties. Aljuboury et al. [20] evaluated the behavior of three methods to control
the angular position of an exoskeleton for knee assistance. They reported the controllers’
effectiveness and showed that a model reference adaptive control (MRAC) strategy based
on an NDO obtained better performance than the others. Therefore, NDO-based methods
are promising for human-robot interaction torque estimation when there are uncertainties.

A multi-DOF LLRR is a nonlinear system with coupled dynamics [21], which is subject
to parametric uncertainties and external perturbations, e.g., there are uncertainties in
the Body Segment Inertial Parameters (BSIPs) such as segment masses, Center of Mass
(CoM), and inertias. Therefore, it is difficult to obtain an exact model of the system [22,23].
Moreover, according to Fahmy et al. [24], the dynamics of the human-robot system change
from subject to subject. Additionally, it changes for one subject during the progress of their
rehabilitation, i.e., between sessions. In cadaver studies, it is simple to locate the CoM by
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determining the center of balance of the segment [25]. However, the cross-sectional area and
length profile are required to compute the CoM in vivo accurately, obtained using complex
imaging systems. Therefore, several models are used to estimate the BSIPs indirectly.
The models reported by Plagenhoef et al. [26] and De Leva et al. [27] contain each body
segment weight and length as the percentage of total body weight and height, respectively.
Moreover, the CoM location is given as a percentage of the segment length. Both methods
may be helpful to obtain a BSIPs rough estimate. However, each body segment has a
unique bone, muscle, fat, and other tissues combination [25]. Therefore, the density of a
segment is not uniform, and models such as the reported by Plagenhoef et al. [26], and De
Leva et al. [27] do not accurately model the LLRR with the user. Thus, developing a
human-robot interaction torque estimation method is challenging to perform the isotonic
rehabilitation exercises with the LLRR. Furthermore, subjects with partial lower limb
amputations are not included in the aforementioned models. Therefore, it is even more
challenging to compute their BSIPs. Moreover, adding a prosthesis to their limbs would
also modify the BSIPs values in an unknown manner, adding uncertainties to the model.

The estimation problem concerns the use of the dynamic model of an LLRR to es-
timate the human-robot interaction torque %;,; despite BSIPs uncertainties. To the best
of the authors” knowledge, none of the previous research has examined how a human—
robot interaction torque estimation method for an LLRR, usable for lower limb isotonic
exercises, may be used as biofeedback to favor isotonicity, despite the BSIPs uncertain-
ties. Therefore, this paper extends the ID-based and NDO-based methods reported by
Saadatzi et al. [12]. We propose the Identified ID-based method (IID) and the Identified
NDO-based method (INDO).

The following statements emphasize this study’s significant contributions:

*  We defined a list of 18 requirements of a human-robot torque estimation method for
an LLRR, usable for isotonic. We defined the requirements with a literature review
and a survey-based methodology.

e  This paper proposes two human-robot interaction torque estimation methods, the IID
and INDO. Both methods must cope with two challenging issues: (a) BSIPs uncer-
tainties exist in the subject model, and (b) no force or additional sensors are to be
used. Both methods do not require a physiotherapist to make an exact measurement
of the BSIPs of the patient’s limbs, but uses approximate values computed in terms of
total height and body weight. Finally, the methods would take the data from the first
iterations to reduce the sensitivity to BSIPs uncertainties.

*  Our proposal avoids the bidirectional coupling between identifier, estimator, and con-
troller to guarantee convergence in each stage separately. For this purpose, the robot
performs a persistent excitation trajectory to identify the parameters. The optimized
trajectory may be used for any given patient regardless of their BSIPs. Then, we turn
off the parameter identifier in a second phase, and the robot executes the rehabilitation
therapy movements, estimating the torque exerted by the subject.

The organization of the paper is as follows. Section 2 describes the requirements for
the torque estimation method. Sections 3 and 4 describe the model of the system and the
torque interaction method reported by Saadatzi et al. [12], respectively. Section 5 presents
two methods to estimate the human-robot interaction torque despite uncertainties in the
BSIPs. Section 6 shows the effectiveness of the IID and INDO by performing simulations
on a 3-DOF LLRR called Nukawa, see Appendix A for a detailed explanation of the LLRR.
Finally, some conclusions and future work are presented in Section 7.

2. Requirements Definition

The requirements for the human-robot interaction torque estimation method were de-
fined by applying a survey to a group of physiotherapists and conducting a literature review.
The idea was to ask people in the health area about the requirements and to define the
movements for the LLRR, i.e., the isotonic exercises to be used within the simulation study.
Appendix B describes the study in more detail. In addition, it specifies the questions and
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answers used in the questionnaire. A total of 26 physiotherapists answered the anonymous
questionnaire, and we asked about the Range of Motion (ROM), speed, and force to be
used within the simulations and maximum tolerable error for the human-robot torque
estimation methods. The survey results show that the physiotherapists defined the squat
and press exercises to evaluate the performance of the human-robot interaction torque
estimation methods. Moreover, they suggested four additional requirements for these
methods.

The methods used during the information search strategy are described below. Addi-
tionally, the methodology used to select studies based on inclusion and exclusion criteria is
presented. Finally, the steps that were used to extract information are reported.

A literature review was carried out to define the requirements of a human-robot
torque estimation method for a robotic system usable for isotonic exercises. The review
was conducted using the primary databases available, such as Scopus, ScienceDirect,
IEEE Xplore, and Google Scholar, among others. This review was conducted, covering
publications mainly between 2006 and 2022. The search was initially oriented to find the
main metrics and characteristics, which are currently employed to evaluate the behavior
of these methods. A list of keywords or phrases was defined to be used within the search.
The search strategy included combining several Boolean operators to filter the results. Only
literature in English and Spanish was reviewed. The keywords were: (a) Human-robot,
(b) Interaction, (c) Torque, (d) Estimation, (e) Requirements, (f) Force, (g) Measurements
(h) Sensors, (i) BSIPs, (j) Uncertainty, (k) Rehabilitation.

Inclusion and exclusion criteria were also defined for the study selection. Inclusion
criteria were (a) studies published between January 2006 and March 2022, and (b) full
access to the research text. Exclusion criteria included: (a) publications that do not fit
the subject of study of this review, (b) publications in languages other than Spanish and
English, (c) letters to the editor, and (d) opinion articles. We extracted the essential data of
each of the publications in a spreadsheet.

Finally, let us enumerate the 18 chosen requirements of a human-robot interaction
torque estimation method for an LLRR, which is usable for isotonic exercises. The literature
review inspired the first 13, and the physiotherapists” answers inspired the last five:

Non-dependence of additional sensors [11,13].

Low phase lag in the estimation [15].

Low sensor noise sensitivity [15].

Low sensitivity to BSIPs uncertainties [12].

The average percentage error must be lower than 20 to 22% when using accurate

model parameters [12].

Small error band [10].

Approximately 0.5 s of settling time or lower [10].

Overshoot of approximately 25% or lower within the estimation [10].

Coefficient of Correlation (R?) greater or approximately 0.935 for the hip joint and

0.924 for the knee joint [11].

10. Root Mean Squared Percent Error (RMSPE) lower than 8.74% for the hip joint and
10.26% for the knee joint [11].

11. A maximum of 5% error when moving just one joint, i.e., the distal one [28].

12.  Finite-time convergence [29].

13. It should not require calibration each time that the user wears the LLRR, i.e., it requires
a maximum of one calibration per user. [13].

14. It works in all ROM, and the limiting angles of the joints must be configurable.

15. It works with slow exercises, executing between 1-25 repetitions per set.

16. It works within the following ranges of forces: 0 kg to 15 kg for the hip, Okg to 15kg
for the knee, and 0 kg to 10 kg for the ankle.

17. It works having a maximum percentage of error in the range from 1% to 3%.

18. It works within a squat exercise.

AR
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3. Dynamic Model

The process for the direct kinematics was based on the methodology reported by
Siciliano et al. [30]. The LLRR’s computer model was derived through an analytical method,
taking the kinematic and dynamic equations into account. We used the Euler-Lagrange
method as a systematic energy-based approximation that uses Kinetic Energy (KE) and
Potential Energy (PE) [31,32].

Figure 1 presents the LLRR configuration, where /; are the segment’s lengths with
i ={1,2,3}, b; are the position of the CoM for each limb, m; are the masses of each link, g;
the angles of each segment with respect to the previous segment, and g the gravity acting
on the vertical plane. Finally, B, is the backrest angle, for simulation purposes. Table 1
reports the Denavit Harbenbert (D-H) parameters for the LLRR using the standard (classic
or distal) notation [33].

y

oL TR
e Z3" \/\‘m_g

SO |
i \L'ZJ—Z_Q—_'

( B, Y( q

X
Figure 1. LLRR configuration.
Table 1. D-H Parameters for our 3-DOF LLRR.

i 1 %] a; d,' q,

1 0 51 0 q1

2 0 0y 0 q2

3 0 U3 0 q3

We can write the dynamics for the LLRR as
To =M(q)q + C(q,q) + G(q) — Tint — Tfi €]

where q € R3*L qe€ R3*1 and g e R3x1 represent the joint positions, velocities, and ac-
celerations, respectively. M(q) € R3*3 is the inertia matrix, C(q, q) € R3*! is the coriolis
and centripetal vector, G(q) € R3*! gravity vector, F(q) € R3*! the friction term [32],
T, € R3*1 is the torque of the actuators, and T;,; € R3*1 are the disturbance torques,
e.g., the torque exerted by the subject. Appendix C presents detailed information of
the dynamics.

4. Original ID-Based and NDO-Based Methods

The objective of this section is to present the original ID-based and NDO-based
methods and their limitations. Let us introduce the formulation of the ID-based method
reported by Saadatzi et al. [12]:

t; =M(q)d+C(q,q) +G(q) — 7
Tri = Foq )
Tint = Tg — Ta — Tppi



Appl. Sci. 2022,12, 5529

6 of 34

It is important to note that this ID-based method uses double derivatives to compute
{§, which significantly increases the sensitivity of the model to sensor noise. Moreover, this
method uses the estimates M(q), C(q, q), and G(q) of the actual M(q), C(q, q), and G(q)
dynamic matrices, respectively. Taking into account that

M(q) = M(q) + AM(q), ®3)
C(q, C[) = C(q/ CI) + AC(q, q)’ (4)

and
G(q) = G(q) +AG(q) ®)

where AM(q), AC(q, q), and AG(q) are deviations of the dynamic matrices due to BSIPs
uncertainties, these estimates may turn into sensibility of the method to BSIPs uncertainties.
These dynamic matrices M(q), C(q,q), and G(q) may be computed using an initial
estimate of the parameters of the LLRR. However, they may have uncertainties when an
amputee subject is using the LLRR, e.g., in the masses, CoM, or Inertias.

Now, let us introduce the formulation of the NDO-based method reported by Saa-
datzi et al. [12,34,35]. This NDO has the following formulation:

2 = —L(q,9)z+L(q,9){C(q,9) + G(q) — 7. —p(q.9)}
a=z+p(q4q) (6)
p(q,9) = L(q,9)M(q)q

o P N

where L(q, q) is the observer gain matrix, %, is an estimation of the disturbances in a
lumped term, M(q), €(q,q), and G(q) are initial estimates of the dynamic matrices, z
and p(q, q) are an auxiliary variable and vector to avoid the differentiation of position
measurements more than once, since it may add problems as mentioned before.

In order to design the observer, the challenge is to determine L(q,q) and p(q, q).
According to Mohammadi et al. [34], the NDO gain matrix L(q, q) can be computed taking
into account that it depends only on q as

L(q) =X"'M"(q) @)

where X is an n x n invertible and constant matrix to be determined. Additionally, remem-
ber that the robot’s inertia matrix is symmetric and positive definite and, thus, invertible.
Then, by substituting (7) into (6), we obtain p in terms of ¢, as shown below in the distur-
bance observer auxiliary vector:
p(q) =X"'q. ®)
Saadatzi et al. [12] evaluated five methods for human-robot interaction torque estima-
tion. These methods ranged from relying only on commanded actuation torques, i.e., motor
currents, to techniques that use the whole dynamics of the system, such as the ID-based
method and the NDO-based method. The ID-based method obtained 20 to 22% average
error, while the NDO-based method obtained 12 to 18% average error when using accurate
model parameters. Both methods obtained better results than the other three methods
evaluated, which got more than 25% average error. Moreover, they analyzed the sensibility
of the ID and NDO methods to inaccuracies in model parameter estimations. This analysis
shows considerable sensitivity of both approaches to model parameter variations. More-
over, they evidenced the behavior of both estimation methods with sensor noise. The noise
in the estimations with the NDO method was smaller than the one obtained with the ID
method. Therefore, one of the main differences between both methods is noise reduction.
In addition, the NDO method is a filtered version since the nature of the observer can
work without double derivates to compute the acceleration. To sum up, Saadatzi et al. [12]
demonstrated how these systems work and state that their method could adequately es-
timate human-robot interaction. However, they also report that both methods require
an accurate system model. Therefore, we wanted to take advantage of the fact that there
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was a benchmark to compare their study with our extended methods. Consequently, we
based our approaches on their methods and used them for lower limbs. Moreover, we used
more degrees of freedom and reduced the sensitivity to BSIPs uncertainties. In addition,
they reported only the effects of constant offsets added to the elements of model matrices
dynamic matrices, not the BSIPs by themselves, which is a more realistic approach. Finally,
they only tested the sensitivity of the methods to variations in the parameter mass of the
second limb, not all BSIPs with uncertainties at once. For those above, we selected these
two approaches, i.e., the ID and NDO method reported by et al. [12].

Saadatzi et al. [12] evaluated the behavior of their ID-based method (2) and NDO-
based method (6) in the presence of sensor noise and uncertainties. They reported that
both methods are suitable to estimate the human-robot interaction torque. However, both
approaches failed to estimate the human-robot interaction torque %;,; when there are
uncertainties. Therefore, this paper extends the ID-based and NDO-based methods to cope
with BSIPs uncertainties.

5. Proposed Methods

In this section, we propose two methods, the IID and INDO, that extend the work
reported by Saadatzi et al. [12]. The IID and INDO estimate the human-robot interaction
torque despite practically expected uncertainties in the BSIPs of an amputee model victim of
APM, IED, and UXO who would use an LLRR. These methods are comprised of two phases.
Moreover, these phases are executed one after the other, not simultaneously. (1) Phase
one is the calibration phase, which allows an online parameter estimation to reduce BSIPs
uncertainties. (2) Phase two is the estimation phase, where the human-robot interaction
torque uses the estimated parameters under the assumption that the BSIPs uncertainties
have been reduced. The objective of the first phase is to extend their method and reduce
BSIPs uncertainties to improve the performance of the two human-robot torque estimation
methods. This calibration phase is based on the online parameter estimation algorithm
reported by Riani et al. [36]. The combinations will be labeled as the IID and the INDO. In
the remaining of this section, we report the design process for the IID and INDO.

This section is divided into three subsections. Section 5.1 presents the model (1)
transformed as a linear in the parameters system, that will be used for the estimation of the
parameters. Section 5.2 presents the calibration phase, i.e., the online parameter estimation
method and a discussion of it. Section 5.3 presents the IID and INDO, with the addition of
the calibration phase, i.e., the online parameter estimation method.

In the IID and INDO, the controller works independently. Therefore, our proposal
does not have two-way dynamic couplings between the identifier, estimator, and controller.
That is, there is no feedback on the estimate to the controller. Therefore, it is not necessary
to consider the principle of separation of the observed-controller system.

5.1. Transforming the Model

The objective of this section is to present the model (1) transformed as a linear in the
parameters system that will be used for the identification of the parameters. Consider
the LLRR reported in Section 3. Each link of the LLRR is characterized by ten dynamic
parameters expressed as

Txi Icixx  lcixy Icix:
mi, rc;=\ ryi |, lci=| lciy lciyy lciyz |- )
Vi ICi,xz ICi,yz ICi,zz

However, the LLRR’s dynamics depend in a nonlinear way on some of these parame-
ters, e.g., through the combination I ; ., + m;r2,. Many standard parameters do not play
a role in the dynamic model of the given LLRR. Therefore, one can isolate p < 10 inde-
pendent groups of parameters. These grouped parameters are called dynamic coefficients.
These parameters are the only ones that affect robot dynamics. The base inertial parameters
or identifiable parameters are the minimum inertial parameter set used to completely
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characterize and obtain a dynamic model of a robot. These parameters can be obtained
from the standard dynamic parameters by eliminating all the parameters that have no
effect in the dynamic model and grouping some of them in linear combinations as reported
by Khalil et al. [37]. The introduction of base inertial parameters yx; € RP*! is a convenient
regrouping of the dynamic parameters, i.e., a linear parametrization of LLRR’s dynamics.
Therefore, we should obtain a vector x that contains the base inertial parameters. Thus,
the dynamic model (1) can be written such that the parameters enter in a linear fashion as

T= W(q/ q, CI)X (10)

where W(q, q,§) € RN*P is the regressor matrix. It is important to note that it will be
denoted as W in the rest of this report to simplify the notation.

Next, we will present the adjustment for the mathematical model of the LLRR (1)
to the form (10) indicated by the formulation reported by Riani et al. [36]. Therefore, we
assumed a set of parameters yx; as

X1 = Ic1z + Icozz + Ieazz + Li2 mp + Ly ms + Ly? my + by® my + by® ma + bs” m3

X2 = Ly goma + Ly gom3 + by gomy

X3 = m3 L22 + my bzz + mj3 b32 +1Icpp7 + Ic3 5,

X4 = L1 Lams+ Libymy

X5 = La gom3 + by gomy (11)
Xo = m3bs” + Ics.

X7 = Lab3yms

Xs = L1b3m3

Xo = bz goms

See Table 2 for the definition of all these parameters. Subsequently, we obtained the
transformed matrices M(x, q), C(x, q,q), and G(x, q) defined as

mi(x,q) mi2(x,.q9) miz(x q)

M(x,q) = |ma(x,q) ma(x,q) mxa(x,q) (12)
ma1(x,q) ma(x,q) m3s(x,q)
Ci(x,9,9)
Cx.q9.9) = |C2(x, 9.9 (13)
CS(X/q/q)
and
$1(x,q)
G(x.q) = |89 (14)
$3(x,q)

by using the same process implemented in Section 3. See Appendix D for a detailed
description of the matrices M(x, q), C(x,q,q), and G(x, q)-

Subsequently, we combined these parameters to get the vector x of the base inertial
parameters as given in Gautier et al. [38]. Therefore, we obtained a vector of the base
inertial parameters as

T
x= x2 X3 xa X5 Xe X7 X8 X9 (15)
with x; withi =1,2,...,9 defined in (11). This linear parametrization of robot dynamics is
not unique in the chosen set of dynamic coefficients x and the associated W. The W is a

3 x 9 matrix, where n = 3 is the number of DOF of the LLRR and, in this case, p = 9 is the
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number of the base inertial parameters. Therefore, the dynamic model (1) can be written

as (10) where W(q, q, §) is the regressor matrix, and its notation may be simplified as

w11 W12 W13 W14 W15 Wie W17 Wi W19
W(q,q,4)= | 0 0  wo Wy Wrs Wy Wy Wrg W9 (16)
0 0 0 0 0 W36 W37 W38 W39

Table 2. LLRR parameters for simulation including a subject of 1 = 1.75m height and
m = 75kg weight.

Parameter Description Value Units
U1 Thigh length 24.05% x h = 0.4209 m
los Shank length 24.85% x h = 0.4349 m
U3 Foot length 13.15% x h = 0.2301 m
Uy, Robot’s link 1 length 0.4209 m
Loy Robot’s link 2 length 0.4349 m
U3, Robot’s link 3 length 0.2301 m
lq Robot + Subject’s link 1 length 0.4209 m
2 Robot + Subject’s link 2 length 0.4349 m
l3 Robot + Subject’s link 3 length 0.2301 m
Mg Thigh weight 14.47 % x m = 10.8525 kg
Mo Shank weight 4.57 % x m = 3.4275 kg
M3 Foot weight 1.33% x m = 0.9975 kg
M1y Robot’s link 1 weight 19 kg
My, Robot’s link 2 weight 9 kg
May Robot’s link 3 weight 11 kg
my Robot + Subject’s weight of link 1 29.8525 kg
my Robot + Subject’s weight of link 2 12.4275 kg
ms Robot + Subject’s weight of link 3 11.9975 kg
by Robot + Subject’s CoM of link 1 38.53% x {1 = 0.1622 m
by Robot + Subject’s CoM of link 2 44.37 % x £y = 0.193 m
bs Robot + Subject’s CoM of link 3 42.14% x {3 = 0.1382 m

I,zz Robot + Subject’s Inertia of link 1 %ml (2b1)% = 1.047 kg m?
12,2 Robot + Subject’s Inertia of link 2 11my(2b)? = 0.6171 kgm?
1322 Robot + Subject’s Inertia of link 3 3m3(2b3)? = 0.3053 kg m?
(4] Viscous Friction in hip joint 100 %
(3 Viscous Friction in knee joint 100 N -+
v3 Viscous Friction in ankle joint 60 %
20 Gravity 9.8 =z
Kp Proportional gain 150 %
T; Integral time 0 s
T, Derivative time 0.1 S
saty Motor 1 saturation 768.458 Nm
saty Motor 2 saturation 371.377 Nm
saty Motor 3 saturation 102.689 Nm

See Appendix D for a detailed description of the elements of (16). In this equation,
we can note that the regressor matrix has a block upper triangular structure as reported by
Siciliano et al. [30]. This triangular block structure may enable us to compute the parameter
estimation using a sequential procedure. In this case, the parameter estimation can be
executed by an iterative method, taking measurements from the distal limb to the proximal.
However, such a technique may have the drawback of accumulating any error due to
ill-conditioning of the matrices involved step-by-step. It may then be worthwhile to use
a global approach that imposes motions on all LLRR joints at once [30]. The calibration
phase presented in Section 5.2 will show a multi-DOF approach for an online estimation to
reduce BSIPS uncertainties.
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5.2. Calibration Phase Design

The objective of this section is to present the calibration phase. This calibration phase
reduces BSIPs uncertainties based on an online parameter estimation method. Taking
into account the model presented in (10), based in the regressor matrix W(q, q, §) and the
vector x, we used the observer reported by Riani et al. [36] to perform an online parameter

estimation. This method is expressed as

f=wg+sr-1
t = KWT(I' - ) + KWT (T — W}) 17)

X
K = 2KWTWK + aK

where

e T = [7dt € R**!is the integral of .

e i cRPland [ € R3*! are, respectively, the estimates of the vectors x and T.
* K & RP*?isabounded symmetric positive definite matrix.

* « > 0isa positive gain.

The following assumptions are required for the estimator:

e The vector T is measurable.
e W satisfies the persistent excitation condition [39].
*  xisa constant vector.

Let us take into account the new dynamic model for our LLRR expressed as (15) and
(16). Moreover, the observer reported by Riani et al. [36] is defined as (17). According
to Riani et al. [36], if we define the vector estimation error as I = I — I and the vector
parameters error as ¥ = x — X, then we can compute their dynamics as

¥ = —KW

Please refer to Riani et al. [36] for detailed stability analysis. In their document,
the Lyapunov-like function decreases exponentially to zero, and the errors I and x tend
exponentially to zero since W satisfies the persistent excitation condition. To ensure the
stability of the online parameter estimation, we can define the LMI [36] as:

-

r
I - KWT'wg

N|=

(18)

~

v, —1I
H= { p —aly ] >0 (19)
—31, K

where ¢ € R is a positive gain, K € RP*? is a symmetric positive definite matrix, and
I, € RP*P is the identity matrix. Therefore, the design for the calibration phase reduces to
finding the condition on K, ¢, and « such that H > 0.

5.3. Estimation Phase Design

Phase two is the estimation phase, where the human-robot interaction torque uses the
estimated parameters under the assumption that the BSIPs uncertainties have been reduced.
The main objective of this section is to present the IID and INDO with the addition of the
online parameter estimation method.

On the one hand, we extend the ID-based method reported by Saadatzi et al. by
reducing the need for an accurate model since BSIPs uncertainties are reduced using online
parameter estimation. Figure 2 presents a block diagram for the IID. This figure depicts
that the IID is composed of two phases. Moreover, these phases are executed one after
the other, not simultaneously. Figure 2a presents the calibration phase that uses an online
parameter estimation to reduce BSIPs uncertainties. Thus, estimating x. During this phase,
the 7,y = 0, i.e., the subject should be relaxed without exerting any torque on the robot.
The first phase is executed during t < t;, where t means the simulation time and #; is the
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time where the identification ends, i.e., after convergence. Figure 2b presents the estimation
phase that uses a transformed version of the ID along with the estimated parameters % to
estimate the human-robot interaction torque. The estimation phase is executed while t > ¢;.
During this phase, the T;,; # 0, i.e., the subject should is exerting torque on the robot and
the goal of the phase is to estimate %;,;. Here, we can observe that the IID is defined as

¢  Calibration phase t < t;

f=wg+3(r-1)
x=KWI(T 1)+ KW' (7t - W}) (20)
K = —2KWTWK + aK

¢ Torque estimation phase t > ¢;

;=M% qd+Cxaq) +GHa -
Tri = Foq @

Tint = Ta — Ta — Tpri

On the other hand, we extend the NDO-based method reported by Saadatzi et al. by
reducing the need for an accurate model since BSIPs uncertainties are reduced using online
parameter estimation. Figure 3 presents a block diagram for the INDO. This figure depicts
that the INDO is composed of two phases. Moreover, these phases are executed one after
the other, not simultaneously. Figure 3a presents the calibration phase that uses an online
parameter estimation to reduce BSIPs uncertainties. Thus, estimating x. During this phase
the ;s = 0, i.e., the subject should be relaxed without exerting any torque on the robot.
The first phase is executed during ¢t < t;, where t means the simulation time and #; is the
time where the identification ends, i.e., after convergence. Figure 3b presents the estimation
phase that uses a transformed version of the NDO along with the estimated parameters }
to estimate the human-robot interaction torque. The estimation phase is executed while
t > t;. During this phase, the T;;; # 0, i.e., the subject should is exerting torque on the
robot and the goal of the phase is to estimate T;;;.

Here, we can observe that the INDO is defined as

¢  Calibration phase t < t;

f—wWs + %(r - 1)
x =KW 1)+ KW (7 — Wg) (22)
K = —2KWTWK + aK

¢ Torque estimation phase t > ¢;

A

z=-L(q,9)z+L(q9){C(% q.49) + Gk q9) — 7. — p(q.9)
ty=z+p(qq)

(23)

We can observe that the INDO uses the NDO-based reported by Saadatzi et al. [12]
in terms of . Therefore, the output of the calibration phase is used as an input for the
estimation phase. This method uses the online parameter estimation to reduce BSIPs
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uncertainties. Subsequently, within the estimation phase, the NDO-based human-robot
interaction torque uses the estimated parameters under the assumption that the BSIPs
uncertainties have been reduced.

Let us now cite the following Theorem reported by Mohammadi et al. [34]. This
Theorem is helpful since it presents sufficient conditions for asymptotic and exponential
disturbance tracking when the robot shows fast-varying disturbances. Moreover, it evi-
dences asymptotic and exponential convergence to estimate the NDO-based human-robot
interaction torque estimation method.

Calibration

>

F=wWg+ -1
£ =KWT( - 1)+ KW' (r - Wg)

K = 2KWTWK + oK

(@
Torque estimation
i i =Fod
iTa_ ﬂ—f M(%, )i + C(%.4,4) + G(%. )
Phase 2 (t>t)
(b)

Figure 2. Block diagrams for the IID. (a) Calibration phase and (b) torque estimation phase.

Theorem 1 (Mohammadi et al. [34]). Consider the robotic manipulator subject to disturbances
described by (1). The disturbance observer is given in (6) with the disturbance observer gain
matrix L(q) defined in (7) and the disturbance observer auxiliary vector p(q) defined in (8).
The disturbance tracking error T is globally uniformly ultimately bounded if:

1. The matrix X is invertible,
2. There exists a positive definite and symmetric matrix I such that

X+ X" —X"M(q)X > T. (24)
3. The rate of change of the lumped disturbance is bounded, i.e., 3x > 0 such that ||t ;(t)| < &

forallt > 0.

Under the above conditions and for all At;(0) € R", the tracking error converges with an
exponential rate, equal to (1 — q) Amin (T) /202||X]|? to the ball with radius 2x05 | X||? / QA min (T)
where 0 < q < 1.
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Calibration

F=wyg+ %(r -1
=KWI( - 1)+ KW' (r - W%)
K = 2KW/WK +aK

Torque estimation |

(7o Fal

Tri = Fuq i
- ; T
D4l — 1(q, @)+ Lo {O(% 0.8 + Glx.a) 7~ pla, q)}ﬂéJt

4 =12+ p(q,q)
%p(q, 4) = L(q, QM(¢, )4 T

Phase 2 (t=t)

Figure 3. Block diagrams for the INDO. (a) Calibration phase and (b) torque estimation phase.

Where Apin (-) denotes the minimum eigenvalue of a matrix, the LLRR velocity vector
lies in a bounded set, i.e., Vq € Dg = {q € R" : [|q]| < [/q||max}, and [M(q)| < v2(q)
where v = supquq{(Tz(q)}.

Please refer to Mohammadi et al. [34] for a detailed proof of Theorem 1. In their
paper, they show that the tracking error converges with an exponential rate, equal to
(1 — q)Amin(T) /202||X]|? to the ball with radius 2«7 |X||?/ qAmin(T) where 0 < q < 1 for
all At4(0) € R™.

According to Theorem 1, the NDO design reduces to finding a constant invertible
matrix X that satisfies the inequality (24). The following theorem, reported by Moham-
madi et al. [34], states how (24) can be formulated as a linear matrix inequality (LMI)
problem. It is important to mention that this theorem is useful to design the NDO for the
estimation phase.

Theorem 2 (Mohammadi et al. [34]). Define the matrix Y = X! and assume that an upper
bound of |[M(q) || is {. The inequality (24) holds if the following LMI is satisfied:

Y+YT -1 YT
Y | 2o @5)

Please refer to Mohammadi et al. [34] for a detailed proof of Theorem 2.

6. Simulation Results

This section will compare the IID and the INDO to define which one is the best
approach for the LLRR. Therefore, we will evaluate if these methods can estimate the
torque of the human lower limb joints even with BSIPs uncertainties. Thus, extending the
methods reported by Saadatzi et al. [12].
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6.1. Simulation Parameters

Table 2 presents the nominal LLRR parameters for simulation, considering a subject
of height h = 1.75m and weight m = 75kg . To define the model parameters reported
in this table, we used the CAD design to obtain its masses m;, and lengths ¢;,. In order
to define the lengths /;; and weights m1;; of the subject’s segments, models reported by
Plagenhoef [26] and De Leva [27] were used. These models contain anatomical data for
analyzing human motion, and we used the average value between male and female subjects.
Segment weight m; was expressed as a percentage of total body weight m as reported by
De Leva et al. [27]. Segment length ¢;; were expressed as a percentage of total height &
as reported by Plagenhoef et al. [26]. These parameters were used as the nominal values.
However, we mentioned before that they are not the actual values when an amputee subject
with protheses is analyzed. The backrest B, of the LLRR is not an actuated joint. However,
it is imperative to report the B, of the robotic system for each test since it determines
in which position the robotic system is. Figure 1 presents the conventions for the B,.
A counterclockwise movement is the convention for a positive arc of movement, and B; is
measured taking into account the horizontal plane. The ROM of the three joints of the lower
limbs during the simulations should be within the values presented by Berryman et al. [40].

In this work, the viscous friction vec{v;} was assumed in a heuristic way, taking
into account that the simulation showed a three-segment pendulum behavior when the
control algorithm is deactivated. It was assumed in this way so that the model behaved as a
pendulum that oscillated one time before stabilizing when it was dropped from the position
q = (0°, 0°, 90°), as expected in the LLRR. The method consisted of recording a video of
the actual LLRR in the laboratory and using Kinovea, free and open-source software used
for the motion analysis of sports techniques and gestures, used mainly by sports coaches
and athletes to explore, study or comment on performance. Additionally, a heuristic
method was used to tune the gains of the PID controller, i.e., the outer loop feedback. These
gains were configured to reduce the error and the oscillations. The sampling period was
set to TS = 0.001 s.

Regarding the moment of inertia, we define that it would be calculated taking into
account a bar centered on the CoM, and with length 2b;, where b; is the distance from the
joint i to the CoM of said segment i. According to Raymond et al. (2004) [41], the moment
of inertia for a thin baris [ = %MLZ. In this case, the thickness of the bar is not taken
into account. In summary, for us, the inertia of each segment would be I; ,, = %mi (2b;)2.
Finally, the position of the CoM b; was configured as reported by De Leva et al. [27].

6.2. Control Algorithm

The control algorithm is necessary for the simulation. We require the robot to move
in a certain way so that it allows us to excite the system and its dynamics to estimate the
parameters or the human-robot torque. Therefore, we have used the Computed Torque
Control (CTC) algorithm reported in previous works by Yepes et al. [42,43].

6.3. Calibration Phase Results

Let us take into account that the model for the LLRR has nine standard dynamic pa-
rameters, i.e., size of x. Moreover, let us suppose an « = 1, which defines the exponentially
decreasing convergence ratio for the calibration phase. This value was selected taking into
account that the convergence was obtained in less than 25s. It was estimated that an initial
phase of 30 s was appropriately short for a patient to accept being idle without executing
any interaction torque. Therefore, the simulations sought to calibrate the convergence to
take less than 30s, achieving good results with 25s. Moreover, a more significant « would
reduce convergence time. However, this would turn into sensitivity within the calibration
phase since a more considerable observer gain produces more fluctuations of the value.
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In addition, let us define the identity matrix as Iy, and (19) would turn into

Iy —3I
H= [ _7%919 %12*? } >0 (26)

Subsequently, we used the MATLAB® Robot Control Toolbox " to solve this LMI-
based analysis and, thus, design the calibration phase estimator. The solution with « =1
for the LMI (26) was v = 15.691 and K = 0.0212Iy, i.e., satisfying the LMI with H > 0.

The trajectory used within the calibration phase must be selected with caution to im-
prove the convergence rate of this phase and reduce noise sensitivity. The abovementioned
trajectory should be a persistent exciting trajectory exciting trajectory and can be computed
using some optimization criteria as reported by Khalil et al. [37]. Therefore, to ensure that
W satisfies the persistent excitation condition, the robot’s trajectory was optimized for the
calibration phase. This selection of the persistent exciting trajectory was conducted by
calculating the movements of the robot whose points give a well-conditioned observation
matrix [37]. The condition number «, (W) of a matrix W allows evaluating its well or ill-
conditioning. A problem with a low condition number may be defined as well-conditioned,
while a problem with a high condition number is said to be ill-conditioned [44]. The (W)
is defined using the 2-norm, as

Ko (W) = Jmax > q (27)

Omin

where Omax and opin are defined as the maximum and minimum singular values of W.
Therefore, the nonlinear optimization problem consisted of determining a trajectory that
provides a k(W) that is close to one [37]. For this purpose, we used a Genetic Algorithm
(GA) algorithm with the MATLAB® Robot Control Toolbox™ to optimize a trajectory
whose points gave a well-conditioned observation matrix. The code minimizes the x, (W)
by generating multiple trajectories to ensure the persistently exciting condition, i.e., the
k2 (W) is approximately one. The code uses GA for this purpose and creates trajectories
using a combination of two sinusoid signals per joint for the q;. The frequencies were
restricted to values lower than 0.2 Hz to take into account physical restrictions for the LLRR.
Moreover, the maximum number of generations was configured as 10. The initial position
was set to qo = (0, —90,90)° with no speed. Moreover, the amplitude for each sinusoid
was set to 30°, i.e., these signals indicate the LLRR movement in degrees concerning the
origin. The obtained persistent exciting trajectories are defined as

g14 = 30sin(0.0430t) + 30sin(0.2316t)
g2 = 60sin(0.0938¢) + 30 sin(0.0934¢) . (28)
gog = 30sin(0.0594¢) 4 30sin(0.1375¢)

These optimized trajectories generate a well-conditioned observation matrix, since
x2(W) is optimized from values with a 10*> magnitude to k(W) = 30.05, which is closer
to 1. Therefore, our problem has a low condition number and is well-conditioned. Thus,
the persistent excitation is satisfied.

Figure 4 depicts the parameter estimation convergence. Here, the method estimates %,
and the convergence takes around 20s. We can see that the method has slow dynamics,
as expected with an @ = 1. Moreover, as desired, there is no chattering after converging.
The nominal dynamic parameters yx,,,,, of our LLRR along with the new subject, i.e., with
the simulation parameters reported in Table 2, are

= [10.0418 148.1905 3.8831 3.2052 74.6331 0.5343 0.7208 0.6976 16.2432]T. (29)

Xnom

However, the initial conditions %, using Table 2 and 20 % uncertainties in the BSIPs are

Xo = [12.83 189.216 5.0249 4.0885 952003 0.7621 1.0379 1.0045 23.3902]T. (30)
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After the calibration phase, the estimated parameters are

xX= [10.0395 148.2095 3.8878 3.177 74.6555 0.5428 0.7223 0.7091 16.2991 (31)

] T
and we can observe that (31) is very similar to (29), despite using 20% uncertainties in
the BSIPs within the simulations, as suggested by Grun et al. [15]. The online parameter
estimator reduces the percentage of uncertainty in the base inertial parameters. All nine
parameters of x,,,,, are estimated in the simulated 25s window, and these values of § are
to be used within the second phase of the IID and INDO. See Section 6 for the results.

10 0 4
12 0 1959 _20 l§< _2
-5 -30 -4
-10 -40 -6
0 10 20 0 10 20 0 10 20
5 2
0
s 0 = 2
5 -10 5
-10 -20 -4
0 10 20 0 10 20 0 10 20
2 1
~ ® 0 s -5
9% 53 1
0 -1
_2 -2 -10
0 10 20 0 10 20 0 10 20

t(s) t(s) t(s)

Figure 4. LLRR vector parameters error ¥ during the estimation phase.

6.4. Estimation Phase Results

Based on the parameters from Table 2 for the simulation, we can see that
IM(q)l| < & =30 (32)
Finally, with the identity matrix I3 € R3%3 and (25) would turn into

T T
Y+ YY 3013 1}{—1 > 0. (33)

Subsequently, we used the MATLAB® Robot Control Toolbox " to solve this LMI-
based analysis, obtaining a design for the NDO. The solution with ¢ = 30 for (33) was
Y = X = 0.00281 and T = 0.9542 x 10~31. Hence, satisfying the LMI. Therefore, we
successfully designed the NDO for the human-robot interaction torque estimation phase
despite BSIPs uncertainties for our LLRR.

For the estimation phase, we used two exercises. The first simulated exercise was the
squat, based on the requirements defined by the physiotherapists, see Section 2. The second
exercise was a leg press. This exercise presents similar movements to a squat exercise, but
in a supine position, i.e., with the subject facing up and their lower limbs elevated. These
two exercises were simulated, and a physiotherapist validated the simulation trajectories.

Figure 5 presents a simulation of the squat exercise sequence, using an standing initial
position with q = (—90,0,90)° and B, = 90°. Subsequently, the subject bends the knees to
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descend the body toward the floor with the heels on the floor, and the upper body remains
aligned in the vertical plane [45]. It is important to note that our LLRR cannot let the subject
descend their body toward the floor with their heels on the floor. Therefore, we simulated
an “inverted” squat exercise, i.e., the subject does not lower their body towards the ground,
but their feet rise towards their chest. Then, finally, the subject extends their knees to return
to the standing position.

[ — — —

Figure 5. Simulated squat sequence.

Figure 6 presents the q, for the hip, knee, and ankle. These movements are equivalent
to the squat exercise. Moreover, we ensured that q; was not more significant than the one a
human joint can execute. In addition, we can observe T4, Tint, Tfri, and T, during the
estimation phase. It is important to note the 7;,; had constant value since we simulated
an isotonic exercise. During this simulation, the subject was relaxed during the first 5s.
Subsequently, we simulated a constant torque of T;,,; = (9.8,9.8,0) N'm, which is equivalent
to the requirements presented in Section 2 suggested by the physiotherapists.

The simulation evaluated the response to sensor noise, i.e., the simulation used
white Gaussian noise (WGN) with a signal-to-noise ratio SNR = 40dB and 20% BSIPs
uncertainties. We selected a WGN with SNR = 40 dB since it is the one used in the paper
reported by Riani et al. [36].

Figure 7 reports the results for the simulation during the squat exercise. This simula-
tion presents the outcome of the four estimation methods with SNR = 40 dB and 20 % BSIPs
uncertainties. Figure 7a compares the results for the IID and the Saadatzi et al. ID method.
In this figure, we can observe that the IID works when there are BSIPs uncertainties. As
expected, sensor noise affects both methods due to the computation of double derivatives to
calculate velocity and acceleration. Therefore, our IID extends the technique reported in the
literature by Saadatzi et al. [12]. Figure 7b contrasts the simulations for the INDO and the
Saadatzi et al. NDO method. In this figure, we can denote that the INDO notably reduces
the sensitivity to BSIPs uncertainties. Therefore, our INDO extends the technique reported
in the literature by Saadatzi et al. [12]. Both NDO-based methods have significantly lower
errors than the ID-based method. Moreover, they have a lower sensitivity to sensor noise
due to the non-dependence of double derivatives. Finally, the IID and INDO work for a
simulated LLRR despite the BSIPs uncertainties.
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Figure 6. LLRR dynamics during a squat exercise.

Table 3 reports the performance indices for the four human-robot interaction torque
estimation methods during a squat exercise. In this table, we can denote that the INDO
excels over the other three approaches. We can see that the INDO obtains the lowest Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) for the hip and knee
joints. Moreover, it has the lowest Root Mean Squared Error (RMS) and Root Mean Squared
Percentage Error (RMSPE) for the same joints and the second lower value for all four indices
in the ankle joint. Moreover, it obtains a value closer to one for the coefficient of correlation
(R?) index, i.e., the desired value. Therefore, the overall performance of the INDO is
superior in comparison to the other three methods in cases with BSIPs uncertainties.

= 12 | [ [ — (Saadatzi et al., 2018) ID method| | = 12}» [ — (Saadatzi et al., 2040) NDO method| |
z 1D Z INDO
L Aaiait i Lasi i - - Applied i O i b b —— Applied 7y i
: -5 I 5y T TR
S S i
-10

(a) (b)

Figure 7. Comparison of (a) IID and Saadatzi et al. [12] ID method, and (b) INDO and Saa-
datzi et al. [12] NDO method, during a squat exercise with SNR = 40 dB and 20% BSIPs uncertainties.

Figure 8 depicts the leg press exercise sequence, which presents similar movements
to a squat exercise but in a supine position, i.e., with the subject facing up and their lower
limbs elevated. The leg press exercise was simulated by using an initial position with
q = (40,0,90)° and B, = 30°. Subsequently, the subject bends the knees to approach their
chest, i.e., the subject begins the downward movement by slowly bending their hips and
knees until their legs form a 90° angle. Finally, the subject extends their knee.
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Table 3. Human-robot interaction torque estimation methods performance indices during a squat ex-
ercise with SNR = 40 dB and 20% BSIPs uncertainties. Bold numbers highlight the best metric value.

Error (Hip, Knee, Ankle)

Meth
ethod MAE MAPE (%) RMSE RMSPE (%) R?
Saadatzietal. [12]ID  (73.0,22.2,6.67) (1192,362,~) (312,128,6.75) (5105,2095,~) (6.64 x 10~3,0.002, ~)
D (37.9,15.9,0.468) (618,260, ~) (243,100,0.691) (3973,1634, ~) (3.74 x 10~%,0.002, ~)
Saadatzietal. [[2]NDO  (313,4.99,6.65) (512,81.4,~) (33.7,547,6.77) (550,89.3, ~) (0.047, 0.855, ~)
INDO (1.04,0.953,0.814) (169,155, ~) (1.34,1.22,1.02) (21.8,19.9, ~) (0.931, 0.939, ~)

Figure 8. Simulated leg press sequence.

Figure 9 presents the q, for the hip, knee, and ankle. These movements are equivalent
to the leg press exercise. Moreover, we can ensure that q; was not more significant than the
one a human joint can execute. In addition, we can denote T4y, Tint, Tfri, and T, during
the estimation phase. It is essential to note that the T;,; was simulated with a constant value
since we have used an isotonic exercise. The subject was relaxed during the first 5s and a
constant torque of T;,;; = (9.8,9.8,0)N m was executed by the subject from 5s to 20s. These
torque magnitudes are equivalent to the requirements presented in Section 2 suggested by
the physiotherapists. Finally, at 20, the subject stopped performing the interaction torque.
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Figure 9. LLRR dynamics during a leg press exercise.

Figure 10 reports the results for the simulation during a leg press exercise. This
simulation presents the results of the four estimation methods with SNR = 40 dB and 20%
BSIPs uncertainties. Figure 10a compares the results for the IID and the Saadatzi et al. [12]
ID method. The IID has significantly lower errors. The proposed method can accurately
estimate the human-robot interaction torque despite BSIPs uncertainties. Both methods
have a similar sensitivity to sensor noise. Figure 10b contrasts the simulations for the INDO
and the Saadatzi et al. [12] NDO method. This figure depicts that the result obtained by
the proposed method is superior to the approaches because it extends it by reducing the
sensitivity to BSIPSs uncertainties. Moreover, both methods present an estimation with
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the lowest noise since their non-dependence on double derivatives. As a result, the errors
obtained with the IID and INDO are significantly lower. Therefore, we can state that our
proposed methods stand out for a proper torque estimation of the human-robot interaction
torque even with sensor noise and BSIPs uncertainties. Thus, extending the work reported
by Saadatzi et al. [12].

Table 4 reports the performance indices for the four human-robot interaction torque
estimation methods during a leg press exercise. In this table, we can observe that the INDO
excels over the other three approaches. We can see that the INDO obtains the lowest MAE,
MAPE, RMS, and RMSPE for all three joints. Moreover, it obtained the closest value to
one for the R? index, i.e., the desired value. Therefore, the INDO’s general performance
outweighs in comparison of the other three methods.
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Figure 10. Comparison of (a) IID and Saadatzi et al. [12] ID method, and (b) INDO and
Saadatzi et al. [12] NDO method, during a leg press exercise with SNR = 40dB and 20%
BSIPs uncertainties.

Table 4. Human-robot interaction torque estimation methods performance indices during a leg press
exercise with SNR = 40dB and 20% BSIPs uncertainties. Bold numbers highlight the best metric
value.

Error (Hip, Knee, Ankle)
Method MAE MAPE (%) RMSE RMSPE (%) RZ
Saadatzi et al. [12] ID (409,213,659 (696,361, ~)  (153,73.2,17.2)  (616,1246,~) (0.004, 0.004, ~)
D (213,9.90,2.03) (362,168, ~)  (117,552,11.8) (1998939, ~) (0.002,0.007, ~)
Saadatzietal. [12]NDO  (21.2,122,460) (360,207, ~)  (26.1,12.2,465) (444,208, ~) (0.226,0.931, ~)
INDO (0.718, 0.609, 0.521)  (12.2,10.4,~) (0.993,0.803, 0.650) (16.9,13.6, ~) (0.959, 0.973, ~)

As mentioned by Saadatzi et al. [12], their ID method is suitable for estimating the
interaction torque when there is no noise in the sensors and there are no uncertainties in the
parameters. It is expected to be noticeably affected by noise since it uses double derivatives
to calculate velocity and acceleration. Additionally, it does not have a correction term like
the NDO and only depends on the system’s dynamics. In contrast, in Figures 7a and 10a, it
can be seen that the IID notably reduces the sensitivity to BSIPs uncertainties. Therefore,
the estimation with the IID outperforms when there are BSIPs uncertainties. However,
the IID is affected by noisy sensors since the dependence of the doubles derivatives is
not removed.

As demonstrated by Saadatzi et al. [12], their NDO method is good at estimating the
interaction torque when there are no uncertainties in the parameters. Moreover, it is less
sensitive to noise in the sensors than the ID. The Saadatzi et al. NDO method is a filtered
version of the Saadatzi et al. ID method due to the nature of the observer and its non-
dependence on double derivatives, only the first-order one. However, the Saadatzi et al.
NDO method is just as sensitive to parameter uncertainties as the Saadatzi et al. 1D
method [12]. The INDO method notably reduces the sensitivity to BSIPs uncertainties,
see Figures 7b and 10b. In addition, the INDO inherits the lower sensitivity to noise from
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the Saadatzi et al. NDO method. Hence, an adequate estimation of the interaction torque
is obtained with the INDO. However, it does not entirely reduce the noise effect to zero.
Moreover, it may add a delay to the estimates. Defining the gain « of the NDO changes this
sensitivity to noise and delay. The design for our INDO was made with the LMI, but an
analytical and optimal design can be evaluated in further studies.

The proposed methods have no negative or positive effect on the sensitivity to sensors
noise. Moreover, we can observe that the ID-based methods have more significant errors
than the NDO-based methods. To summarize, we can state that, in this case, ID-based
methods have more sensitivity to sensor noise than the NDO-based methods.

To sum up, we can see that the errors for the IID are significantly lower than the
errors obtained with the Saadatzi et al. ID method under BSIPs uncertainties. Moreover,
we can denote that the errors for the INDO are also significantly lower than the errors
obtained with the Saadatzi et al. NDO method under BSIPs uncertainties. This significant
error reduction with both proposed methods under BSIPs uncertainties, compared to the
methods reported by Saadatzi et al. [12], is the most significant contribution of this paper.
Therefore, we have proposed two human-robot interaction torque estimation observers for
a simulated LLRR that works despite the BSIPs uncertainties. This proposal extends the
work reported by Saadatzi et al. [12].

6.5. Requirements Evaluation

Table 5 presents an evaluation of the performance of the two proposed human-robot
interaction torque estimation methods according to the requirements defined in Section 2.
These requirements were defined to evaluate the performance of the human-robot torque
estimation methods, to be used as biofeedback to favor isotonicity, despite the BSIPs
uncertainties, through a simulation. In this table, we can observe that both proposed
methods meet the vast majority of the requirements, i.e., accomplishing 16 (88.9%) and 13
(72.2%) of them. In contrast, both methods reported in the literature only accomplish 27.8%
and 33.3% of the requirements when using simulations under noise and BSIPs uncertainties.
Therefore, our proposed methods may be employed as a human-robot interaction torque
estimation method for a simulated lower limb rehabilitation robot. Moreover, it is usable for
isotonic exercises, as biofeedback, despite the BSIPs uncertainties. In addition, the INDO is
superior to the ID-based method since it reduces the sensitivity to sensor noise. This result
is reasonable because of the nature of the observer and because the NDO works without
double derivates to compute §.

It is noticeable that the proposed IID and INDO behaved appropriately in the area
where the methods were working. The good behavior of both methods was intensively
verified using stimuli and simulations in the region in which the LLRR works.

Let us perform a stability analysis of suggested observers, considering that the IID
and INDO are methods comprised of two phases.

Both methods have the same phase one, i.e., a calibration phase to reduce BSIPs
uncertainties. The calibration phase for the IID and INDO inherits the stability from
the online parameter estimation reported by Riani et al. [36]. We have shown that the
calibration phase complies with the input trajectory design and the LMI design, e.g., the
Genetic Algorithm optimization for the condition number ensured a persistent excitation
trajectory a gave us an adequate input for the online parameter estimation. Thus, we
obtained a trajectory whose points gave a well-conditioned observation matrix. Therefore,
the calibration phase can use the same trajectory regardless of the patient’s BSIPs, and
ensure that this estimator can converge during the calibration phase.

The second phase for the IID is based on a transformed ID. This method and trans-
formation turn into a dynamical equation rather than an observer. Moreover, the stability
properties are invariant under base changes. Therefore, this phase does not require a
stability analysis.
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Table 5. Evaluation of the performance of the human-robot interaction torque estimation methods,
during simulations with SNR = 40 dB and 20% BSIPs uncertainties, according to the requirements
defined in Section 2. The checkmark and cross-mark symbols represent whether the requirement is
fulfilled or not, respectively.

(Saadatzi et al (Saadatzi et al.,
Item Requirement Inspired by 2018) ID Meth(;:i 11D 2018) NDO INDO
Method
1 Non-dependence of additional sensors [11,13] v v v v
2 Low phase lag in the estimation [15] X 4 X v
3 Low sensor noise sensitivity [15] X X v v
4 Low sensitivity to BSIPs uncertainties [12] X v X v
The average percentage error must be lower
> than 20 to 22% = v ’ v ’
when using accurate model parameters
6 Small error band [10] X X
7 Approximately 0.5s of settling time or lower [10] X 4 X 4
8 Overshoot of approximately 25% or lower within the [10] v v v v
estimation
R? greater or approximately 0.935 for the hip joint and 0.924
9 for the knee joint (i X x X v
10 %RMSE lower than 8.74% for [11] X X X X
the hip joint and 10.26% for the knee joint
1 A maximum of 5% error when moving [28] X X X v
just one joint, i.e., the distal one
12 Finite-time convergence [29] X v X v
Should not require calibration each time
13 that the user wears the LLRR, i.e., it requires (18] v 4 v 4
a maximum of one calibration per user.
14 It works in all ROM, and the limiting Figure A2a v/ v 4 v
angles of the joints must be configurable
15 It works with slow exe%‘c_ises, executing between 1-25 Figure A2b X v X v
repetitions per set
It works with the following ranges of forces: 0kg .
16 to 15kg for the hip, 0kg to 15kg Figure A2c X v X v
for the knee, and 0 kg to 10kg for the ankle.
17 It works having a maximum percentage of error in the range from Figure A2d X x X x
1% to 3%
18 It works within a squat exercise Case Study X v X v
Total o 13 o 16
passed 5(27.8%) (72.2%) 6(33.3%) (88.9%)

The second phase for the INDO focuses on the convergence of the transformed NDO,
i.e., the methods are used one after the other, and no feedback is used within them. Con-
vergence was shown for the simulations, evidencing that it is very likely to work in the
region of operation. This condition was preserved by ensuring the requirements for the
transformed NDO design by using the LMI stated in Theorems 1 and 2.

To sum up, the IID and INDO stability is based on the fact that the convergence of each
estimator separately is ensured. Moreover, they are executed one after the other. Therefore,
the stability of each phase is maintained.

This work’s contribution consists of two methods that do not require the physiother-
apist to make an exact measurement of the BSIPs of the patient’s limbs, but allow the
use of approximate values. This contribution is possible since we based our methods on
separating the parameter identification phase from the torque estimation phase and both
from the controller itself. To do this, the physiotherapist may ask the patient to be in a state
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of rest, that is, without exerting an intentional torque. The identification system would take
the data from the first iterations to adjust those measurements given by the physiotherapist,
which were an initial value. It would adapt them to a functional value without having to
measure them. Therefore, it would provide the LLRR with more “intelligence” as it would
tune itself. Thus, it allows that in a second stage, once identifying the robot-human system,
a known method is applied for torque estimation, which traditionally has the problem of
being very dependent on an accurate model and therefore sensitive to BSIPs uncertainties.
Still, we proposed two methods that reduce this uncertainty. It is essential to mention that
the torque estimation is not necessary for the execution of the controller because, in this
type of rehabilitation, it is the patient who imposes the torque on the robot and not the
other way around.

7. Conclusions

We proposed the Identified ID-based method (IID) and the Identified NDO-based
method (INDO). Both methods estimate the human-robot interaction torque for a simulated
Lower Limb Rehabilitation Robot (LLRR), which is usable for isotonic exercises despite
the uncertainties of the Body Segment Inertial Parameter (BSIPs). Both methods have two
phases. (1) Phase one is the calibration phase, which allows an online parameter estimation
to reduce BSIPs uncertainties. (2) Phase two is the estimation phase, where the human-—
robot interaction torque uses the estimated parameters under the assumption that the
BSIPs uncertainties have been reduced. The first method combines a transformed Inverse
Dynamics (ID), a friction model, and an online parameter estimation method. The second
method uses the conjunction of a transformed Nonlinear Disturbance Observer (NDO) and
a friction model fed by the output of an online parameter estimation method. Two sets of
simulations were conducted using white Gaussian noise (WGN) with a signal-to-noise ratio
SNR = 40dB and 20% BSIPs uncertainties. The two proposed methods’ performance was
compared to two of the best methods reported in the literature. Both proposed methods
obtained the best Coefficient of Correlation, Mean Absolute Error, and Root Mean Squared
Error compared to the benchmarks. Moreover, the IID and INDO met the vast majority
of the requirements, i.e., accomplishing 72.2% and 88.9%, respectively. In contrast, both
methods reported in the literature only accomplish 27.8% and 33.3% of the requirements
when using simulations with under noise and BSIPs uncertainties. In addition, the INDO
is superior to the IID since it reduces the sensitivity to sensor noise. In conclusion, this
paper proposes two human-robot interaction torque estimation methods, which extend
two methods reported in the literature and copes with BSIPs uncertainties without using
additional sensors.

Future work includes a practical realization of proposed observers within a real
environment with the actual LLRR Nukawa and conducting a study with healthy subjects
and patients. This work requires additional approval from the ethics committee. Moreover,
the validation would ideally involve hardware using a torque sensor on each joint to
measure the actual interaction torque experimentally. Thus, we would be able to compare
this measure with the torque estimation made via the two proposed methods. A challenge
for implementation in the physical robot is the existence of static friction, which the methods
do not consider. Therefore, the estimated torques may be different from the real ones during
the start and stop of the robot.
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Abbreviations

The following abbreviations are used in this manuscript:

AAS Australian Academy of Science

Al Artifficial Intelligence

APM Antipersonnel mines

BSIPs Body Segment Inertial Parameters

CAD Computer Assisted Design

CoM Center of Mass

COVID-19 Coronavirus disease 2019

CTC Computed torque control

D-H Denavit Hartenberg

DOF Degrees of freedom

DP Dorsi/plantar

ESMAD Mobile Anti-Disturbances Squadron

FE Flexion/extension

GA Genetic Algorithm

GRF Ground Reaction Force

IED Improvised explosive devices

1D Inverse Dynamics

11D Identified Inverse Dynamics

INDO Identified Nonlinear Disturbance Observer

KE Kinetic Energy

KINA Virtual Reality System for Lower Limb Rehabilitation of APM or IED Victims
LegSys Old name for the lower limb rehabilitation robot
LLRR Lower Limb Rehabilitation

LMI Linear Matrix Inequality

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

Minciencias  Ministerio de Ciencias, Tecnologia e Innovacién de Colombia
NDO Nonlinear Disturbance Observer

Nukawa Current name for the lower limb rehabilitation robot system
PE Potential Energy

R? Coefficient of Correlation

ROM Range of Motion

RMSE Root Mean Square Error

RMSPE Root Mean Square Percentage Error
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sEMG Surface Electromyography

SDGS Sustainable Development Goals

SNR Signal-to-noise Ratio

UdeM Universidad de Medellin

UPB Universidad Pontificia Bolivariana

UNAM Universidad Nacional Auténoma de México
UXxo Unexploded Ordnance

WGN White Gaussian Noise

WHO World Health Organization

Appendix A. Nukawa

We have developed a lower limb rehabilitation robot (LLRR) called “Nukawa”. This
system has its antecedents in the LegSys system [42,46—48]. Figure A1l presents the current
version of the LLRR Nukawa. The robotic system Nukawa is a product of technical re-
quirements proposed by an interdisciplinary group formed by physiotherapists, industrial
designers, and engineers. The design consists of two limbs, each one composed of a three-
link mechanism and an electronic position and force control, i.e., each leg has 3 degrees of
freedom (3-DOF). The design also has brushless DC motors, power drivers, and position
sensors to perform a control strategy capable of generating multiple rehabilitation patterns.

The system would perform flexion/extension (FE) movements of the hip, FE move-
ments of the knee, and dorsi/plantar (DP) flexion movements of the ankle [46]. Additionally,
the joints are collinear to human joints. The knee is a polycentric joint. However, a collinear
simplification was conducted as presented by Zoss et al. [49] involves a pure rotational
joint in the sagittal plane for the knee joint. To adjust the system for each person, the length
of each segment of the robotic system Nukawa is adjustable, i.e., the length between each
joint can be adjusted. The system is designed for people between 1.44 m and 1.85m tall,
adjustable using a couple of telescopic mechanical systems. Besides, the robot was designed
for people up to 85 kg weight. The brushless DC motors were selected to compensate for
the weight of the robot’s links and the subject limbs. When needed, the motors may also
generate a resistive opposition hip and knee FE and ankle DP. Nukawa aims to help the
physiotherapist in the process of rehabilitation of musculoskeletal pathologies of the lower
limb, e.g., subjects victims of APM, IED, or UXO.

(@) (b)

Figure Al. Nukawa, a 3-DOF Lower-limb robotic rehabilitation for hip, knee, and ankle joints.
(a) CAD model and (b) current version of the robot with both limbs.
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Appendix B. Physiotherapist Surveys

The idea was to ask people in the health area about the requirements of a human-robot
interaction torque estimation method for an LLRR usable for isotonic exercises. Moreover,
the survey purpose was to define the movements for the simulations, i.e., the isotonic
exercises to be used within the simulations. We designed the surveys involving the terms
that physiotherapists commonly use during their evaluation and rehabilitation of patients
with lower limb injuries due to APM, IED, and UXO. Therefore, the questionnaire was
created by a physiotherapist. The expert had experience in research, clinical rehabilitation,
and therapeutic services.

It is worth noting that in the framework of this survey, we took the definition of
isotonic exercises reported by Lopez et al. [50] and this terminology was explained to the
physiotherapists before the survey. Let us introduce this definition as:

An Isotonic contraction is an exercise producing constant tension. This term is gener-
ally applied when the external resistance is constant, achieved with a variable resistance
machine. It is essential to bear in mind that in normal muscle movement in humans,
there are no muscle contractions in which the force remains the same throughout a work-
out. Moreover, the tension generated in the muscle will change as the lever arms change.
Therefore, a machine with variable resistance is required throughout the ROM [50].

Table A1l presents all the questions included in the survey. It consisted of two multiple-
choice multiple-answer questions, two multiple-choice single-answer questions, and one
free-response question. We contacted the physiotherapists by virtual means, and they
filled out the form in the cloud. A total of 26 physiotherapists answered the anonymous
questionnaire. Figure A2 reports the results of the four multiple-choice questions. We
asked these four questions to define the simulations’ ROM, speed, force, and maximum
tolerable error.

Figure A2a depicts the results of asking them about the usage of isotonic exercises
according to ROM recovery, i.e., the question focused on determining if these exercises
are used before recovering the ROM, after recovering the ROM, or in both cases. In this
pie chart, we can observe that the tendency is greater toward using isotonic exercises in
all phases of rehabilitation, with a total of 17 (65.4%) subjects who agree. Therefore, we
require to let the user configure the angle limits of the joints, i.e., the ROM to be used within
the simulations.

Table Al. Questions included in the survey.

Questions

1. How are performed Isotonic exercises for the rehabilitation of antipersonnel mines (APM), improvised explosive devices (IED), and unexploded
ordnance (UXO)?

2. List, in order of importance, five isotonic exercises necessary for lower limb rehabilitation in people victims of APM, IED, and UXO.

3. Which segmental speeds are used in isotonic exercises to rehabilitate lower limbs in people victims of APM, IED, and UXO?

4. In a rehabilitation process for APM, IED, and UXO victims, what are the ranges of force, in pounds or kilograms, during the exercises?

5. What would be the maximum percentage of error allowed in a device for the automatic estimation of the force performed by the subject during the
execution of a motor activity?

6. Optional question: considering the following case study of an amputee, write in the table an example of a protocol that you would use in the
rehabilitation of the IED victim, including five (5) isotonic exercises for lower limb rehabilitation. Define the ranges of motion used in each exercise,
the speeds (reps per minute), and the force range (in kg or pounds) performed at each joint. Case study of a person amputated by IED: male patient,
30 years old, weighing 75 kg, 175 m tall; with right transfemoral amputation (the distal third of the knee), a stump with 18 cm length from the
perineum to the femur section. A user without vascular problems and with good soft tissue healing. The amputation was caused by exposure to an
improvised explosive device during his activities as part of the ESMAD (Command of special operational units) during the control of disturbances
and blockades in the rural area of Florencia Caqueta. As a consequence of the blast wave, the patient lost the hearing capacity of the right ear (sensory
hearing loss), additionally to the amputation. He is currently undergoing gait rehabilitation and uses an Ottobock 3R80 hydraulic knee prosthesis as
a device.

Figure A2b presents the results of the number of repetitions used within a set of
isotonic exercises for the rehabilitation of subjects victims of APM, IED, and UXO. In this
figure, we can observe that 21 (80,7%) subjects answered that a total of 1-25 repetitions per
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set should be conducted. Therefore, we can indirectly have a notion of the speed of the
movements. This result implies that slow exercises are required for the simulations.

Figure A2c presents the results of the ranges of force during the isotonic exercises for
lower limb rehabilitation of subjects victims of APM, IED, and UXO. It is important to note
that physiotherapists usually express force and torque in kilograms or pounds. Therefore,
we used these terms during the questionnaire, as suggested by the expert in rehabilitation.
In this figure, we can observe that the physiotherapists tend to use the lower force ranges
for the hip with 14 (53.8%) subjects, lower force ranges for the knee with 13 (50%) subjects
and lower force ranges for the ankle with 16 (61.5%) subjects. According to the evidence in
these results, it is concluded that the human-robot interaction torque estimation algorithm
is required to work with the following ranges: 0 kg to 15 kg for the hip, 0 kg to 15 kg for the
knee, and 0 kg to 10 kg for the ankle.

Figure A2d presents the results of asking the physiotherapists about the maximum
percentage of error allowed in a device for the automatic estimation of the force carried
out by the subject during the execution of the motor activity. In this figure, we can observe
that the predominant response is that the maximum percentage of error allowed is in the
range from 1% to 3%. Therefore, the requirement from a physiotherapeutic point of view is
that the human-robot interaction torque estimation method should have a percentage error
within this range.

In addition, to define the movements conducted by the LLRR during the simulations,
we presented a free-response question to the physiotherapists. These movements were
used to evaluate the performance of the human-robot interaction torque estimation method.
The free-response question was optional. However, we mentioned that it is the one that
contributes to our study most. For this question, we presented a clinical case to the
physiotherapists. We asked them to write an example of a protocol that they would use to
rehabilitate the person victim of IED, including five isotonic exercises for rehabilitation of
lower limbs. We also asked them to define the ROM, speed, and ranges of force performed
by each joint during each isotonic exercise. The case study of a subject with an amputation
due to an IED is presented in Table Al.

The physiotherapists suggested a total of 44 exercises. However, 25 of them did not
meet the exclusion criteria:

*  Exercises that could not be executed by our LLRR.

¢ Exercises with ROM, speed, or forces without quantitative quantities.
*  Repeated exercises.

e Exercises with incomplete information.

A total of 19 isotonic exercises were obtained after evaluating the exclusion criteria.
Therefore, they were considered according to the inclusion criteria: (a) Exercises that
involve the movement of the three joints so that it is not trivial, and (b) symmetric exercises,
i.e., executing the same movement for each leg as a mirror. Finally, we obtained one exercise
that met all exclusion criteria and inclusion criteria, named squat:

¢ ROM—Hip 90° and Knee 90°;
*  Speed—20 repetitions in 4 min;
e  Force—21b (1kg) at hip, 2 1b (1 kg) at knee, 0 Ib (0 kg) at ankle.

Therefore, the squat exercise should be used to evaluate the performance of the
human-robot interaction torque estimation method. Moreover, the leg press exercise was
also suggested by a physiotherapist as a second exercise. This exercise presents similar
movements to a squat exercise, but in a supine position, i.e., with the subject facing up
and their lower limbs elevated. These two exercises were simulated, and a physiotherapist
validated the simulation trajectories.
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= 1—25 reps per set = 26—50 reps per set
= 51—75 reps per set = 76—100 reps per set
= 100—120 reps per set = More than 120 reps per set
65.4%
* All of the above = After recovering the ROM I - [ ]
= Before recovering the ROM
(@ (b)
= 0—30 Ib (0—15 kg) hip *0—0.01%-0—0.1% =01—1% "1—3%
*32—70 Ib (16—35 kg) hip “4—7% 8—10% -11—15%
= 72—100 Ib (72—100 kg) hip
* 0—30 Ib (0—15 kg) knee 8
*32—70 Ib (16—35 kg) knee
= 72—100 Ib (72—100 kg) knee 7
= 0—20 |b (0—10 kg) ankle
22—40 Ib (11—20 kg) ankle 6

42—60 Ib (21—30 kg) ankle

(0) (d)

Figure A2. Results of the survey reporting that isotonic exercises should be (a) used in these rehabili-

Iy

tation phases, (b) executed taking into account these speeds for the movements, (c) executed using
these force ranges, and (d) executed with a human-robot interaction torque estimation with these

maximum errors.

Appendix C. Dynamic Model

Defining s. = sin(-), c. = cos(-), ¢; = ¢, s; = 5,4, we obtained the matrix

mi1(q) mi2(q) miz(q)
M(q) = |man(q) ma(q) mas(q) (A1)
ma1(q) m3(q) maz(q)

with

m11(q) =12z + L2z + L322 + €12 Mg + 047 mz + 0% m3 + by my + bo? my + bs® m3

(A2)
+2€1 b3m3C23+2€1 €2m362+261 sz2C2+2£2b3m3C3,

mZZ(q) = ms3 £22 +2mzc3lo bz +my b22 + mg3 b32 + 1222 + 13,22, (A3)
m33(q) =m3 b32 + IC3,ZZI (A4)
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mlz(q) :m21(q) = m3 £22 +2mgzc3 2 b3 —+ E] ms3 Co by + mo bzz + 61 my Co by + ms3 b32

(A5)
+ gl ms3 Ca3 b3 + Ic2,zz + IC3,ZZ/
m13(q) = m31(q) = 3,22 + ba? m3 + €1 by m3 ca3 + Lo by mz c3, (A6)
and
m3(q) = maz(q) = mz by + Ly mzc3bs + I3 (A7)
Therefore, the C(q, q) terms is
Cl (q, C[)
C(q,q) = | C(q,9) (A8)
Cs3(q,9)
with
Ci(q,q) = —1 ltamzGhsy — b bymadssa — Ly bymszghss — € by ms g3 cass
— Uy by ms 3 c3sy — U1 byms g5 casy — L1 byms g5 cssy — 24y £y m3dy 4252
— 241 bymy g1 G252 — 242 b3 m3 G143 53 — 242 b3 m3 42 43 53 (A9)
— 201 b3mzq14acoas3 — 241 b3ms g1 gac3sy — 241 b3ms g1 43cas3
— 201 b3mz g1 43c3sy — 241 b3mzgagacorsy — 241 b3mzgr 43 c3sy
Cz(q, q) = fl 4> ms q% Sy + f] by my q% Sp — Un b3 ms3 q% S3 + fl b3 ms3 q% €2 S3 (A]O)
+€1 bgﬂlglﬁCg, Sp — 245 b3 m3 (14383 — 240> b3 m3 42 43 S3
and
Cs(q,9) = 41 (41 (€1 b3 m3 sp3 + €p b3 m3 s3) + £ bz m3 42 53) (A1)
+ 42 (52 by mj 4153 + Uy by m3 g2 53)
Now, taking into account that the gravity term is defined as
ou T gl(q)
cla) - (M42) - [gz(CI) (A12)
q
$3(q)

we obtained
81(q) = goms (bacio + £y ¢y +b3cipz) +goma (bacip +41c1) + by gomicy (A13)

82(q) = gomz ({rc1p + bz crp3) +bagomacin (Al14)
83(q) = bz goms c123 (A15)

The friction may be expressed as
Tpi = Fod (A16)

where F, is the coefficient matrix of viscous friction, which is proportional to the velocity of
joint motion.

Appendix D. Transformed Model

The introduction of dynamic coefficients yx; is a convenient regrouping of the dynamic
parameters, i.e., a linear parametrization of dynamics. The robot dynamics depend in a
nonlinear way on some of these parameters. Therefore, we assumed
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x1=1Ic1zz + Icozz + Ics 2z + Li? mp + Ly m3 + Lo* m3 + by my + bo® mp + bs® m
X2 = L1 goma + L1 go m3 + b1 gom1

X3 = m3 Lo + my by + m3 b3> + Icy .z + Ics 2z

Xa = L1Lymz + L1bym;

X5 = Lagoms + b2 goma (A17)
X6 = m3b3® + Ics

X7 = L2bzmgs

X8 = Libszms

X9 = bz goms

Therefore, we obtained a transformed M(, q) defined as

mu(x,q) mi2(x,q) mi(x q)
M(x,q) = |ma(x,q) m2(x,q) m2s(x q) (A18)
mz1(x,q) ma2(x,q) mss(x,q)

with
my1(X, q) = X1+ 2xac2 + 2x7¢3 + 2x8€23 (A19)
m2(x,q) = X3 +2x7¢3 (A20)
m33(x,q9) = Xe (A21)
mi2(x,q) = ma1(x,q) = x3 + xac2 + 2x7¢3 + xsc23 (A22)
mi3(x,q) = mz1(x,q) = X6 + X7¢3 + Xsc23 (A23)
ma3(x,q) = m32(x,q) = X6 + Xx7¢3 (A24)

The Lagrangian £(q, q) of the mechanical system can be defined as
. . 1 -
£(q,9) = T(q,q) —U(q) = 5 ) mij(q)4:9; — U(q) (A25)
i,j

where T and U denote the total KE and PE of the system, respectively.
The Euler-Lagrange equations can be defined as

d oL dL

where uy, is the generalized force associated with the generalized coordinate g;. Therefore,
we rewrite the dynamic equations as

.. .. au
Y mij(a)d; + Y ckij(4) 4ij T g T )
Inertial terms Centrifugal (i = j) and Coriolis (i # j)terms Gravity terms g (q)

where c;j = ck;j; are the Christoffel symbols of the first kind. Subsequently, we computed
the Centrifugal and Coriolis term ¢(g, §) taking into account that the kth component of
vector C is defined as

ce(,q) = q"Ck(a)q (A28)

T
Ci(q) = ;(aMk + (%) aM) (A29)

where

q 3 /)  oqx



Appl. Sci. 2022,12, 5529

31 0f34

and M is the k-th column of matrix M(q). Subsequently, we obtained a transformed
C(x,q,9) as

Ci(x, q Q)] A3
A30

Cx,q,9) = [CZ (x-9,9)
C(x,9,9)

with

C1(x,9,9) = —42 (41 (xs8s23 + xas2) + 42 (x8523 + xas2) + 43 (x8523 + x753))
— g3 (41 (x8s23 + x753) + g2 (x8523 + x753) + 43 (x8s23 + x753))  (A31)
— 41 (42 (xss23 + xas2) + 43 (x8523 + X753))

C2(x,9,9) = 41 (41 (x8523 + xa52) — X7 4353) — 43 (X7 4153 + X7 4253 + X7 4353) — X7 42 4353 (A32)

G(x,0,.q) = g2 (x7 9183 + x74253) + 41 (41 (x8523 + X753) + X7 §253) (A33)

Now, using the set of dynamic parameters (A17) and taking into account that G(x, q)
is defined as

81(x,q)
G(x.q) = |82(x.q) (A34)
83(x,9)
we obtain the elements for G(x, q) as
81(x,q) = x2¢1 + x5c12 + X9c123 (A35)
$2(x,q) = xs5c12 + X9c123 (A36)
83(X, ) = x9c123 (A37)

We combined these standard parameters to get the vector x of the base inertial param-
eters as given in [38]. This linear parametrization of robot dynamics is not unique in the
chosen set of dynamic coefficients x and the associated regression matrix W. The W is a
n X b matrix, where n = 3 is the number of DOF of the LLRR and b = 9 is the number of
the dynamic parameters. The order of these standard parameters was selected to guarantee
that the regressor W(q, q, {) has a block upper triangular structure as reported by [30].
This triangular block structure may enable computing the parameter estimation by using a
sequential procedure. In this case, the parameter estimation can be executed by an iterative
method, taking measurements from the distal limb to the proximal. However, such a
technique may have the drawback of accumulating any error due to ill-conditioning of the
matrices involved step-by-step. It may then be worthwhile to use a global approach that im-
poses motions on all LLRR joints at once [30]. The calibration phase presented in Section 5.2
will show a multi-DOF approach for an online estimation to reduce BSIPS uncertainties.

X=1[x1 X2 X3 Xa X5 X6 X7 X8 X9 : (A38)
so the dynamic model (1) can be written as
T=W(q,qd)x (A39)
where W(q, q, q) is the regressor matrix, and its notation may be simplified as W.
w11 W12 Wiz W4 Wi Wie W17 Wig W19
W(qq4) =| 0 0 ws wu wys wy Wy Ws Wy (A40)

0 0 0 0 0 W36 W37 W38 W39

and the elements of the W(q, q, ) are defined as



Appl. Sci. 2022,12, 5529 32 of 34

wi1(9, 9, 4) = 41

w12(q,4,4) = 1

w13(q,4,4) = §2

w14(q, 4, §) = —s245 — 2415242 + 2G1c2 + Gac2

ZU15(q, q, q) =12

wm(q, q q) =4§3

wi17(q, 9, 8§) = 24163 — G353 + 24jac3 + §j3c3 — 241 4353 — 242 4353
w1s(q, 4, §) = —s23 45 — 2523 42 43 — 241523 G2 — 523 43 — 241523 §3 + 2 1623 + G2c23 + G323
w19(qr 9, q) = €123

w23(q,4,4) = 41+ 42

w2(q, 9, 4) = 5247 + a2

was(q,9,§) = cn2

w26(q/ q C[) = {3

w7(q, 4, 4) = 241c3 — 4353 + 2§2¢3 + Gacs — 2414353 — 242 383
w28(qr q, q) = S23 q% + ii1623

w29(q, 9, §) = c123

w36(q, 4, 4) = §1+ 42+ §s

w37(q, 4, d) = s3G5 + 253 41 42 + s3G5 + G163 + Gac3

w38(ql q, q) = S23 q% + ﬁlCzs

w39(q, 9, §) = c123

(A41)
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